POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @ www.binils.com

Reg. No.: Question Paper Code: 90512 B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022. Third Semester Electrical and Electronics Engineering EE 8351 - DIGITAL LOGIC CIRCUITS (Common to: Electronics and Instrumentation Engineering/ Instrumentation and Control Engineering) (Regulations 2017) Time: Three hours Maximum: 100 marks Answer ALL questions. PART A — $(10 \times 2 = 20 \text{ marks})$ Reduce A(A+B). 3. Define duality property. 4. Outline the concept of karnaugh map. 5. Define master-slave flip-flop. Give the comparison between synchronous and Asynchronous counters. 6. Define address and word. 7. Recognize the development of PAL. 8. Define Cache memory 10. Predict the concept of switch-level modeling.

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

H		PART B — $(5 \times 13 = 65 \text{ marks})$
		Time b (v a to - oo marks)
11.	l. (a)	(i) Prove that $ABC + ABC' + A'BC = AB + AC + BC$. (7)
		(ii) Convert the given expression in canonical SOP form $Y = AC + AB + BC$. (6)
		Or
	(b)	Design a 4-bit Adder-Subtractor Circuit.
12	2. (a)	Write down the steps in implementing a Boolean function with levels of AND Gates.
		Or Or
	(b)	
		multilevel NAND diagram.
13.	. (a)	Explain the operation of SR flip-flop, T flip-flop and JK flip-flop.
		Or Or
	(b)	Explain the flip-flop excitation tables for JK flip-flop and RS flip-flop.
15.	(a)	Elaborate the concept of PROM, EPROM, EEPROM in detail. Or
	(b)	Explain the operation of bipolar Ram cell with suitable diagram.
	. (a)	Give the different arithmetic operators and bitwise operators.
		Or
	(b)	Explain in detail about the principal of operation of RTL design.
		PART C — $(1 \times 15 = 15 \text{ marks})$
16	. (a)	Draw the circuit of CMOS AND gate and explain its operation.
		Or
	(b)	Explain the operation of bipolar Ram cell with suitable diagram.
		2) Julius Cache metterny
		2 90512
		50312