SEMESTER V

S. NO.	COURSE	COURSE TITLE	CATE GORY		ERIO ER W	DDS ÆEK	TOTAL CONTACT	CREDITS
NO.	CODE		GOKT	L	T	Р	PERIODS	
THE	ORY							
1.	ME3591	Design of Machine Elements	PCC	4	0	0	4	4
2.	ME3592	Metrology and Measurements	PCC	3	0	0	3	3
3.		Professional Elective I	PEC	-	1	-	-	3
4.		Professional Elective II	PEC	-	-	-	-	3
5.		Professional Elective III	PEC	-	-	-	-	3
6.		Mandatory Course-I&	MC	3	0	0	3	0
PRA	CTICALS							
7.	ME3511	Summer Internship*	EEC	0	0	0	0	1
8.	ME3581	Metrology and Dynamics Laboratory	PCC	0	0	4	4	2
			TOTAL	- 3		-	-	19

^{*}Two weeks Summer Internship carries one credit and it will be done during IV semester summer vacation and same will be evaluated in V semester.

SEMESTER VI

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY		PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS
THEO	RY				, [
1.	ME3691	Heat and Mass Transfer	PCC	3	1	0	4	4
2.		Professional Elective IV	PEC		-	7 - 7	ı	3
3.		Professional Elective V	PEC	7	-	-	-	3
4.		Professional Elective VI	PEC	7	-	-	7 -	3
5.		Professional Elective VII	PEC	-	-	-	-	3
6.		Open Elective – I*	OEC	3	0	0	3	3
7.		Mandatory Course-II&	MC	3	0	0	3	0
8.		NCC Credit Couse Level 3#	UKAAAU	3	0	0	3	3#
PRAC	TICALS							
9.	ME3681	CAD/CAM Laboratory	PCC	0	0	4	4	2
10.	ME3682	Heat Transfer Laboratory	PCC	0	0	4	4	2
			TOTAL	-	-	-	-	23

^{*}Open Elective - I shall be chosen from the emerging technologies.

Attested

[&]amp; Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MC-I)

[&]amp; Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under MC- II)

^{*} NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

MANDATORY COURSES I

S. NO.	COURSE	COURSE TITLE	CATE		ERIC R W	DDS EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GOKI	L	Т	Р	PERIODS	
1.	MX3081	Introduction to Women	MC	3	0	0	3	0
		and Gender Studies						
2.	MX3082	Elements of Literature	MC	3	0	0	3	0
3.	MX3083	Film Appreciation	MC	3	0	0	3	0
4.	MX3084	Disaster Risk Reduction	MC	3	0	0	3	0
		and Management						

MANDATORY COURSES II

S. NO.	COURSE	COURSE TITLE	CATE			DDS EEK	TOTAL CONTACT	CREDITS
140.	O		GOKT	L	T	Р	PERIODS	
1.	MX3085	Well Being with Traditional Practices -	MC	3	0	0	3	0
		Yoga, Ayurveda and Siddha	C	7		1	5	
2.	MX3086	History of Science and Technology in India	MC	3	0	0	3	0
3.	MX3087	Political and Economic Thought for a Humane Society	MC	3	0	0	3	0
4.	MX3088	State, Nation Building and Politics in India	МС	3	0	0	3	0
5.	MX3089	Industrial Safety	MC	3	0	0	3	0

PROGRESS THROUGH KNOWLEDGE

Attested

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL 1: MODERN MOBILITY SYSTEMS

SI.	Course	Course Title	Category	F	Perio Per w		Total Contact	Cradita
No.	Code	Course Title		L	Т	Р	period	Credits
1.	CME331	Automotive Materials, Components, Design and Testing	PEC	2	0	2	4	3
2.	CME332	Conventional and Futuristic Vehicle Technology	PEC	3	0	0	3	3
3.	CME333	Renewable Powered Off Highway Vehicles and Emission Control Technology	PEC	3	0	0	3	3
4.	CME334	Vehicle Health Monitoring, Maintenance and Safety	PEC	3	0	0	3	3
5.	CME335	CAE and CFD Approach in Future Mobility	PEC	2	0	2	4	3
6.	CME336	Hybrid and Electric Vehicle Technology	PEC	3	0	0	3	3
7.	CME337	Thermal Management of Batteries and Fuel Cells	PEC	3	0	0	3	3

VERTICAL 2: PRODUCT AND PROCESS DEVELOPMENT

SI.	Course	MINIC	Category		Perio er we		Total Contact	
No.	Code	Course Title	Category	Li	T	P	period	Credits
1.	CME338	Value Engineering	PEC	3	0	0	3	3
2.	CME339	Additive Manufacturing	PEC	2	0	2	4	3
3.	CME340	CAD/CAM	PEC	3	0	0	3	3
4.	CME341	Design For X	PEC	3	0	0	3	3
5.	CME342	Ergonomics in Design	PEC	3	0	0	3	3
6.	CME343	New Product Development	PEC	3	0	0	3	3
7.	CME344	Product Life Cycle Management	PEC	3	0	0	3	3

VERTICAL 3: ROBOTICS AND AUTOMATION

SI.	Course	Course Title	Category		eriod er we		Total Contact	Cuadita
No.	Code	Course Title		L	Т	Р	Period	Credits
1.	MR3491	Sensors and Instrumentation	PEC	3	0	0	3	3
2.	MR3392	Electrical Drives and Actuators	PEC	3	0	0	3	3
3.	MR3492	Embedded Systems and Programming	PEC	2	0	2	4	3
4.	MR3691	Robotics	PEC	3	0	0	3	3
5.	CMR338	Smart Mobility and Intelligent Vehicles	PEC	3	0	0	3	3
6.	CME345	Haptics and Immersive Technologies	PEC	3	0	0	(3)test	3
7.	CRA332	Drone Technologies	PEC	3	0	0	3	3

ME3461 THERMAL ENGINEERING LABORATORY

L T P C 0 0 4 2

COURSE OBJECTIVES

- 1 To study the valve and port timing diagram and performance characteristics of IC engines
- 2 To study the Performance of refrigeration cycle / components
- To study the Performance and Energy Balance Test on a Steam Generator.

45

PART I IC ENGINES LABORATORY

List of Experiments

- 1. Valve Timing and Port Timing diagrams.
- 2. Actual p-v diagrams of IC engines.
- 3. Performance Test on four stroke Diesel Engine.
- 4. Heat Balance Test on 4 stroke Diesel Engine.
- 5. Morse Test on Multi-Cylinder Petrol Engine.
- 6. Retardation Test on a Diesel Engine.
- 7. Determination of p- θ diagram and heat release characteristics of an IC engine.
- 8. Determination of Flash Point and Fire Point of various fuels / lubricants
- 9. Performance test on a two stage Reciprocating Air compressor
- 10. Determination of COP of a Refrigeration system

15

PART II STEAM LABORATORY

List of Experiments:

- 1. Study of Steam Generators and Turbines.
- 2. Performance and Energy Balance Test on a Steam Generator.
- 3. Performance and Energy Balance Test on Steam Turbine.

TOTAL:60 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- Conduct tests to evaluate performance characteristics of IC engines
- 2. Conduct tests to evaluate the performance of refrigeration cycle
- 3. Conduct tests to evaluate Performance and Energy Balance on a Steam Generator.

СО				1	PSO										
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1	1	n.n.	O O D	ree.	11187	Acres	1711	KUUL	-100	1	1	1
2	2	2	1	1	646	UUK	((()		1		JW.	10	1	1	1
3	2	2	1	1					1			1	1	1	1

ME3591

DESIGN OF MACHINE ELEMENTS

L T P C 4 0 0 4

COURSE OBJECTIVES

- 1 To learn the various steps involved in the Design Process.
- 2 To Learn designing shafts and couplings for various applications.
- 3 To Learn the design of temporary and permanent Joints.
- 4 To Learn designing helical, leaf springs, flywheels, connecting rods and crank shafts for various applications.
- To Learn designing and select sliding and rolling contact bearings, seals and gaskets.

 (Use of PSG Design Data book is permitted)

binils.com
Anna University, Polytechnic & Schools

UNIT – I FUNDAMENTAL CONCEPTS IN DESIGN

12

Introduction to the design process - factors influencing machine design, selection of materials based on mechanical properties - Preferred numbers- Direct, Bending and torsional loading- Modes of failure - Factor of safety - Combined loads - Principal stresses - Eccentric loading - curved beams - crane hook and 'C' frame- theories of failure - Design based on strength and stiffness - stress concentration - Fluctuating stresses - Endurance limit -Design for finite and infinite life under variable loading - Exposure to standards.

UNIT – II DESIGN OF SHAFTS AND COUPLINGS

12

Shafts and Axles - Design of solid and hollow shafts based on strength, rigidity and critical speed – Keys and splines – Rigid and flexible couplings.

UNIT – III DESIGN OF TEMPORARY AND PERMANENT JOINTS

12

Threaded fasteners - Bolted joints including eccentric loading, Knuckle joints, Cotter joints – Welded joints-Butt, Fillet and parallel transverse fillet welds – welded joints subjected to bending, torsional and eccentric loads, riveted joints for structures - theory of bonded joints.

UNIT – IV DESIGN OF ENERGY STORING ELEMENTS AND ENGINE COMPONENTS

12

Types of springs, design of helical and concentric springs—surge in springs, Design of laminated springs - rubber springs - Flywheels considering stresses in rims and arms for engines and punching machines-- Solid and Rimmed flywheels- connecting rods and crank shafts

UNIT - V DESIGN OF BEARINGS AND MISCELLANEOUS ELEMENTS

12

Sliding contact and rolling contact bearings - Hydrodynamic journal bearings, Sommerfeld Number, Raimondi & Boyd graphs, -- Selection of Rolling Contact bearings –Design of Seals and Gaskets.

TOTAL: 60 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Explain the design machine members subjected to static and variable loads.
- 2. Apply the concepts design to shafts, key and couplings.
- 3. Apply the concepts of design to bolted, Knuckle, Cotter, riveted and welded joints.
- 4. Apply the concept of design helical, leaf springs, flywheels, connecting rods and crank shafts.
- 5. Apply the concepts of design and select sliding and rolling contact bearings, seals and gaskets.

TEXT BOOKS:

- 1. Bhandari V B, "Design of Machine Elements", 4th Edition, Tata McGraw-Hill Book Co, 2016
- 2. Joseph Shigley, Richard G. Budynas and J. Keith Nisbett "Mechanical Engineering Design", 10th Edition, Tata McGraw-Hill, 2015.

REFERENCES:

- Ansel C Ugural, "Mechanical Design An Integral Approach", 1st Edition, Tata McGraw-Hill Book Co, 2004.
- 2. Merhyle Franklin Spotts, Terry E. Shoup, and Lee EmreyHornberger, "Design of Machine Elements" 8th Edition, Printice Hall, 2004.
- 3. Robert C. Juvinall and Kurt M. Marshek, "Fundamentals of Machine component Design",6th Edition, Wiley, 2017.
- 4. Sundararajamoorthy T. V. and Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 2003.
- 5. Design of Machine Elements | SI Edition | Eighth Edition | By Pearson by M. F. Spotts, Terry E. Shoup, et al. | 25 March 2019

СО	PO													PSO					
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3				
1	2	2	3					1	1			2	3	2	2				
2	2	2	3					1	1			2	3	2	2				
3	2	2	3					1	1			2	3	2	2				
4	2	2	3					1	1			2	3	A2tes	ed 2				
5	2	2	3					1	1			2	3	2	2				
					1.	w (1)	. 1/	Adium	(2) ·	Hi/	nh (3)								

binils.com

ME3592

METROLOGY AND MEASUREMENTS

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To learn basic concepts of the metrology and importance of measurements.
- 2 To teach measurement of linear and angular dimensions assembly and transmission elements.
- 3 To study the tolerance analysis in manufacturing.
- 4 To develop the fundamentals of GD & T and surface metrology.
- 5 To provide the knowledge of the advanced measurements for quality control in manufacturing industries.

UNIT - I BASICS OF METROLOGY

g

Measurement – Need, Process, Role in quality control; Factors affecting measurement - SWIPE; Errors in Measurements – Types – Control – Measurement uncertainty – Types, Estimation, Problems on Estimation of Uncertainty, Statistical analysis of measurement data, Measurement system analysis, Calibration of measuring instruments, Principle of air gauging- ISO standards.

UNIT – II MEASUREMENT OF LINEAR, ANGULAR DIMENSIONS, ASSEMBLY AND 9 TRANSMISSION ELEMENTS

Linear Measuring Instruments – Vernier caliper, Micrometer, Vernier height gauge, Depth Micrometer, Bore gauge, Telescoping gauge; Gauge blocks – Use and precautions, Comparators – Working and advantages; Opto-mechanical measurements using measuring microscope and Profile projector - Angular measuring instruments – Bevel protractor, Clinometer, Angle gauges, Precision level, Sine bar, Autocollimator, Angle dekkor, Alignment telescope. Measurement of Screw threads - Single element measurements – Pitch Diameter, Lead, Pitch. Measurement of Gears – purpose – Analytical measurement – Runout, Pitch variation, Tooth profile, Tooth thickness, Lead – Functional checking – Rolling gear test.

UNIT - III TOLERANCE ANALYSIS

9

Tolerancing– Interchangeability, Selective assembly, Tolerance representation, Terminology, Limits and Fits, Problems (using tables IS919); Design of Limit gauges, Problems. Tolerance analysis in manufacturing, Process capability, tolerance stackup, tolerance charting.

UNIT - IV METROLOGY OF SURFACES

9

Fundamentals of GD & T- Conventional vs Geometric tolerance, Datums, Inspection of geometric deviations like straightness, flatness, roundness deviations; Simple problems – Measurement of Surface finish – Functionality of surfaces, Parameters, Comparative, Stylus based and Optical Measurement techniques, Filters, Introduction to 3D surface metrology- Parameters.

UNIT - V ADVANCES IN METROLOGY

9

Lasers in metrology - Advantages of lasers - Laser scan micrometers; Laser interferometers - Applications - Straightness, Alignment; Ball bar tests, Computer Aided Metrology - Basic concept of CMM - Types of CMM - Constructional features - Probes - Accessories - Software - Applications - Multisensor CMMs.

Machine Vision - Basic concepts of Machine Vision System - Elements - Applications - On-line and in-process monitoring in production - Computed tomography - White light Scanners.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Discuss the concepts of measurements to apply in various metrological instruments.
- 2. Apply the principle and applications of linear and angular measuring instruments, assembly and transmission elements.
- 3. Apply the tolerance symbols and tolerance analysis for industrial applications.
- 4. Apply the principles and methods of form and surface metrology.
- 5. Apply the advances in measurements for quality control in manufacturing Industries.

Attested

binils.com
Anna University, Polytechnic & Schools

TEXT BOOKS:

- 1 Dotson Connie, "Dimensional Metrology", Cengage Learning, First edition, 2012.
- 2 Mark Curtis, Francis T. Farago, "Handbook of Dimensional Measurement", Industrial Press, Fifth edition, 2013.

REFERENCES:

- 1. AmmarGrous, J "Applied Metrology for Manufacturing Engineering", Wiley-ISTE, 2011.
- 2. Galyer, J.F.W. Charles Reginald Shotbolt, "Metrology for Engineers", Cengage Learning EMEA; 5th revised edition, 1990.
- 3. National Physical LaboratoryGuideNo. 40, No. 41, No. 42, No. 43, No. 80, No. 118, No. 130, No. 131. http://www.npl.co.uk.
- 4. Raghavendra N.V. and Krishnamurthy. L., Engineering Metrology and Measurements, Oxford University Press, 2013.
- 5. Venkateshan, S. P., "Mechanical Measurements", Second edition, John Wiley &Sons, 2015.

С						PSO											
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2	2	2					1			1	3	2	1		
2	3	2	2	2			3500		1		GLESS!	1	3	2	1		
3	3	2	2	2			2		1			. 1	3	2	1		
4	3	2	2	2					. 1	-		1	3	2	1		
5	3	2	2	2					1	Fib		: 1	3	2	1		
				Low (1); Medium (2); High (3)													

ME3581

METROLOGY AND DYNAMICS LABORATORY

L T P C 0 4 2

COURSE OBJECTIVES

- 1 To study the different measurement equipment and use of this industry for quality inspection.
- 2 To supplements the principles learnt in dynamics of machinery.
- 3 To understand how certain measuring devices are used for dynamic testing.

UNIT – I METROLOGY LIST OF EXPERIMENTS

30

- 1. Calibration and use of linear measuring instruments Vernier caliper, micrometer, Vernier height gauge, depth micrometer, bore gauge, telescopic gauge, Comparators.
- 2. Measurement of angles using bevel protractor, sine bar, autocollimator, precision level.
- 3. Measurement of assembly and transmission elements screw thread parameters Screw thread Micrometers, Three wire method, Toolmaker's microscope.
- 4. Measurement of gear parameters Micrometers, Vernier caliper, Gear tester.
- 5. Measurement of features in a prismatic component using Coordinate Measuring Machine (CMM), Programming of CNC Coordinate Measuring Machines for repeated measurements of identical components.
- 6. Non-contact (Optical) measurement using Measuring microscope / Profile projector and Video measurement system.
- 7. Surface metrology Measurement of form parameters Straightness, Flatness, Roundness, Cylindricity, Perpendicularity, Runout, Concentricity in the given component using Roundness tester.
- 8. Measurement of Surface finish in components manufactured using various processes (turning, milling, grinding, etc.,) using stylus based instruments.

binils.com
Anna University, Polytechnic & Schools

List of Experiments:

- 1. Study of gear parameters.
- 2. Epicycle gear Train.
- 3. Determination of moment of inertia of flywheel and axle system.
- 4. Determination of mass moment of inertia of a body about its axis of symmetry.
- 5. Undamped free vibrations of a single degree freedom spring-mass system.
- 6. Torsional Vibration (Undamped) of single rotor shaft system.
- 7. Dynamic analysis of cam mechanism.
- 8. Experiment on Watts Governor.
- 9. Experiment on Porter Governor.
- 10. Experiment on Proell Governor.
- 11. Experiment on motorized gyroscope.
- 12. Determination of critical speed of shafts.

TOTAL:60 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. The students able to measure the gear tooth dimensions, angle using sine bar, straightness.
- 2. Determine mass moment of inertia of mechanical element, governor effort and range of sensitivity.
- 3. Determine the natural frequency and damping coefficient, critical speeds of shafts,

							PSO								
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		2	2	3	1/1	2	2	1	1	2	2		3	2	2
2		2	2	3		2_	2		1	2	2		2	2	2
3		2	2	3		2	2		1	2	2	A. 100	3	2	2
Avg	-	2	2	3	-	2	2	-	1	2	2	-	2.6	2	2
	Low (1); Medium (2); High (3)														

ME3691

HEAT AND MASS TRANSFER

L T P C

COURSE OBJECTIVES

- 1 To Learn the principal mechanism of heat transfer under steady state and transient conditions.
- 2 To learn the fundamental concept and principles in convective heat transfer.
- 3 To learn the theory of phase change heat transfer and design of heat exchangers.
- 4 To study the fundamental concept and principles in radiation heat transfer.
- 5 To develop the basic concept and diffusion, convective di mass transfer.

UNIT - I CONDUCTION

12

General Differential equation – Cartesian, Cylindrical and Spherical Coordinates – One Dimensional Steady State Heat Conduction — plane and Composite Systems – Conduction with Internal Heat Generation – Extended Surfaces – Unsteady Heat Conduction – Lumped Analysis – Semi Infinite and Infinite Solids –Use of Heisler's charts – Methods of enhanced thermal conduction

UNIT - II CONVECTION

12

Conservation Equations, Boundary Layer Concept – Forced Convection: External Flow – Flow over Plates, Cylinders Spheres and Bank of tubes. Internal Flow – Entrance effects. Free Convection – Flow over Vertical Plate, Horizontal Plate, Inclined Plate, Cylinders and Spheres. Mixed Convection.

UNIT – III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS

12

Nusselt's theory of condensation- Regimes of Pool boiling and Flow boiling - Correlations in boiling and condensation. Heat Exchanger Types – TEMA Standards - Overall Heat Transfer Coefficient – Fouling Factors. LMTD and NTU methods. Fundamentals of Heat Pipes and its applications.

binils.com
Anna University, Polytechnic & Schools