Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

	Reg. No. :
	Question Paper Code: 31264
	M.E./M.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.
	First Semester
	Power Systems Engineering
	PS 4101 — COMPUTER AIDED POWER SYSTEM ANALYSIS
	(Regulations 2021)
7	Cime: Three hours Maximum: 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
	system. L. Highlight the advantages and disadvantages of using Triangular decomposition method and LU factorization method. State any two types of constraints in a power system.
4	. Differentiate Power Flow Analysis and Optimal Power Flow Analysis.
5	What is the main advantage of Optimal Power Flow studies.
6	6. Is the reactive power control essential for Optimal Power Flow? If so why?
7	Mention the impact of mutual coupled lines in forming Z_{BUS} and also for short circuit studies in a power system.
	3. List out the various types of short circuits in a power system. Among them which is the most severe fault.
9	What is the main limitation in Equal Area Criterion.
1	0. Mention the advantages of using R-K method.

Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com

	1							
				PART B — ($5 \times 13 = 65 \text{ n}$	narks)		
	11.	(a)	Define the concept of sparsity and how the storing of the sparse matrices be represented in different approaches					trices
					Or			
		(b)	methods ado	IEEE 14 Bus pted for the	20 Line Po	ower System dering sche	explain the va	arious arsity
			Technique.	Line Number	From Bus	To Bus		
				1	1	2		
				2	1	5		
				3	2	3		
				4	2	4		
				5	2	5		
				6	3	4		
				7	4	5		
				8	7	8		
				9	7	10		
				10	9	14		
				11	10	11		
				13	6	12		
VV	AV	AV	VV.	15	12	9	CC	111
				17	4			
				18	5	6		
				18 19	5 6	6		
				18 19 20	5 6 13	6 11 14		
	12.	(a)	The system	18 19	5 6 13	6 11 14		
	12.	(a)		18 19 20 data for a load	5 6 13	6 11 14		(6)
	12.	(a)	(i) Compu	18 19 20 data for a load ate Y bus nine the bus	5 6 13 flow probler	6 11 14 n are given i		
	12.	(a)	(i) Computing (ii) Determine the computing t	18 19 20 data for a load ate Y bus nine the bus d.	5 6 13 flow probler	6 11 14 n are given i	n Table.	by NR
	12.	(a)	(i) Computing (ii) Determine the method Bus Data:	18 19 20 data for a load ate Y bus nine the bus d.	5 6 13 flow probler voltage at	6 11 14 n are given i	n Table.	by NR
		(a)	(i) Compu (ii) Determine the computation of the co	18 19 20 data for a load ate Y bus nine the bus d.	5 6 13 flow probler voltage at	6 11 14 n are given i	n Table.	by NR
		(a)	(i) Compute the control of the contr	18 19 20 data for a load ate Y bus nine the bus d. Pdemand in pu	5 6 13 flow probler voltage at	6 11 14 n are given i the end of	n Table. Tirst iteration Bus type Slack	by NR
		(a)	(i) Compute the method Bus Data: Bus Code 1 2	18 19 20 data for a load ate Y bus nine the bus d. Pdemand in pu - 0.5	5 6 13 flow probler voltage at 1	6 11 14 n are given i the end of	a Table. First iteration Bus type Slack PQ	by NR
		(a)	(i) Compute the control of the contr	18 19 20 data for a load ate Y bus nine the bus d. Pdemand in pu	5 6 13 flow probler voltage at	6 11 14 n are given i the end of	n Table. Tirst iteration Bus type Slack	by NR (7)
		(a)	(i) Compute the method Bus Data: Bus Code 1 2	18 19 20 data for a load ate Y bus nine the bus d. Pdemand in pu - 0.5	5 6 13 flow probler voltage at 1	6 11 14 n are given i the end of	a Table. First iteration Bus type Slack PQ	by NR
		(a)	(i) Compute the method Bus Data: Bus Code 1 2	18 19 20 data for a load ate Y bus nine the bus d. Pdemand in pu - 0.5	5 6 13 flow probler voltage at 1	6 11 14 n are given i the end of	a Table. First iteration Bus type Slack PQ	by NR (7)
		(a)	(i) Compute the method Bus Data: Bus Code 1 2	18 19 20 data for a load ate Y bus nine the bus d. Pdemand in pu - 0.5	5 6 13 flow probler voltage at 1 Qdemand in p - 0.2 0.3	6 11 14 n are given i the end of	a Table. First iteration Bus type Slack PQ	by NR (7)
		(a)	(i) Compute the method Bus Data: Bus Code 1 2	18 19 20 data for a load ate Y bus nine the bus d. Pdemand in pu - 0.5	5 6 13 flow probler voltage at 1 Qdemand in p - 0.2 0.3	6 11 14 n are given i the end of	a Table. First iteration Bus type Slack PQ	by NR (7)

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

1.		
- 1	Line Data:	
	Line No. Bus Code Admittance in pu	
	1 1–2 2-j8	
	2 1-3 1-j4	
	3 2–3 0.6–j2.6	
	Or Or	
	(b) Discuss he following in detail	
	(i) Need for using Fast Decoupled Power Flow Method	
	(ii) Sensitivity Factors for the P-V parameters adjustment	
13.	(a) Explain how the Optimal Power Flow problem be expressed using objective function, constraints, augmented objective function and how the necessary and sufficient conditions be arrived.	
	Or	
	(b) Write short notes on the following	
	(i) Security Constrained Optimal Power Flow Problem. (6)	
14.	(ii) Detailed cost function associated with the Linear programming Method with AC power flow variables. (7) (a) Derive an expression for the fault current, if a LC and LLC faults when occurs in a power system through fault impedance ZF.	7
	Or	
	(b) (i) The current flowing in the lines towards a balanced load connected in a delta connected system are	
	I_a = 100 \angle 0°, I_b = 141.4 \angle 225° and I_c = 100 \angle 90°	
	Find the symmetrical components of the given line currents and draw the phasor diagram of the positive and negative line and phase currents. (7)	
	(ii) Derive the expression of three phase power in terms of symmetrical components. (6)	
15.	. (a) Derive the Power Angle Equation for non-salient pole and salient pole machine. Highlight by commenting which type of machine is preferable for a better transient stability enhancement.	
	Or	
LEGI	3 31264	
	01204	

Notes
Syllabus
Question Papers
Results and Many more...

Available @ www.binils.com

- (b) (i) Highlight the various factors influencing transient stability in a power system. (6)
 - (ii) Discuss in detail about the Implicit integration Methods. (7)

PART C — $(1 \times 15 = 15 \text{ marks})$

 (a) Summarize elaborately and highlight the supremacy of step-by-step method, RK Method and Modified Euler's method.

Or

(b) Obtain the expression for the critical clearing angle when a short circuit occurs at the middle of one of the parallel lines of a Single Machine connected to an Infinite Bus (SMIB). Comment on the critical clearing angle if short circuit occurs at the receiving end.

www.binils.com

31264