POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

4	3					
	Reg. No. :					
	Question Paper Code: 70056					
	B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.					
	Third Semester					
	Civil Engineering					
	CE 3301 – FLUID MECHANICS					
	(Regulations 2021)					
	Time: Three hours Maximum: 100 marks					
	(Codes/Tables/Charts to be permitted if any may be indicated)					
	Answer ALL questions.					
	PART A — $(10 \times 2 = 20 \text{ marks})$					
	1. Define Mass Density.					
W	2. Define Viscosity. 3. What are the assumptions made in deriving Bernoulli's equation.					
	d. Define rotational flow.					
	5. Define dimensional analysis.					
	6. State Buckingham's π theorem.					
	What is the expression for head loss due to friction?					
	8. List the types of similarities used in model analysis.					
	9. Define kinetic energy correction factor.					
	10. What is mean by boundary layer growth? PART B — $(5 \times 13 = 65 \text{ marks})$					
	11. (a) Calculate the capillary effect in millimeters a glass tube of 4mm diameter when immersed in (i) water (ii) mercury. The temperature of the liquid is 20°C and the values of the surface tension of water and mercury at 20°C in contact with air are 0.073575 and 0.51 N/m respectively. The angle of contact for water is zero that for mercury 130°. Take specific weight of water as 9790 N/m³.					
	Or					

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @ www.binils.com

		(L)	(2)	Discuss the types of U - Tube Manomete.	r (5)	
		(b)	(i) (ii)	Two pipes on the same elevation converges of 0.88 respectively. They are manometer with the manometric liquid 1.25. If the manometric liquid in the limits 2 m higher than the other, then find two pipes.	ey water, and oil of specific connected by a U-tube having a specific gravity of b connecting the water pipe	
	12.	(a)	(i)	Two pipes are in series and the diameter and 2 are 10 cm and 15 cm respectively. the pipe if the velocity of water flowing 1 is 5m/s. determine also the velocity at 2 cm.	Find the discharge through through the pipe at section	
			(ii)	Water is flowing through an inclined pi 40 cm at section A & B respectively. So height of 2 m & 2.5 m respectively from through pipe is 30 l/s. If the pressure pressure at point B.	ection A & B are located at ground level. The discharge	
				Or		
		(b)	Disc	uss the classification of flow.		
W	13.	(a)	(i) (ii)	Write down the Steps for Dimensional A Explain Kinematic similarity with deriv Or	ration. (8)	n
		(b)		e: The relationship of the effect on pables d, L, p, μ and v	pressure drop (AP) of the	
	14.	(a)	Disc	uss moody diagram with neat sketch.		
				Or		
		(b)	(i)	A pipe of 1 m diameter and 15 km long of 1 m/s. The friction coefficient of pipe loss due to friction?	transmits water of velocity is 0.005. Calculate the head (5)	
			(ii)	A pipe, 40 m long, is connected to a water freely in atmosphere at the other end. The for first 25 m from the tank, and the enlarged to 30 cm having length of 15 tank is 8 m above the centre of pipe. Determine the discharge neglecting minimum of the contraction of the contractio	The diameter of pipe is 15 cm in the diameter is suddenly in the Height of water in the Darcy's coefficient is 0.01.	
				2	70056	

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

15. (a) What is separation of boundary layer? Explain how to control it.

Or

(b) (i) Explain how the drag forces are formed.

(7)

(ii) Calculate the drag force on each side of a thin smooth plate 2 m long and 1 m wide with the length parallel to a flow of fluid moving at 30 m/s. The density of the fluid is 800 kg/m³ and the dynamic viscosity is 8 cP.

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Derive Euler's and Bernoulli' equation and mention its Assumptions, Limitation.

Or

(b) A stream function is given by

 $\psi = 3x^2 - y^3$

Determine the magnitude of velocity components at the point (3, 1).

www.binils.com

70056