POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

	Reg. No. :	Minu est sue		
	uestion Paper C	ode : 3014	18	
	uestion ruper e	/en//eMeMes	MacMacM=1	
B.E./B.	Tech. DEGREE EXAMIN	ATIONS, APRIL	/MAY 2023.	
	Third Sen	nester		
	Electrical and Electro	nics Engineering	виняния А	
	EE 3302 — DIGITAL I	LOGIC CIRCUIT	'S	
	(Regulation	s 2021)		
Time: Three hours			Maximum: 1	00 marks
	Answer ALL q	questions.		
	PART A — (10 × 2	2 = 20 marks)		
1. What is the b	est example of digital syst	tem?		
2. Define Nibble	and Byte.			
3. Define Boolea	n algebra and Boolean Ex	xpression.		
4. State De Mor	gan's theorem.			
5. Difference be	tween Combinational & Se	equential Circuit	S.	
6. What are the	classifications of sequenti	al circuits?		
7. How can the	hazards in combinational	circuit be remove		
8. What is static	e 1 hazard?	ta S and R and a		
9. What are the	types of gate arrays in AS	SIC?		
10. Give the diffe	rent bitwise operators.			
	PART B — (5 × 13	3 = 65 marks)	Design an as	
11. (a) (i) Di	aw the circuit diagram at th tristate out	nd explain the w		inverter
(ii) Ex	xplain the concept and imp	olementation of I	ECL logic fami	ly.
	Or			

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

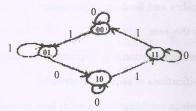
- (b) (i) Explain the operation of TTL NAND gate with a neat circuit diagram. (8)
 - (ii) Draw the circuit of CMOS NOR gate and explain its operation. Mention any two points about the advantages of CMOS over the other digital logic families. (5)
- 12. (a) Obtain the minimum SOP using K-map. $F{=}M_0{+}M_2{+}M_4{+}M_8{+}M_9{+}M_{10}{+}M_{11}{+}M_{12}{+}M_{13}$

Or

- (b) Using 8:1 multiplexer, realize the Boolean function T=f(w,x,y,z)=m (0,1,2,4,5,7,8,9,12,13)
- 13. (a) A sequential circuit has four flip flops ABCD and an input x is described by the following state equations.

$$A(t+1) = (CD'+C'D)x + (CD + (CD)')x'$$

B(t+1) = A


 $C\left(t+1\right)=B$

D(t+1) = C

Obtain the sequence of states when x=1 starting from state ABCD = 0001 Obtain the sequence of states when x=10 starting from state ABCD = 0000

Or

(b) Design a synchronous sequential circuit using JK for the given state diagram.

14. (a) Develop the state diagram and primitive flow table for a logic system that has two inputs S and R and a single output Q. The device is to be an edge triggered SR flip-flop but without a clock. The device changes state on the rising edges of the two inputs. Static input values are not to have any effect in changing the Q output.

Or

(b) Design an asynchronous sequential circuit that has two inputs X_2 and X_1 and one output Z. The output is to remain a 0 as long as X_1 is a 0. The first change in X_2 that occurs while X_1 is a 1 will cause a Z to be a 1. Z is to remain a 1 until X_1 returns to 0. Construct a state diagram and flow table. Determine the output equations.

30148

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

15. (a) Write a VHDL module that implements a full adder using an array of bit-vectors to represent the truth table.

Or

- (b) (i) Write HDL behavioral description of JK flipflop using if- else statement based on value of present state. (8)
 - (ii) Draw the logic diagram for the following module. (5) module seqcrt (A,B,C,Q,CLK);

input A,B,C,CLK;

output Q: reg Q,E;

always @ (Posedge CLK) begin E<= A&B;

 $Q \le E / C;$

end end module

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) An asynchronous sequential circuit has two internal states and one output. The excitation and output functions describing the circuit are

$$Y_1 = X_1 + X_1 Y_2' + X_2 Y_1 Y_2 = X_2 + X_1 Y_1' Y_2 + X_1 Y_1, Z = X_2 + Y_1$$

- (i) Draw the logic diagram of the circuit.
- (5) (5)
- (ii) Derive the transition table and output map.
- (5)

(iii) Obtain a flow table for the circuit.

Or

(b) Design an asynchronous binary toggle circuit that changes state with each rising edge of clock input. Assume the initial output as zero.

3

30148