POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

Available @ www.binils.com

Reg. No.: Question Paper Code: 10081 M.E./M.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023. Elective Applied Electronics AP 4011 - ADVANCED DIGITAL IMAGE PROCESSING (Regulations 2021) Time: Three hours Maximum: 100 marks Answer ALL questions. PART A — $(10 \times 2 = 20 \text{ marks})$ Define Mach Band effect Compare Opening and Closing in morphological operation 3. Give the significance of Sobel operator when compared to Prewitt operator. What are the texture properties of an image? 4. 5. Define phase congruency. How hough transform is used for linking edges of an image? Define template matching. What are the steps to follow in image registration? 9. List the measurements on 3D images. 10. What is meant by stereo viewing?

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

					-				423,0746W	1 1			
				PAR	ТВ	— (5	× 13	= 65	ma	rks)			
11.	(a)	Compute 2D-DCT for the following 3×3 matrix.											
		$\begin{bmatrix} 7 & 5 \\ 0 & 6 \\ 9 & 1 \end{bmatrix}$	5 1 3 8 4										
		spect	uss about rum. Also rds JPEG	writ	e the	e sign	nifica echn	ince	of it	compone s energy	nts avai compacti	lable in th on capabili	ie ty
							Or						
	(b)	Com	ment on t								mage of si	ize 7×7 .	
				70	75	72	73	70		74			
				70	75	72	73	70	73	74			
				80	85	85	85	85	80	83			
				80	75	73	80	75	73	72			
	1			74 80		85 85	73 85	70 85	80	74 83			
		Desc	cribe an e	80 nhane ain tl	ceme	nt te	80 chniced p	75 que ixel	73 to in	72 iprove the	e contras histogra	t of the given plot.	en
12.	(a)	Exp	lain the fo	llowi	ng se	egme	ntati	on m	etho	ods.			
		(i)	Active co	ontou	r me	thod						F// 221 4	(7)
		(ii)	Region g	growi	ng							001	(6)
	(b)		lain in d		abo	ut v	Or	et l	ased	d segme	ntation r	methods w	ith
13.	(a)	(i)	Explain	Gabo	or filt	ter.	1						(7)
		(ii)	Explain				base	l fea	ture	s.			(6)
		5705					Or						
	(b)	the	various or gressions.	ray-le descri	evel o	co-oc	curre ed fo	nce r ch	mat arac	rix with terizing	an exam GLCM w	ple and det rith necessa	ail
							2					100	81

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

	14.	(a)	(i)	Discuss in detail about affine transformation function.	(7)
	14.	(a)	(ii)	Describe Cubic spine interpolation.	(6)
			(11)		
			(1)	Or	(7)
		(b)	(i)	Describe feature selection and feature correspondence.	(7)
			(ii)	Explain curvelet transform.	***
	15.	(a)	Disc	cuss about the sources of 3D dataset and slicing the dataset	
			_	Or	
		(b)	Exp	lain about the volumetric display of 3D image visualization	
				PART C — $(1 \times 15 = 15 \text{ marks})$	
*	16.	(a)	(i)	Describe the shape number for the following shape and one real-world application which will utilize chain code number as the shape feature.	illustrate and shape (8)
				Starting	
				Point	
			(ii)	A section of a horizontal scan line from an image as provi	ded
				7 7 6 6 5 5 4 4 2 2 1 1 0 0 3 3 3	
				Find the first order and second order derivatives. Also me inference and highlight about the zero crossing property order derivative.	of second (7)
				Or	
		(b)	(i)	Apply skeletonization technique to the below given extract its feature.	figure and (8)
				•	
			(ii)	Illustrate with an example, how to apply wavelet tra multiscale decomposition.	nsform for (7)
				3	10081