POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

	Reg. No. :
	Reg. 110
	Question Paper Code: 50439
	B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.
	Sixth/Seventh Semester
	Computer Science and Engineering
	CS 8792 – CRYPTOGRAPHY AND NETWORK SECURITY
	(Common to Computer and Communication Engineering/Electronics and Communication Engineering/Electronics and Telecommunication Engineering/Information Technology)
	(Regulations 2017)
Time	e: Three hours Maximum: 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
1.	Compare passive and active attacks.
2.	Perform encryption for the plain text "CRYPTOGRAPHYANDSTEGANOGRAPHY" using double columnar transposition technique and the key is 341562.
3.	Find gcd(68,8) using Euclidean algorithm.
4.	Compare the AES and DES.
5.	Find the value of 78 mod 15 Using Euler's theorem.
6.	Find $\Phi(21)$.
7.	Compare MAC and hash function.
8.	Mention the importance of ElGamal cryptosystem.
9.	What are the various types of firewall?
10.	What are key loggers?
	08 59430

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes
Syllabus
Question Papers
Results and Many more...

Available @ www.binils.com

			PART B — $(5 \times 13 = 65 \text{ marks})$	
11.	(a)	(i)	Describe various security mechanisms.	(5)
		(ii)	Encrypt the following Using playfair cipher.	(4)
			Plaintext : PRESERVE	
			Key: AGRICULTURE	
		(iii)	Encrypt the following using single columnar transposition.	(4)
			Plaintext: CYBERSECURITYISIMPORTANT	
			Key: 5137462	
			Or Or	
	(b)	(i)	Discuss about various types of attacks.	(5)
		(ii)	Consider NAN as plain text and QVBPQOUSZ as key. End and decipher using Hill cipher.	eipher (8)
12.	(a)	(i)	Find multiplicative inverse of 313 in mod 67.	(5)
		(ii)	Elaborate on AES encryption and decryption. How will you even the AES algorithm?	lluate (8)
			Or	
	(b)	(i)	Discuss about various block mode of operation.	(8)
		(ii)	Find gcd(6432,768) using extended Euclidean algorithm.	(5)
13.	(a)	(i)	Explain about elliptic curve cryptography.	(10)
		(ii)	Find $\Phi(519)$.	(3)
			Or	
	(b)	(i)	Find X value using Chinese remainder problem. X = 10 (mod 12)	(8)
			$X = 7 \pmod{9}$ $X = 3 \pmod{5}$	
		(ii)	Find 103 ²⁷ mod 467.	(5)
			Company on the same and the	0.420
			2 5	60439

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

	14.	(a)	Elaborate the Kerberos.	(13)
			Or	
		(b)	Explain the various authentication protocols with an example.	(13)
	15.	(a)	(i) Discuss about various PGP services.	(8)
			(ii) Describe the various approaches used for intrusion detection	. (5)
			$\overline{ m Or}$	
		(b)	(i) Elaborate on SET in detail.	(8)
			(ii) Describe IPSec services.	(5)
			PART C — $(1 \times 15 = 15 \text{ marks})$	
,	16.	(a)	Users A and B use the Diffie Hellman key exchange technique, a g(primitive root)=3 (i) If user A has private key X _A =56. What is A's key Y _A ? (ii) If user B has private key X _B =115. What is B's public (iii) What is the shared secret key? Also write the algorithm.	s public
			Or	
		(b)	Explain RSA algorithm. Perform decryption and encryption usin algorithm with p=31, q=47, e=7 and M=69.	ng RSA (15)
			argorithm with p-o1, q-41, e-1 and m-oo.	(10)
4				
			3	50439