Notes Syllabus Question Papers Results and Many more... www.binils.com Available @ | | Reg. No.: Reg. No.: Reg. No. 2 Re | | | | | | | | |--|--|--|--|--|--|--|--|--| | | Question Paper Code: 50497 | | | | | | | | | | B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023. | | | | | | | | | | Fifth Semester | | | | | | | | | | Electronics and Communication Engineering | | | | | | | | | | EC 8553 — DISCRETE – TIME SIGNAL PROCESSING | | | | | | | | | | (Common to: Biomedical Engineering / Computer and Communication Engineering / Electronics and Telecommunication Engineering / Medical Electronics) | | | | | | | | | | (Regulations 2017) | | | | | | | | | | Time: Three hours Maximum: 100 marks | | | | | | | | | | Answer ALL questions. | | | | | | | | | | PART A — $(10 \times 2 = 20 \text{ marks})$ | | | | | | | | | | 1. The DFT $X(k)$ of the sequence $x[n]$ is $\{0,1+j,1,1-j\}$. Find the DFT of | | | | | | | | | | $y[n] = \cos\left(\frac{\pi}{2}n\right)x[n]$ using frequency shift property. | | | | | | | | | | 2. Interpret bit reversal and in-place computation as applied to FFT. | | | | | | | | | | 3. Compare Butterworth and Chebyshev filters with respect to their magnitude response and location of poles. | | | | | | | | | | 4. What is the effect of warping on magnitude response of digital IIR filter? | | | | | | | | | | 5. A system with transfer function $H(z)$ has impulse response $h(n)$ defined as $h(2) = 1, h(3) = -1$ and $h(n) = 0$ otherwise. Show that $H(z)$ is a FIR High Pass filter. | | | | | | | | | | 6. What is the effect of having abrupt discontinuity in frequency response of FIR filters? | | | | | | | | | | 7. The filter coefficient $H = -0.673$ is represented by sign-magnitude fixed point arithmetic. Find the quantization error due to truncation if the word length is 6 bits. | | | | | | | | | | 20102 | | | | | | | | Notes Syllabus Question Papers Results and Many more... www.binils.com Available @ | 8. | Interpret the stateme | ent "Rou | anding is | s preferred | than | truncation | in | realizing | |----|-----------------------|----------|-----------|-------------|------|------------|----|-----------| | | the digital filter". | | | | | | | | - 9. Name the functional units in a Digital Signal Processor and list their features. - 10. Illustrate circular buffering in DSPs with an example. PART B — $$(5 \times 13 = 65 \text{ marks})$$ - 11. (a) (i) Explain any four properties of DFT. (7) - (ii) Find the 8-point DFT of the sequence $x[n] = \{0,1,2,3,4,5,6,7\}$ using Decimation in Frequency FFT algorithm. (6) Or - (b) (i) Explain the Radix-2 Decimation in Time FFT algorithm. (7) - (ii) Find the linear convolution of finite duration sequence h[n] = [1,2] and x[n] = [1,2,-1,2,3,-2,-3,-1,1,2,1] using overlap save method. (6) - 12. (a) (i) Utilize Bilinear transformation to design a digital Chebyshev filter for the following specifications (7) $$0.707 \le \left| H(e^{j\omega}) \right| \le 1$$ $0 \le \omega \le 0.2\pi$ $\left| H(e^{j\omega}) \right| \le 0.1$ $0.5\pi \le \omega \le \pi$ Assume T=1 sec. (ii) Make use of direct form I and direct form II structures to realize the system. $$y[n] = -0.1y[n-1] + 0.2y[n-2] + 3x[n] + 3.6x[n-1] + 0.6x[n-2]$$ (6) Or 2 - (b) (i) Describe the steps to design a digital filter using the Impulse Invariance Method. (7) - Using impulse invariance method, determine H(z) for the analog transfer function $H(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$. Assume T = 1 sec. (6) 50497 Notes Syllabus Question Papers Results and Many more... Available @ www.binils.com 13. (a) Use frequency sampling method to determine the impulse response h(n) of a filter with N=7. The desired response is given by (13) $$H_d(\omega) = \begin{cases} e^{-j3\omega} & 0 \le |\omega| \le \frac{\pi}{2} \\ 0 & \frac{\pi}{2} \le |\omega| \le \pi \end{cases}$$ Find the transfer function of the filter and model it using minimum number of multipliers. Or - (b) (i) Explain the steps in the design of linear phase FIR filters using Fourier series method. (7) - (ii) Model the transfer function of FIR filter $H(z)=1+\frac{3}{4}z^{-1}+\frac{17}{8}z^{-2}+\frac{3}{4}z^{-3}+z^{-4} \text{ using direct form and cascade}$ form realization. (6) - 14. (a) Interpret the effect of Quantization errors in computation of DFT and FFT algorithms. (13) Or (b) An LTI system is characterized by the difference equation y(n) = 0.95y(n-1) + x(n). Infer the limit cycle behavior and determine the dead band of the system when (13) $$x(n) = \begin{cases} 0.875 & for \ n = 0 \\ = 0 & otherwise \end{cases}$$ Assume that the product is quantized to 4 bits (excluding sign bit) by rounding. 15. (a) With flow diagram, describe the data path and MAC unit in a DSP Processor. (13) Or (b) Classify the addressing modes used in digital signal processors and explain them with examples. (13) 3 50497 Notes Syllabus Question Papers Results and Many more... www.binils.com Available @ ### PART C — $(1 \times 15 = 15 \text{ marks})$ 16. (a) Using Hamming window, design an ideal High pass filter for the frequency response (15) $$H_d(e^{j\omega)} = 1 for \frac{\pi}{4} \le \left|\omega\right| \le \pi$$ $$=0$$ for $|\omega| \leq \frac{\pi}{4}$ Compute the values of n(n) for N = 11 and determine its transfer function H(z). Or (b) Design a digital Butterworth filter to satisfy the following constraints using bilinear transformation. Assume T = 1s. (15) $$0.9 \le |H(e^{j\omega})| \le 1 \text{ for } 0 \le \omega \le \pi/2$$ $$|H(e^{j\omega})| \le 0.2$$ for $3\pi/4 \le \omega \le \pi$ Analyze the poles of the transfer function obtained and assess the stability of the filter. 4 50497