POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

Reg. No.:

Question Paper Code: 90466

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.

Third Semester

Biomedical Engineering

EC 8353 - ELECTRON DEVICES AND CIRCUITS

(Common to: Computer and Communication Engineering/Electrical and Electronics Engineering/Electronics and Instrumentation Engineering/ Instrumentation and Control Engineering/Robotics and Automation)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A \rightarrow (10 × 2 = 20 marks) voltage of peak value 20 V is connected in series with a silicon diode and

- load resistance of 400Ω . If the forward resistance of the diode is 12Ω find the peak output voltage.
- State the advantages of LED over incandescent lamps.
- When V_{GS} of a JFET changes from -3.1V to -3V, the drain current changes from 1 mA to 1.3 mA. What is the value of transconductance?
- 4. An unijuncion transistor has 10V between the bases. If the intrinsic stand off ratio is 0.65, find the value of stand off voltage. What will be the peak-to-peak voltage if the forward voltage drop in the pn junction is 0.7V?
- A transistor has the following ratings: I_{c(max)} = 500 mA and β_{max} = 300. Find the maximum allowable value of I_B for the device.
- State an application for CC amplifier. Justify the appropriate choice of CC amplifier for the specified application.

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

	7.	State any	two advantages of FET over bipolar transistor.	
	8.	State the	difference between Power amplifier and Voltage amplifier	:
	9.	State any	two advantages of negative feedback.	
	10.	State any	two merits of crystal oscillators.	
			PART B — $(5 \times 13 = 65 \text{ marks})$	
	11.	(a) (i)	Explain the working of a bridge rectifier.	(7)
		(ii)	A full-wave rectifier uses two diodes, the internal resistate diode may be assumed constant at 20Ω . The transfer secondary voltage from centre tap to each end of second and load resistance is 980Ω . Find the mean load currently of lead waves to	armer r.m.s ary is 50 V nt and rms
			value of load current.	(6)
		(b) (i)	Or Explain the working of a zener regulater.	
VV	VA	VV	behavior if the zener is working properly she open-cirucited.	orted and (6)
			1/2 V 1 k.n. 1 k.n. 1 k.n. 1 k.n. 1 k.n.	
	12.		ain the working of a depletion mode MOSFET. D	viscuss its
	12.		ain the working of a depletion mode MOSFET. Deteristics.	hiscuss its (7+6)
	12.	chara	ain the working of a depletion mode MOSFET. Deacteristics.	
		chara	ain the working of a depletion mode MOSFET. Deteristics.	
		chara	ain the working of a depletion mode MOSFET. Deacteristics.	(7+6)

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com

 13. (a) (i) Explain the working of a common emitter amplifier. Discuss the load line analysis of the transistor. (ii) In a CE transistor curcuit, collector load in 4kΩ whereas quiescent current in 1 mA. What is the operating point if V_{cc} =10V? What will be the operating point if R_C = 5kΩ? (6) Or (b) Explain the working of a source follower circuit. Explain its characteristics. (7+6) 14. (a) Explain the working of a differential amplifier. List four applications of differential amplifier. Or (b) Explain the working of a single tuned amplifier. Discuss its frequency response. (7+6) 15. (a) Define Barkhausen criterion for oscillation. Discuss on the different types of feedback in Amplifiers. Or (b) State the principle used for oscillation in crystal oscillator and describe its operation. PART C - (1 × 15 = 15 marks) 16. (a) (i) An amplifier has a voltage amplification A_{cc} and a fraction m_{cc} of its output is feedback in opposition to the input. If m_{cc} = 0.1 and A_{cc} = 100, find the percentage change in the gain if A_{cc} falls 6 db due to aging. (7) (ii) Explain the working of a Colpitts oscillator. Or (b) (i) Explain the working of a Wein-bridge oscillator. (iii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (iii) Choose the inductor values in a Hartley oscillator so that f = 1mHz and m_{cc} = 0.2. Assume that 1 PF capacitors are available. (5) 	7	, .		
current in 1 mA. What is the operating point if V _{cc} =10V? What will be the operating point if R _c = 5kΩ? (6) Or (b) Explain the working of a source follower circuit. Explain its characteristics. (7+6) 14. (a) Explain the working of a differential amplifier. List four applications of differential amplifier. Or (b) Explain the working of a single tuned amplifier. Discuss its frequency response. (7+6) 15. (a) Define Barkhausen criterion for oscillation. Discuss on the different types of feedback in Amplifiers. (5+8) Or (b) State the principle used for oscillation in crystal oscillator and describe its operation. PART C = (1 × 15 = 5 marks) 16. (a) (i) An amplifier has a voltage amplification A, and a fraction m, of its output is feedback in opposition to the input. If m, = 0.1 and A, = 100, find the percentage change in the gain if A, falls 6 db due to aging. (7) (ii) Explain the working of a Colpitts oscillator. (8) Or (b) (i) Explain the working of a Wein-bridge oscillator. (7) (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that f = 1mHz and m, = 0.2. Assume that 1 PF capacitors are available. (5)	13.	(a)		
(b) Explain the working of a source follower circuit. Explain its characteristics. (7+6) 14. (a) Explain the working of a differential amplifier. List four applications of differential amplifier. (7+6) Or (b) Explain the working of a single tuned amplifier. Discuss its frequency response. (7+6) 15. (a) Define Barkhausen criterion for oscillation. Discuss on the different types of feedback in Amplifiers. (5+8) Or (b) State the principle used for oscillation in crystal oscillator and describe its operation. (5+8) PART C - (1 × 15 = 15 marks) 16. (a) (i) An amplifier has a voltage amplification A _c and a fraction m _c of its output is feedback in opposition to the input. If m _c = 0.1 and A _c = 100, find the percentage change in the gain if A _c falls 6 db due to aging. (7) (ii) Explain the working of a Colpitts oscillator. (8) Or (b) (i) Explain the working of a Wein-bridge oscillator. (7) (iii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that f = 1mHz and m _c = 0.2. Assume that 1 PF capacitors are available. (5)			current in 1 mA. What is the operating point if $V_{\rm cc}$ =10V? What will	
characteristics. (7+6) 14. (a) Explain the working of a differential amplifier. List four applications of differential amplifier. (7+6) Or (b) Explain the working of a single tuned amplifier. Discuss its frequency response. (7+6) 15. (a) Define Barkhausen criterion for oscillation. Discuss on the different types of feedback in Amplifiers. (5+8) Or (b) State the principle used for oscillation in crystal oscillator and describe its operation. (5+8) PART C - (1 × 15 = 15 marks) 16. (a) (i) An amplifier has a voltage amplification A, and a fraction m, of its output is feedback in opposition to the input. If m, = 0.1 and A, = 100, find the percentage change in the gain if A, falls 6 db due to aging. (7) (ii) Explain the working of a Colpitts oscillator. (8) Or (b) (i) Explain the working of a Wein-bridge oscillator. (7) (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that f = 1mHz and m, = 0.2. Assume that 1 PF capacitors are available. (5)			Or	
(7+6) Or (b) Explain the working of a single tuned amplifier. Discuss its frequency response. (7+6) 15. (a) Define Barkhausen criterion for oscillation. Discuss on the different types of feedback in Amplifiers. (5+8) Or (b) State the principle used for oscillation in crystal oscillator and describe its operation. (5+8) PART C — (1 × 15 = 15 marks) 16. (a) (i) An amplifier has a voltage amplification A_v and a fraction m_v of its output is feedback in opposition to the input. If $m_v = 0.1$ and $A_v = 100$, find the percentage change in the gain if A_v falls 6 db due to aging. (7) (ii) Explain the working of a Colpitts oscillator. (8) Or (b) (i) Explain the working of a Wein-bridge oscillator. (7) (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that $f = 1mHz$ and $m_v = 0.2$. Assume that 1 PF capacitors are available. (5)		(b)		
(b) Explain the working of a single tuned amplifier. Discuss its frequency response. (7+6) 15. (a) Define Barkhausen criterion for oscillation. Discuss on the different types of feedback in Amplifiers. (5+8) Or (b) State the principle used for oscillation in crystal oscillator and describe its operation. PART C — (1 × 15 = 15 marks) 16. (a) (i) An amplifier has a voltage amplification A_c and a fraction m_v of its output is feedback in opposition to the input. If $m_v = 0.1$ and $A_v = 100$, find the percentage change in the gain if A_v falls 6 db due to aging. (7) (ii) Explain the working of a Colpitts oscillator. (8) Or (b) (i) Explain the working of a Wein-bridge oscillator. (7) (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that $f = 1mHz$ and $m_v = 0.2$. Assume that 1 PF capacitors are available. (5)	14.	(a)		
response. (7+6) 15. (a) Define Barkhausen criterion for oscillation. Discuss on the different types of feedback in Amplifiers. (5+8) Or (b) State the principle used for oscillation in crystal oscillator and describe its operation. PART C — (1 × 15 = 15 marks) 16. (a) (i) An amplifier has a voltage amplification A _v and a fraction m _v of its output is feedback in opposition to the input. If m _v = 0.1 and A _v = 100, find the percentage change in the gain if A _v falls 6 db due to aging. (7) (ii) Explain the working of a Colpitts oscillator. (8) Or (b) (i) Explain the working of a Wein-bridge oscillator. (7) (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that f = 1mHz and m _v = 0.2. Assume that 1 PF capacitors are available. (5)			Or	
of feedback in Amplifiers. Or (b) State the principle used for oscillation in crystal oscillator and describe its operation. (5+8) PART C — (1 × 15 = 15 marks) 16. (a) (i) An amplifier has a voltage amplification A_{ν} and a fraction m_{ν} of its output is feedback in opposition to the input. If $m_{\nu} = 0.1$ and $A_{\nu} = 100$, find the percentage change in the gain if A_{ν} falls 6 db due to aging. (7) (ii) Explain the working of a Colpitts oscillator. Or (b) (i) Explain the working of a Wein-bridge oscillator. (7) (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that $f = 1mHz$ and $m_{\nu} = 0.2$. Assume that 1 PF capacitors are available. (5)		(b)		
(b) State the principle used for oscillation in crystal oscillator and describe its operation. (5+8) PART C = (I × 15 = 15 marks) 16. (a) (i) An amplifier has a voltage amplification A _v and a fraction m _v of its output is feedback in opposition to the input. If m _v = 0.1 and A _v = 100, find the percentage change in the gain if A _v falls 6 db due to aging. (7) (ii) Explain the working of a Colpitts oscillator. (8) Or (b) (i) Explain the working of a Wein-bridge oscillator. (7) (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that f = 1mHz and m _v = 0.2. Assume that 1 PF capacitors are available. (5)	15.	(a)		
PART C — (I × 15 = 15 marks) 16. (a) (i) An amplifier has a voltage amplification A_v and a fraction m_v of its output is feedback in opposition to the input. If $m_v = 0.1$ and $A_v = 100$, find the percentage change in the gain if A_v falls 6 db due to aging. (7) (ii) Explain the working of a Colpitts oscillator. (8) Or (b) (i) Explain the working of a Wein-bridge oscillator. (7) (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that $f = 1mHz$ and $m_v = 0.2$. Assume that 1 PF capacitors are available. (5)			Or	
output is feedback in opposition to the input. If $m_o = 0.1$ and $A_v = 100$, find the percentage change in the gain if A_v falls 6 db due to aging. (7) (ii) Explain the working of a Colpitts oscillator. (8) Or (b) (i) Explain the working of a Wein-bridge oscillator. (7) (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that $f = 1mHz$ and $m_v = 0.2$. Assume that 1 PF capacitors are available. (5)	WV	(b)	its operation. (5+8)	r
(ii) Explain the working of a Colpitts oscillator. Or (b) (i) Explain the working of a Wein-bridge oscillator. (7) (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that $f = 1mHz$ and $m_v = 0.2$. Assume that 1 PF capacitors are available. (5)	16.	(a)	output is feedback in opposition to the input. If $m_{\rm p}=0.1$ and $A_{\rm p}=100$, find the percentage change in the gain if $A_{\rm p}$ falls 6 db due	
 (b) (i) Explain the working of a Wein-bridge oscillator. (7) (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that f = 1mHz and m_y = 0.2. Assume that 1 PF capacitors are available. (5) 				
 (ii) A phase-shift oscillator uses 5pF capacitors. Find the value of R to produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that f = 1mHz and m_v = 0.2. Assume that 1 PF capacitors are available. (5) 			Or	
produce a frequency of 800 kHz. (3) (iii) Choose the inductor values in a Hartley oscillator so that $f = 1 mHz$ and $m_y = 0.2$. Assume that 1 PF capacitors are available. (5)		(b)	(i) Explain the working of a Wein-bridge oscillator. (7)	
(iii) Choose the inductor values in a Hartley oscillator so that $f = 1 mHz$ and $m_v = 0.2$. Assume that 1 PF capacitors are available. (5)				
3 90466			(iii) Choose the inductor values in a Hartley oscillator so that $f=1mHz$	
3 90466				
			3 90466	