POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @ www.binils.com

Reg. No. :
Question Paper Code: 50077
B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.
Fourth Semester
Aeronautical Engineering
AE 8401 – AERODYNAMICS - I
(Regulations 2017)
Time : Three hours Maximum : 100 marks
Answer ALL questions.
PART A — $(10 \times 2 = 20 \text{ marks})$
 What are the assumptions made while deriving Bernoulli's equation? Give the condition for 2-D irretational flows. Sketch the fluid pattern over bluff bodies and streamlined bodies with brief
explanation.
4. What is meant by Magnus effect?
5. What are the applications of conformal transformation in aerodynamics?
6. Define wash-in and wash-out.
7. Define vortex line.
Provide tel si a se se o a para della consequenta and parall a bimed sweet - (d)
8. State the reason why the lift over the wing span is not uniform
9. With a neat sketch compare the velocity profiles for laminar and turbulent
flows.
10. Define shape factor.

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

Available @ www.binils.com

(b) Arrive at Blasius solution for incompressible two dimensional flow over a flat plate at zero angle of attack. Also give the expression for local skin friction coefficient, boundary layer thickness, displacement thickness and momentum thickness for an incompressible flow over a flat plate.

PART C -- $(1 \times 15 = 15 \text{ marks})$

- 16. (a) (i) The velocity potential for an ideal fluid flowing around a long cylinder is given by $\left\{\frac{B}{r} + Ar\right\} \cos \theta = \phi$. The cylinder has a radius R and is placed in a uniform flow of velocity which affects the velocity near to the cylinder. Determine the constants A and B and determine where the maximum velocity occurs. (8)
 - (ii) The potential for flow around a cylinder of radius 'a' is given by $\phi = ux \left[1 + \frac{a^2}{x^2 + y^2} \right], \text{ where x and y are the Cartesian co-ordinates}$ with the origin at the middle. Derive an expression for the stream function (ψ) .

(b) (i) A wing with an elliptical planform and an elliptical lift distribution has an aspect ratio of 6 and a span of 12 m. The wing loading is 900 N/m² when flying at a speed of 150 km/hr at sea level. Compute the induced drag for this wing.

(ii) Write a short note on boundary layer separation with necessary sketches. Also state the factors that encourage BL separation. (7)

50077