Notes Syllabus Question Papers Results and Many more... Available @ www.binils.com

	Change CV PART New York of market	
	Reg. No.:	(3)
	Question Paper Code: 30135	
	B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.	
	Second Semester	
	Electronics and Communication Engineering	
	EC 3251 – CIRCUIT ANALYSIS	
	(Common to: Electronics and Telecommunication Engineering)	
	(Regulations 2021)	
Time	e: Three hours Maximum:	100 marks
	Answer ALL questions.	
	PART A — $(10 \times 2 = 20 \text{ marks})$	
1.	Define charge.	
2.	Write the characteristics of series connection of resistances.	
3.	Draw the Thevenin's equivalent circuit.	
4.	Define Dependent sources.	
5.	A resistance 100Ω and capacitive reactance $-j150\Omega$ are connected. The voltage applied is 50 V. Determine the power factor.	l in series.
6.	Write the expression for the total admittance of Y1 and Y2 in a parallel combination.	series and
7.	Define resonance. What is the condition for resonance for an R circuit?	tLC series
8.	An RLC circuit consists of a resistance of 1000Ω , an inductance of 10 a capacitance of $10\mu F$. Find the Q factor of the circuit.	00 mH and
9.	Define Link.	
10.	What is the maximum possible mutual inductance of two inductive coils, with self-inductances $L1=25~\mathrm{mH},~L2=100~\mathrm{mH}?$	ly coupled

Notes
Syllabus
Question Papers
Results and Many more...

www.binils.com

Available @

11. (a) Determine the current in the 4Ω branch in the given circuit? Use mesh analysis method. (13)

(b) A network of resistors has a pair of input terminals AB connected to a d.c supply and a pair of output terminal CD connected to a load resistor of 60 Ω. The resistances of the network are AC = BD = 90Ω, AD = BC = 40Ω. Find the ratio of the current in the load resistor to that taken from supply. (13)

12. (a) Find the current in the 2Ω resistor between A and B for the network using superposition theorem. (13)

Or

(b) A loud Speaker is connected across the terminals A and B of the network shown in figure below. What should be the value of impedance of the speaker to obtain maximum power transferred to it and what is the maximum power? (13)

2

30135

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

13. (a) A voltage source of 100V with a resistance of $10\,\Omega$, an inductance of $50\,\mathrm{mH}$ and a capacitance of $50\,\mathrm{\mu F}$ are connected in series. Calculate the impedance when frequency is (i) 50Hz, (ii) 500Hz, (iii) Power factor at $100\mathrm{Hz}$.

Or

(b) Solve for V1 and V2 using nodal method for the circuit in the figure. V = 100 Volts. (13)

14. (a) Explain in detail about the Source Free series RLC Circuit. (13)

Or

- (b) A series circuit has $R = 100 \Omega$, L = 50 mH, and $C = 100 \mu F$ and is supplied with 200 V, 50 Hz. Find the impedance, the current, the power factor, the power and the voltage drop across each element. (13)
- 15. (a) For the network given, draw the graph and a tree. Show the link currents. Write the tie-set schedule for the tree, the equations for branch currents in terms of link currents. Also write independent equations. (13)

(b) (i) Determine the T-equivalent circuit of the linear transformer shown.

3 30135

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

(ii) For the Ideal Transformer circuit shown here, find the source current I₁, the output voltage V₀, and the complex power supplied by the source. (10)

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) (i) Find the current in the branches A, B, C of the following 2 source network. Apply super position principle. (12)

(ii) A Y-connected resistive network consists of 2Ω in each arm. Draw the equivalent delta-connected network and insert the values. (3)

Or

(b) (i) In the circuit of the figure, compute the current through the O resistance ammeter. Use Norton's theorem. (10)

(ii) Find the Norton's and the Thevenin's equivalent for the circuit shown.(5)

4

30135