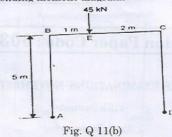
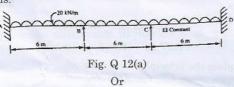

Notes Syllabus Question Papers Results and Many more...

Available @

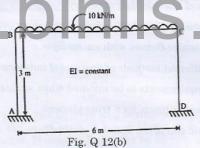
www.binils.com

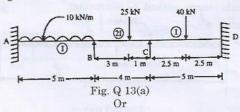


Notes
Syllabus
Question Papers
Results and Many more...


Available @

www.binils.com


(b) The simple portal frame is shown in Fig. Q 11(b) below is asymmetrically loaded. EI is constant. Analyze the frame by the strain energy method. Sketch the bending moment diagram.


 (a) Analyze the continuous beam loaded as shown in Fig. Q 12(a) below by the slope deflection method, Sketch the bending moment and shear force diagrams.

(b) Analyze the portal frame loaded as shown in Fig. Q 12(b) below by the slope deflection method and sketch the bending moment and shear force

 (a) Analyze the continuous beam loaded as shown in Fig. Q 13(a) below, by the moment distribution method. Sketch the bending moment and shear force diagrams.

2

90330

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

53

(b) Analyze the portal frame as shown in Fig. Q 13(b) by the moment distribution method and sketch the BMD and SFD.

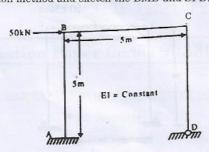


Fig. Q 13(b)

 (a) Analyze the continuous beam as shown in Fig. Q 14(a) below by flexibility method.

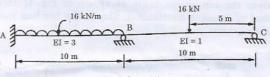


Fig. Q 14(a) ■ Or

Analyze the continuous beam as shown in Fig. Q 14(b) below by the flexibility method and draw the bending moment diagram.

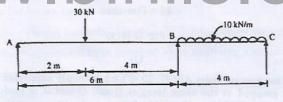
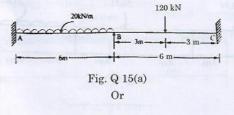



Fig. Q 14(b)

 (a) Analyze the continuous beam as shown in Fig. Q 15(a) below by stiffness method. Draw the bending moment diagram.

3

90330

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

(b) Analyze the frame as shown in Fig. Q 15(b) below by stiffness method.

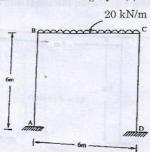


Fig. Q 15(b)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Analyze the continuous beam as shown in Fig. Q 16(a) below by the method of moment distribution. Sketch the bending moment and shear force diagrams.

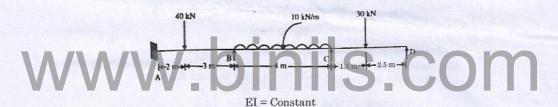
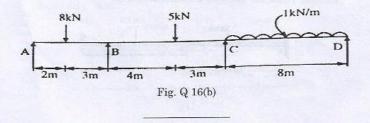



Fig. Q 16(a)

Or

(b) A continuous beam ABCD, 20 m long is simply supported at its ends and is propped at the same level at B and C and it is loaded as shown in Fig. Q 16(b) below. If support B is sinks by 10 mm, analyze the beam by moment distribution method and sketch the bending moment diagram. Take E = 2.1 × 10⁵ N/mm² and I = 85 × 10⁵ mm⁴.

4

90330