POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

Reg. No.: Question Paper Code: 90810 B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022. Second Semester Civil Engineering MA 8251 — ENGINEERING MATHEMATICS — II (Common to: All Branches (Expect Marine Engineering/Artificial Intelligence and Data Science/Computer Science and Business Systems) (Regulations 2017) Time: Three hours Maximum: 100 marks Answer ALL questions. PART A — $(10 \times 2 = 20 \text{ marks})$ 1. Given that $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ find the eigen values of A^2 2. Write down the matrix of the quadratic form $3x_1^2 + 5x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_1$. 3. Find the unit normal to the surface $x^3 - xyz + z^3 = 1$ at the point (1,1,1). 4. Give the physical meaning of $\nabla \times \vec{F}$. 5. Does $f(z) = \vec{z}$ analytic? Justify. 6. Write any two properties of analytic function. 7. State simply and multiply connected regions. 8. Define removable singular point with an example. 9. State unit step function. 10. Find Laplace transform of t cost t .		8/
Second Semester Civil Engineering MA 8251 — ENGINEERING MATHEMATICS – II (Common to : All Branches (Expect Marine Engineering/Artificial Intelligence and Data Science/Computer Science and Business Systems) (Regulations 2017) Time : Three hours Maximum : 100 marks Answer ALL questions. PART A — (10 × 2 = 29 marks) 1. Given that A $\begin{pmatrix} 5 & 4 \\ 1 & 1 & 2 \end{pmatrix}$ find the eig n value of A^2 2. Write down the matrix of the quadratic form $3x_1^2 + 5x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_1$. 3. Find the unit normal to the surface $x^3 - xyz + z^3 = 1$ at the point (1,1,1). 4. Give the physical meaning of $\nabla \times \vec{F}$. 5. Does $f(z) = \vec{z}$ analytic? Justify. 6. Write any two properties of analytic function. 7. State simply and multiply connected regions. 8. Define removable singular point with an example. 9. State unit step function. 10. Find Laplace transform of t cost t .		Reg. No. :
Second Semester Civil Engineering MA 8251 — ENGINEERING MATHEMATICS — II (Common to : All Branches (Expect Marine Engineering/Artificial Intelligence and Data Science/Computer Science and Business Systems) (Regulations 2017) Time : Three hours Maximum : 100 marks Answer ALL questions. PART A — $(10 \times 2 = 20 \text{ marks})$ 1. Given that $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ find the eigen values of A^2 2. Write down the matrix of the quadratic form $3x_1^2 + 5x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_1$. 3. Find the unit normal to the surface $x^3 - xyz + z^3 = 1$ at the point (L.I.1). 4. Give the physical meaning of $\nabla \times \vec{F}$. 5. Does $f(z) = \overline{z}$ analytic? Justify. 6. Write any two properties of analytic function. 7. State simply and multiply connected regions. 8. Define removable singular point with an example. 9. State unit step function. 10. Find Laplace transform of t cost t .		Question Paper Code: 90810
Second Semester Civil Engineering MA 8251 — ENGINEERING MATHEMATICS — II (Common to : All Branches (Expect Marine Engineering/Artificial Intelligence and Data Science/Computer Science and Business Systems) (Regulations 2017) Time : Three hours Maximum : 100 marks Answer ALL questions. PART A — $(10 \times 2 = 20 \text{ marks})$ 1. Given that $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ find the eigen values of A^2 2. Write down the matrix of the quadratic form $3x_1^2 + 5x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_1$. 3. Find the unit normal to the surface $x^3 - xyz + z^3 = 1$ at the point (L.I.1). 4. Give the physical meaning of $\nabla \times \vec{F}$. 5. Does $f(z) = \overline{z}$ analytic? Justify. 6. Write any two properties of analytic function. 7. State simply and multiply connected regions. 8. Define removable singular point with an example. 9. State unit step function. 10. Find Laplace transform of t cost t .	B.E./B.T	Fech. DEGREE EXAMINATIONS. NOVEMBER/DECEMBER 2022.
MA 8251 — ENGINEERING MATHEMATICS — II (Common to : All Branches (Expect Marine Engineering/Artificial Intelligence and Data Science/Computer Science and Business Systems) (Regulations 2017) Time : Three hours Maximum : 100 marks Answer ALL questions. PART A — (10 × 2 = 20 marks) 1. Given that $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ find the eigen values of A^2 2. Write down the matrix of the quadratic form $3x_1^2 + 5x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_1$. 3. Find the unit normal to the surface $x^3 - xyz + z^3 = 1$ at the point (1,1,1). 4. Give the physical meaning of $\nabla \times \vec{F}$. 5. Does $f(z) = \vec{z}$ analytic? Justify. 6. Write any two properties of analytic function. 7. State simply and multiply connected regions. 8. Define removable singular point with an example. 9. State unit step function. 10. Find Laplace transform of t cos t t .		
(Common to : All Branches (Expect Marine Engineering/Artificial Intelligence and Data Science/Computer Science and Business Systems) (Regulations 2017) Time : Three hours Answer ALL questions. PART A = (10 × 2 = 20 marks) 1. Given that A = (5 4) find the eigen values of A ² 2. Write down the matrix of the quadratic form $3x_1^2 + 5x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_1$. 3. Find the unit normal to the surface $x^3 - xyz + z^3 = 1$ at the point (1,1,1). 4. Give the physical meaning of ∇ × F̄. 5. Does $f(z) = \overline{z}$ analytic? Justify. 6. Write any two properties of analytic function. 7. State simply and multiply connected regions. 8. Define removable singular point with an example. 9. State unit step function. 10. Find Laplace transform of t cost t.	Intropodes un	Civil Engineering
Data Science/Computer Science and Business Systems) (Regulations 2017) Time: Three hours Maximum: 100 marks Answer ALL questions. PART A = (10 × 2 = 20 marks) 1. Given that $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ find the eigen values of A^2 . 2. Write down the matrix of the quadratic form $3x_1^2 + 5x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_1$. 3. Find the unit normal to the surface $x^3 - xyz + z^3 = 1$ at the point (I,I,1). 4. Give the physical meaning of $\nabla \times \overline{F}$. 5. Does $f(z) = \overline{z}$ analytic? Justify. 6. Write any two properties of analytic function. 7. State simply and multiply connected regions. 8. Define removable singular point with an example. 9. State unit step function. 10. Find Laplace transform of $t \cos t t$.	1	MA 8251 — ENGINEERING MATHEMATICS – II
Answer ALL questions. PART A — (10 × 2 = 20 marks) 1. Given that $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ find the eigen values of A^2 2. Write down the matrix of the quadratic form $3x_1^2 + 5x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_1$. 3. Find the unit normal to the surface $x^3 - xyz + z^3 = 1$ at the point (1,1,1). 4. Give the physical meaning of $\nabla \times \vec{F}$. 5. Does $f(z) = \vec{z}$ analytic? Justify. 6. Write any two properties of analytic function. 7. State simply and multiply connected regions. 8. Define removable singular point with an example. 9. State unit step function. 10. Find Laplace transform of t cost t .	(Common to	
Answer ALL questions. PART A → (10 × 2 = 20 marks) 1. Given that $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ find the eigen values of A^2 . 2. Write down the matrix of the quadratic form $3x_1^2 + 5x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_1$. 3. Find the unit normal to the surface $x^3 - xyz + z^3 = 1$ at the point (1,1,1). 4. Give the physical meaning of $\nabla \times \vec{F}$. 5. Does $f(z) = \overline{z}$ analytic? Justify. 6. Write any two properties of analytic function. 7. State simply and multiply connected regions. 8. Define removable singular point with an example. 9. State unit step function. 10. Find Laplace transform of t cost t .		(Regulations 2017)
PART A — (10 × 2 = 20 marks) 1. Given that $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$ find the eigen values of A^2 CO 2. Write down the matrix of the quadratic form $3x_1^2 + 5x_2^2 + 5x_3^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_1$. 3. Find the unit normal to the surface $x^3 - xyz + z^3 = 1$ at the point (1,1,1). 4. Give the physical meaning of $\nabla \times \vec{F}$. 5. Does $f(z) = \overline{z}$ analytic? Justify. 6. Write any two properties of analytic function. 7. State simply and multiply connected regions. 8. Define removable singular point with an example. 9. State unit step function. 10. Find Laplace transform of t cos t t .	Time : Three	
 Given that A = (5 4) find the eigen values of A² Community Write down the matrix of the quadratic form 3x₁² + 5x₂² + 5x₃² - 2x₁x₂ + 2x₂x₃ + 6x₃x₁. Find the unit normal to the surface x³ - xyz + z³ = 1 at the point (1,1,1). Give the physical meaning of ∇ × F̄. Does f(z) = z̄ analytic? Justify. Write any two properties of analytic function. State simply and multiply connected regions. Define removable singular point with an example. State unit step function. Find Laplace transform of t cost t. 		
 Give the physical meaning of ∇× F̄. Does f(z) = z̄ analytic? Justify. Write any two properties of analytic function. State simply and multiply connected regions. Define removable singular point with an example. State unit step function. Find Laplace transform of t cost t. 	2. Write	down the matrix of the quadratic form
 Does f(z) = z analytic? Justify. Write any two properties of analytic function. State simply and multiply connected regions. Define removable singular point with an example. State unit step function. Find Laplace transform of t cost t. 	3. Find the	we unit normal to the surface $x^3 - xyz + z^3 = 1$ at the point (1,1,1).
 Write any two properties of analytic function. State simply and multiply connected regions. Define removable singular point with an example. State unit step function. Find Laplace transform of t cost t. 	4. Give the	e physical meaning of $ abla imesec{F}$.
 State simply and multiply connected regions. Define removable singular point with an example. State unit step function. Find Laplace transform of t cost t. 	5. Does f($(z) = \overline{z}$ analytic? Justify.
 8. Define removable singular point with an example. 9. State unit step function. 10. Find Laplace transform of t cost t. 	6. Write an	ny two properties of analytic function.
9. State unit step function.10. Find Laplace transform of t cost t.	7. State sin	imply and multiply connected regions.
10. Find Laplace transform of $t \cos t t$.	8. Define r	removable singular point with an example.
	9. State ur	nit step function.
W18pg	10. Find La	aplace transform of $t \cos t t$.
		noting the second second

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Verify Cayley-Hamilton theorem for the matrix $A=\begin{pmatrix} 1 & 2 & 7\\ 4 & 2 & 3\\ 1 & 2 & 1 \end{pmatrix}$ and also use it to find A^{-1} .

Or

- (b) Diagonalise the matrix $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{pmatrix}$ by means of an orthogonal transformation.
- 12. (a) (i) Show that $\overline{F} = (y^2 + 2xz^2)\hat{i} + (2xy z)\hat{j} + (2x^2z y + 2z)\hat{k}$ is irrotational and hence find its scalar potential. (8)
 - (ii) Find work done by the force $\overline{F} = z\hat{i} + x\hat{j} + y\hat{k}$, when it moves a particle along the arc of the curve $\overline{r} = \cos\hat{i} + \sin t\hat{j} + t\hat{k}$, from t = 0 to $t = 2\pi$.

Or

- (b) Verify Stock's theorem for $\overline{F} = y^2z\hat{i} + z^2y\hat{j} + x^2y\hat{k}$, where S is the open surface of the cube formed by the planes $x = \pm a, y = \pm a$ and $z = \pm a$ in which the plane z = -a is cut.
 - 13. (a) (i) If $u = x^2 y^2$ and $v = \frac{-y}{x^2 + y^2}$, prove that both u and v satisfy Laplace equations, but that (u + iv) is not a regular function of z. (8)
 - (ii) Find the bilinear transformation that maps the points 1+i,-i,2-i of the z-plane into the points 0,1,i of the w-plane.

Or

- (b) (i) Find the image in the w-plane of the region of the z-plane bounded by the straight lines x=1, y=1 and x+y=1 under the transformation $w=z^2$. (8)
 - (ii) Find the image of the half-plane x > c, when c > 0 under the transformation $w = \frac{1}{c}$. (8)

90810

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes

Available @

www.binils.com

- 14. (a) (i) Use Cauchy's integral formula to evaluate $\int_{C} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-2)(z-3)} dz,$ where C is the circle |z| = 4.
 - (ii) Find the Laurent's series of $f(z) = \frac{1}{z(1-z)}$ valid in the region 1 < |z+1| < 2.

- Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$ using contour integration, where a > b > 0.
- Find the Laplace transform of the square wave function f(t)15. (a) (i) defined by $f(t) = \begin{cases} k & \text{in } 0 \le t \le a \\ -k & \text{in } a \le t \le 2a \end{cases}$ and f(t+2a) = f(t) for all t. (8)
 - (ii) Find the inverse Laplace transform of the function $\frac{s}{(s^2+a^2)^2}$ by using convolution theorem.

3

90810