Notes Syllabus Question Papers Results and Many more...

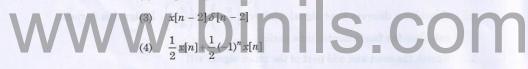
Available @

www.binils.com

		Reg. No. :)-1112	
consuper an	Questio	n Paper	Code:	9046	55		
B.E./B.	Гесh. DEGREE	EXAMINATIO	ONS, NOVE	MBER/	DECEMI	BER 202	22.
		Third S	emester				
	Electron	ics and Comm	unication E	ngineer	ing		
	EC 8	352 – SIGNAI	S AND SY	STEMS			
	e: Biomedical En ronics and Telec		THE RESERVE AND ADDRESS OF THE PARTY OF THE			-	ering/
		(Regulation	ons 2017)				
Time: Three	hours				Maximu	m: 100	marks
		Answer ALI	questions.				
		ART A — (10 >					
1. Consider calcular 2. Sketch	er a discrete tin te the fundamen the even and od	the signal $x(n)$ at time period part of the g	$\frac{\cos\left(\frac{\pi}{2}n\right)}{d}$ d.	x(t)	. If sign	al is pe	riodic,
$x(t) = \frac{t}{4}$	$; 0 \le t \le 4$						
3. Use the	duality propert	ty to find the F	ourier tran	sform of	the give	n signal	
$x(t) = \frac{1}{1}$	$\frac{1}{+(3t)^2}$						
4. Determ	ine the inverse	Laplace transf	form of x(s)	$=\log\left(\frac{S}{S}\right)$	$\left(\frac{+5}{+6}\right)$.		
5. Conside	er an LTI syster	n with impuls	se response	$h(t) = e^{-}$	5tu(t). If	the out	put of
the syst	tem is $y(t) = e^{-3t}$	$u(t) - e^{-5t}u(t) ,$	then calcula	ite the i	nput of t	he syste	m.
6. The dif	ferential equation	on $\frac{d^2y(t)}{dt^2}$ $\frac{dy}{dt}$	$\frac{(t)}{t} - 2y(t) = 1$	x(t) desc	ribe a sy	stem wi	ith an
input x	(t) and output g tep input. Find	y(t). The syste	em, which is	initiall	y relaxed		
90468							

Notes Syllabus Question Papers Results and Many more...

Available @


www.binils.com

- 7. Determine the region of convergence (ROC) of the given discrete time signal $x[n] = \left(\frac{1}{3}\right)^{|n|} \left(\frac{1}{2}\right)^n u[n].$
- State the sampling theorem. A band-limited signal with a maximum frequency 5KHz is to be sampled. According to the sampling theorem calculate the minimum sampling frequency.
- 9. The system function of causal LTI system is $H(z) = \frac{z-1}{(z-3)(z+1)}$. Find the difference equation representation of system.
- 10. Let y[n] denotes the convolution of h[n] and g[n], where $h[n] = (0.5)^2 u[n]$ and g[n] is a causal sequence. If y[0] = 1 and y[1] = 0.5, then find the value of g[1]?

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

- 11. (a) (i) A discrete time signal shown in Fig 11 (a), sketch and label each of the following signals: (8)
 - (1) x[n]u[3-n]

(2) x[3n+1]

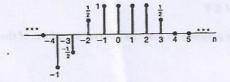


Fig. 11 (a)

(ii) Determine the energy and power signals of the signals

$$x(t) = e^{j\left(2t + \frac{\pi}{4}\right)} \tag{5}$$

Or

Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com

- (b) (i) For the signal x(t) shown in Fig 11 (b), sketch an label each of the following signals: (8)
 - (1) x(t) u (1-t)
 - (2) $x(t) \{u(t) u(t-1)\}$
 - (3) x(-2t+2)
 - (4) $x(t) \delta \left(t \frac{3}{2}\right)$

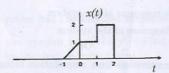


Fig. 11 (b)

(ii) Determine the energy and power signals of the signals $x(n) = 2e^{j4n}$

(3)

(iii) Check whether the given system is causal or not $y[n] = Even\{x[n-2]\}$ (2)

(8)

2. (a) (i) If a continuous time signal
$$x(t)$$
 is defined as

10 (40)

Calculate the Fourier transform of y(t). If y(t) = Even part of x(t)(ii) Determine the Laplace transform of the continuous time signals $x(t) = |t| e^{-2|t|}$ and sketch its region of convergence. (5)

Or

- (b) (i) Determine the Laplace transform of the continuous time signals $x(t) = e^{-2t}u(t) + e^{5t}u(-t)$ and sketch its region of convergence. (5)
 - (ii) A triangular pulse x(t) in the Fig. 12 (b) as the convolution of two rectangular pulses, determine the Fourier transform of x(t). Also evaluate the Fourier transform of individual rectangular pulses. (8)

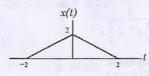


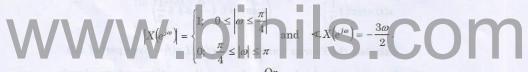
Fig. 12 (b)

3

Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com


- 13. (a) Consider a Continuous-time LTI system for which input x(t) and output y(t) is related by differential equation: $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t) \text{ with}$ having the initial conditions $y(0) = 0, \frac{dy(t)}{dt}\Big|_{t=0} = 4$. If $x(t) = 4e^{-2t}u(t)$, Determine the following
 - (i) Zero input response of the system
 - (ii) Zero state response of the system
 - (iii) Overall Response of the system

Or

- (b) Evaluate the continuous-time convolution integrals between the signals x(t) and h(t) given below $x(t) = \cos{(2\pi t)} [u(t+1) u(t-1)]$ and $h(t) = e^{-t}u(t)$
- 14. (a) (i) Find the Z-transform of the given sequence. Plot the pole-zero constellation diagram and also indicate the region of convergence (6) $(1)^n$

$$x[n] = 2^n u[-n] + \left(\frac{1}{4}\right)^n u[n-1]$$

(ii) Use the Fourier transform Synthesis equation to determine the inverse Fourier transform $X(e^{j\omega})$: (7)

(b) (i) Let $X(e^{j\omega})$ denotes the Fourier transform of given signal x[n]. (7)

$$X(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}} \left(\frac{\sin \frac{3}{2} \omega}{\sin \frac{\omega}{2}} \right) + 5\delta(\omega), \quad -\pi \le \omega \le \pi$$

Determine x[n].

(ii) Determine the inverse Z-transform of X(z).

$$x[z] = \frac{1}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}}.$$

For following cases:

- (1) ROC: |z| < 0.5
- (2) ROC: 0.5 < |z| < 1.

90465

(6)

Notes
Syllabus
Question Papers
Results and Many more...

Available @ www.binils.com

15. (a) (i) Consider a system consisting of the cascade of two LTI system with frequency responses. (5)

$$H_1\!\!\left(\!e^{j\omega}\right)\!=\!\frac{2-e^{-j\omega}}{1+\frac{1}{2}\,e^{-j\omega}} \text{ and } H_2\!\!\left(\!e^{j\omega}\right)\!=\!\frac{1}{1-\frac{1}{2}\,e^{-j\omega}+\frac{1}{4}\,e^{-j2\omega}}$$

Find the difference equation describing the overall system.

(ii) An LTI system has the impulse response $h[n] = \left(\frac{1}{2}\right)^n u[n+2]$. The input to the system is $x[n] = \gamma^{|n|}$. Find the general closed form equation for the system output y[n].

Or

- (b) (i) An LTI system is described by the equation y[n] = x[n] + 0.8x(n-1) + 0.8x(n-2) 0.49y[n-2]. Determine the Impulse response of the system. (5)
 - (ii) An LTI system has the impulse response h[n] = βⁿu[n]; for |β| < 1.
 <p>The input to the system is x[n] = ⟨u[n + 10] 2u[n] + u[n 4]⟩ with no restriction on the value of β. Find the general closed form equation for the system output y[n].

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) (i) Suppose $g(t) = x(t)\cos t$ and the Fourier transform of g(t) is (8) $G(j\omega) = \begin{cases} 1, & |\omega| \le 2 \\ 0, & \text{otherwise} \end{cases}$

- (1) Determine x(t)
- (2) Specify the Fourier transform $X_1(j\omega)$ of a signal $x_1(t)$ such that $x(2t) = x_t(t)\cos\left(\frac{2}{3}t\right)$.
- (ii) Suppose the following facts are given about the signal x(t) with Laplace transform X(s):
 - (1) x(t) is real and even.
 - (2) X(s) has four poles and no zeros in the finite s-plane.
 - (3) X(s) has a pole at $S = \frac{1}{2}e^{j^{\frac{s}{4}}}$.

$$(4) \qquad \int\limits_{-\infty}^{\infty} x(t)dt = 4$$

Determine X(s) and its ROC.

Or

5

Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com

- (b) (i) Consider a discrete time signal x(n) with Z-transform X(Z). Following facts are given,
 - (1) x(n) is real and right sided
 - (2) X(z) has exactly two poles
 - (3) X(x) has two zeros at origin
 - (4) X(z) has one pole at $z = \frac{1}{2}e^{j^{\frac{5}{3}}}$
 - (5) $x(1) = \frac{8}{3}$

Determine X(z) and region of convergence.

(8)

(ii) Find the impulse response of a LTI system having frequency response.

$$H(j\omega) = \frac{(\sin^2(3\omega))\cos\omega}{\omega^2}.$$
 (7)

www.binils.com

6