POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

	54 Cost
	Reg. No. :
	Question Paper Code: 90822
	B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.
	Fifth Semester
	Computer Science and Engineering
	MA 8551 — ALGEBRA AND NUMBER THEORY
	(Common to Computer and Communication Engineering/Information Technology)
	(Regulations 2017)
	Time: Three hours Maximum: 100 marks
	PART A — $(10 \times 2 = 20 \text{ marks})$
1	Which of the following set is/are group under (+, .) (i) Set of all real numbers (ℝ) (ii) N - set of natural number
	(ii) N - set of natural number(iii) Set of all integer (z)
	(iv) All of the above
	(b) True (or) False: Every subgroup of a cyclic group is cyclic.
	2. If R has no proper divisors of zero. Then R is called ————(a) Field (b) integral domain
	(a) Field (b) integral domain (c) group (d) none of these
	3. Define Root of polynomial.
	4. Define relatively prime.
	 Find the number of positive ≤ 2076 and divisible by neither 4 nor 5.

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

- 6. Express 10110_{two} in base ten.
- 7. Prove that no prime of the form 4n+3 can be expressed as the sum of two squares.
- 8. Solve the linear system $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{4}$, $x \equiv 3 \pmod{5}$.
- 9. Statement only: Fermat's little theorem.
- 10. Define Euler phi function.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) For every group G, prove that the following statements.
 - (i) the identity of G is unique.
 - (ii) the inverse of each element of G is unique.
 - (iii) if $a,b,c \in G$ and ab = ac then b = c. (Left cancellation property)
 - (iv) if $a,b,c \in G$ and ba = ca, then b = c. (Right cancellation property) (16)

(b) (i) State and prove the Lagrange's theorem.
(8)
(ii) Given a ring (R,+,.) for all a, b∈ R, prove that the following

Or

(1) -(-a) = a,

statements

- (2) a(-b) = (-a)b = -(ab), and
- (3) (-a)(-b) = ab

(8)

- 12. (a) (i) If $f(x) = 3x^2 + 4x + 2$ and $g(x) = 6x^4 + 4x^3 + 5x^2 + 3x + 1$ are polynomial in $\mathbb{Z}_7[x]$, Find finite field. (8)
 - (ii) If $f(x) \in F[x]$ has degree $n \ge 1$, then prove that f(x) has at most n roots in F.

Or

- (b) (i) Prove that a finite field F has order p^t , where p is prime and $t \in \mathbb{Z}^+$
 - (ii) Let (F,+,.) Be a field. If char(F) > 0, then prove that the char(F) must be prime.

90822

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

