Notes Syllabus Question Papers Results and Many more...

Available @ www.binils.com

	-							
D 37			-			8		
Reg. No.:	-							

Question Paper Code: 50838

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Fourth/Fifth/Sixth Semester

Civil Engineering

MA 8491 - NUMERICAL METHODS

(Common to: Aeronautical Engineering/Aerospace Engineering/
Agriculture Engineering/Electrical and Electronics Engineering/Electronics and
Instrumentation Engineering/Instrumentation and Control
Engineering/Manufacturing Engineering/Mechanical Engineering
(Sandwich)/Mechanical and Automation Engineering/Biotechnology and
Biochemical Engineering/Chemical Engineering/Chemical and Electrochemical
Engineering/Plastic Technology/Polymer Technology/Textile technology)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. What is the First iteration approximate solution of the equation 4x + y = 8 and 2x + 3y = 7 solved by Gauss Jacobi Method?
- 2. Find all eigen values of the matrix A by Jacobi's method where $A = \begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}$.
- 3. Form the divided difference table for the following data:

- 4. Find the Lagrange's interpolating polynomial passing through the points (0,0),(1,1),(2,20).
- 5. Evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$ by using two-point Gaussian quadrature formula.

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

6. Find $\frac{dy}{dx}$ of x = 50 by using the following Forward difference

- 7. Using Euler's method, find y at x = 0.1 if $\frac{dy}{dx} = 1 + xy$, y(0) = 2.
- 8. State the Milne's predictor and corrector formula for solving differential equation numerically.
- 9. Write the finite difference scheme for $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 y}{\partial y^2} = 8x^2y^2$ for a square region with mesh size $\Delta x = \Delta y = 1$.
- 10. Write the explicit formula for one-dimensional wave equation if $1-\lambda^2\alpha^2=0$ and $\lambda=\frac{k}{h}$.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Find a real root of the equation $\cos x = 3x 1$ correct to three decimal places by iteration method. (6)
 - (ii) Find the largest Eigen value and its corresponding Eigen vector of

the matrix
$$A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
 by power method Take $X_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. (10)

Or

(b) Solve the following system of equations by Gauss-Seidal Method (16)

$$20x + y - 2z = 17$$
$$3x + 20y - z = -18$$
$$2x - 3y + 20z = 25$$

50838

2

Notes Syllabus Question Papers Results and Many more...

Available @ www.binils.com

12.	(a)	(i)	Use	Newton's	backward	difference	formula to	construct an
			inter	polating poly	ynomial of d	legree 3 for t	the data:	(10)
			x:	-0.75	-0.5	-0.25	0	
			f(x).	_0.07181950	0.024750	0 334937	50 1 10100	

(ii) In the following table, the values of y are consecutive terms of a series of which 23.6 is the $6^{\rm th}$ term. Find the first term of the series.

(6)

 x:
 3
 4
 5
 6
 7
 8
 9

 y:
 4.8
 8.4
 14.5
 23.6
 36.2
 52.8
 73.9

Or

(b) Using the following table values, find the natural cubic spline approximation are hence evaluate the value of y at x = 2.5. (16)

x: 0 1 2 3 y: 1 2 33 244

13. (a) (i) Using the approximate Newton's Interpolation formula to find $\frac{dy}{dx} \text{ and } \frac{d^2y}{dx^2} \text{ at } x = 2.2 \text{ from the following data:}$ (10) $x: \quad 1.4 \quad 1.6 \quad 1.8 \quad 2.0 \quad 2.2$ $y: \quad 4.0552 \quad 4.9530 \quad 6.0496 \quad 7.3891 \quad 9.0250$

(ii) Use Gaussian quadrature three points formula to evaluate the integral $\int_{-\infty}^{2} \frac{dx}{x}$. (6)

Or

(b) Consider the following data: $x: \qquad 0 \quad 0.125 \quad 0.250 \quad 0.375 \quad 0.50 \quad 0.675 \quad 0.750 \quad 0.875 \quad 1$ $y = \frac{1}{1+x^2}: \quad 1 \quad 0.9846 \quad 0.9412 \quad 0.8767 \quad 0.8 \quad 0.7191 \quad 0.64 \quad 0.5664 \quad 0.5$

3

with h = 0.5, 0.25, 0.125 and use Romberg's method to compute $\int_{0}^{1} \frac{1}{1+x^{2}} dx$. Hence deduce an approximate value of π . (16)

50838

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

- 14. (a) Given $\frac{dy}{dx} = \left(\frac{1}{2}\right)(1+x^2)y^2$ and y(0) = 1, y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21, evaluate y(0.4) by Milne's predictor-Corrector Method correct to 4 decimal places. (10)
 - (ii) Solve the equation $\frac{dy}{dx} = 1 y$, y(0) = 0 using modified Euler's method and tabulate the solutions at x = 0.1 and 0.2 correct to 4 decimal places. (6)

Or

- (b) Given $\frac{dy}{dx} = y x^2 + 1$, y(0) = 0.5. (16)
 - (i) Using the modified Euler's method, find y(0.2)
 - (ii) Using the 4th order Runge-Kutta method, find y(0.4) and y(0.6).
 - (iii) Using Adams-Bash forth Predictor-Corrector Method, find y(0.8).
- 15. (a) Solve $2u_t = u_{xx}$, u(0,t) = 0, u(4,t) = 0, u(x,0) = x(4-x) with h = 1. Find the values of u upto t = 5. (16)

Or

(b) Find the model values of the wave equation $\frac{\partial^2 u}{\partial t^2} = 16 \frac{\partial^2 u}{\partial x^2}$ given that u(0,t) = u(5,t) = 0, $u(x,0) = x^2(5-x)$ and $u_t(x,0) = 0$ taking h=1 and upto one half of the period of vibration.

4

50838