Notes Syllabus Question Papers Results and Many more...

Available @ www.binils.com

	Reg. No. :	
	Question Paper Code	: 10293
N	M.C.A. DEGREE EXAMINATIONS,	APRIL/MAY 2023.
	Elective	
	(Bridge Course)	
F	BX 4001 – DATA STRUCTURES AN	ID ALGORITHMS
	(Regulations 2021)	
Time : Three ho		Maximum: 100 marks
	Answer ALL question	
	PART A — $(10 \times 2 = 20 \text{ r})$	marks)
1. State the	need for abstract data types (ADT).	
	g-O Notation for algorithm analysis, differences between Queue and Cir	
	sh () and pop () operations for a two	
5. Differentia	iate Circular Linked List and Linear	Linked List.
6. Identify a	any four applications of linked lists.	
7. Enlist the	e differences between linear search a	and binary search.
8. Write time	ne complexities of insertion sort	
(a) Whe	en elements are given in ascending o	order?
(b) Whe	en same elements are given?	
9. Write the	e algorithm for breadth first traversa	ll of a Binary Search tree.
10. Differenti	iate Binary Trees and Binary Search	n Trees.

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

```
PART B — (5 \times 13 = 65 \text{ marks})
   (a) Explain the different techniques/algorithmic methods to solve a problem.
                                       Or
    (b) Compute the time complexity of the following codes
          int a = 0;
          for (i = 0; i < N; I++) {
               for (j = N; j > i; j--) {
                     a = a + i + j;
          int i, j, k = 0;
          for (i = n / 2; i \le n; i++) {
               for (j = 2; j \le n; j = j * 2) {
                     k = k + n / 2;
                                  s.cor
                a = a + rand();
          for (j = 0; j < M; j++) {
                b = b + rand();
                Write the procedure for conversion of infix to postfix expression. (8)
12. (a)
         (i)
                Convert the infix expression ((A + B) - C * (D / E) + F to postfix
          (ii)
                                                                                 (5)
                expression.
                                         Or
                Write the procedure for enqueue and dequeue operations in a
     (b) (i)
                circular queue.
                                                                                 (5)
           (ii) Write the procedure for push and pop operations of a stack.
                                                                             10293
                                          2
```

Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com

			/6	
13.		e singly linked list for adding two polynomials. Write procedure e suitable examples.	(s) and	
		Or		
		Write procedures for insert and delete operations in a circular doubly linked list.		
14.	W	e insertion sort algorithm for sorting the numbers {4, 3, 2, 10, 12 rite procedure and derive the time complexity for best case, word average case.	, 1, 5, 6}. est case	
		Or		
	(b) Ex	plain the following with respect to hashing		
	(i)	Hash table	(3)	
	(ii)	Hash Functions	(3)	
	(ii	i) Operations	(3)	
	(iv	c) Collision Handling	(4)	
15.	(a) Pr	ove the following statements in connection with a binary tree		
	(ii	minimum number of levels is Log2(N+1)	(4) imber of	
		Or		
		rite the procedure for search, insert and deletion in a binary ee. (3.5)	search 5+3.5+6)	
		PART C — $(1 \times 15 = 15 \text{ marks})$		
16.	(a) (i)	Write a function that takes a list sorted in non-decreasing and deletes any duplicate nodes from the list. The list show be traversed once. For example if the linked list is 11->121->43->60 then removeDuplicates () should convert the 11->21->43->60.	uld only 11->11->	
	(i	 Given a singly linked list of characters, write a function returns true if the given list is a palindrome else false. 	ion that (7)	
		Or		
		3	10293	

Notes
Syllabus
Question Papers
Results and Many more...

www.binils.com

Available @

(b) (i) Write the procedure for inorder, preorder and postorder traversals in a binary search tree. Print the inorder, preorder and post order traversals for the following input. (10)

 Given Inorder and Preorder traversals of a binary tree, construct the binary tree.

Inorder Traversal: {4, 2 1, 7, 5, 8, 3, 6} Preorder Traversal: {1, 2, 4, 3, 5, 7, 8, 6}

binils.com

4

10293