POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

	father \$0 = 81 x 61 8 13 / 9
	Reg. No. :
	$TV \min S + aS \cos \Omega = O(1) = O(1)$
	Question Paper Code: 70087
	and at the effect the section of the verteen matter and red to the To . (d)
	B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.
	Third Semester
	Electronics and Communication Engineering
	EC 3354 — SIGNALS AND SYSTEMS
	(Common to: Computer and Communication Engineering/Electronics and Telecommunication Engineering/Medical Electronics)
	(Regulations 2021)
Time	: Three hours Maximum : 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
1. 2.	State whether the following system $y(t) = 2t \times (t)$ is time variant or not. Differentiate between causal and non-causal systems.
3.	Define Fourier transform.
4.	If $X(s) = \frac{2}{(s+3)}$. Find the Laplace transform of $\frac{dx(t)}{dt}$.
5.	Determine the impulse response h (t) of the following system $y(t)=x(t-t_o)$. Assume zero initial conditions.
6.	Perform Convolution of the causal signal $x_1(t) = 2u(t)$, $x_2(t) = u(t)$ using Laplace transform.
7.	Compare Fourier transform of discrete and continuous time signals.
8.	State the Linearity property of Z transform.
9.	What is a recursive system?
10. VEO	In an LTI System the impulse response, $h(n)=C^n$ for $n \leq 0$. Determine the range of values of C, for which the system is stable.

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

PART B — $(5 \times 13 = 65 \text{ marks})$

- 11. (a) Determine the periodicity of the following continuous time signals.
 - $x(t) = 2\cos 3t + 3\sin 7t$

(6)

 $x(t) = 5\cos 4 \pi t + 3\sin 8 \pi t$ Question Paper Code: (7)

- Test whether the system $d^2y(t) / dt^2 + 2 dy(t)/dt + 3 y(t) = x(t)$ is linear or not. The same services are represented as a service of
- Derive the fourier transform expression from the exponential form of (a) fourier series.

Or

- State and prove initial value theorem and final value theorem using Laplace Transform.
- 13. (a) Explain the cascade structure and parallel structure of continuous time systems with neat diagram.

- Perform convolution of $x_1(t) = e^{-2t}\cos 3t u(t)$ and $x_2(t) = 4\sin 3t u(t)$ using Laplace transform.
- Explain the Correlation property and Parseval's relation in DTFT. 14. (a)

Find the one sided z transform of the discrete time signals generated by mathematically sampling the following continuous time signal $\cos \Omega_0 t$.

Find the transfer function and unit sample response of the second order 15. (a) difference equation with zero initial conditions y(n) = x(n) - 0.25y(n-2)

Or

Find the linear convolution of the sequence, $x(n) = \{-1, 1, 2, -2\}$ and

PART C — (1 × 15 = 15 marks)

16. (a) Using z transform, perform deconvolution of the response, $y(n) = \{1, 4, 8, 8, 3, -2, -1\}$ and impulse response $h(n) = \{1, 2, 1, -1\}$ to extract the input x(n).

Or

(b) Evaluate the step response of an LTI system whose impulse response, is given by $h(n) = a^{-n} u(-n)$; $0 < \alpha < 1$.

70087

2