POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com

	I ME
	Reg. No. :
Question Paper Code: 70138	
	B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.
	Third Semester
	Mechanical Engineering
	MA 3351 – TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
V	(Common to Aeronautical Engineering/Aerospace Engineering/ Automobile Engineering/Biomedical Engineering/ Civil Engineering/Manufacturing Engineering/Marine Engineering/ Materials Science and Engineering/Mechanical Engineering (Sandwich)/ Mechanical and Automation Engineering/Mechatronics Engineering/ Medical Electronics/ Petrochemical Engineering/Production Engineering/ Robotics and Automation/Safety and Fire Engineering/Bio Technology/ Biotechnology and Biochemical Engineering/Pood Technology/ Petrochemical Technology/ Petroleum Engineering/Pharmaceutical Technology/ (Regulations 2021)
Ti	me: Three hours Maximum: 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
1.	
2.	Find the complementary function of the PDE $(D^3 - 3DD'^2 + 2D'^3)z = e^{2x-y}$.
3.	Identify the given $f(x)$ is an even or odd function. Also sketch its graph.
	$\begin{cases} \pi + x & -\pi \le x \le -\frac{\pi}{2} \end{cases}$
	$f(x) = \int_{-\infty}^{\infty} x - \frac{\pi}{2} \le x \le 0$
•	$f(x) = \begin{cases} -x & -\frac{\pi}{2} \le x \le 0 \\ x & 0 \le x \le \frac{\pi}{2} \end{cases}$ $\pi - x & \frac{\pi}{2} \le x \le \pi$
	$\pi - x \qquad \frac{\pi}{2} \le x \le \pi$
4.	State Parseval's identity in Fourier series.

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

- 5. Write down the appropriate solution of the one dimensional heat flow equation. How is it chosen?
- The ends A and B of a rod 30 cm long, have their temperature kept at 10°C and 100°C respectively. Then obtain the steady state temperature.
- 7. What are the sufficient conditions for the existence of Fourier transform of a function f(x)?
- 8. Obtain the Fourier cosine transform of $\frac{1}{2^t}$
- 9. Find the inverse Z transform of $\frac{z}{(z-1)^2}$.
- 10. State final value theorem in Z transform.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) (i) Solve: (x-2z)p + (2z-y)q = y-x. (8) (ii) Solve: $(D^3 + D^2D' - 4DD'^2 - 4D'^3)z = \cos(2x+y)$. (8)

(b) (i) Solve the PDE $2z + p^2 + qy + 2y^2 = 0$.

(8)

(ii) Solve $(D^2 + 2DD' + D'^2 - 2D - 2D')z = \sin(x + 2y)$.

(8)

- 12. (a) (i) Obtain the Fourier series of periodicity 2π for $f(x) = e^x$ in the interval $0 < x < 2\pi$.
 - (ii) Obtain the half range Fourier cosine series of f(x) = x(l-x) in (0, l).

Or

(b) The following table gives the variations of periodic current over a period.

t sec: 0 T/6 T/3 T/2 2T/3 5T/6 T

A amp: 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98

Show that there is a direct current part of 0.75 amp in the variable current and obtain the amplitude of the first harmonic. (Harmonic Analysis).

70138

2

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

3

13. (a) A tightly stretched string of length 2l is fastened at both ends. The midpoint of the string is displaced by a distance 'b' transversely and the string is released from rest in this position. Find the displacement y at any distance x from one end at any time t. (16)

Or

- (b) An infinitely long metal plate in the form of an area is enclosed between the lines y = 0 and y = π for positive values of x. The temperature is zero along the edges y = 0 and y = π and the edge at infinity. If the edge x = 0 is kept at temperature 'ky', find the steady state temperature at any point in the plate. (16)
- 14. (a) (i) Find the Fourier transform of f(x) given by $f(x) = \begin{cases} 1, & \text{for } |x| \le a \\ 0, & \text{for } |x| > a \end{cases}$. (8)
 - (ii) Find the Fourier sine transform of $f(x) = e^{-ax}$, a > 0 and hence find $F_C(xe^{-ax})$. (8)

Or

(b) (i) Using Parseval's identity for Fourier transforms, evaluate

- (ii) Find the Fourier cosine transform of $f(x) = \begin{cases} 2-x \ ; \ 1 < x < 2 \ . \end{cases}$ (8)
- 15. (a) Using Z transform, solve the difference equation $u_{n+2}+4u_{n+1}+3u_n=3^n$ with $u_0=0$, $u_1=1$. (16)

Or

(b) State and prove convolution theorem in Z transforms and use it to find

$$Z^{-1}\left\{\frac{z^2}{(z-a)(z-b)}\right\}$$
. (16)

3

70138