POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @ www.binils.com

Reg. No. :					- 74		

Question Paper Code: 30286

M.E./M.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.

First Semester

Applied Electronics

AP 4151 - ADVANCED DIGITAL SIGNAL PROCESSING

(Common to: Electronics and Communication Engineering)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

Write the equation for finding DCT of a signal x(t) and mention any two applications of DCT.

- 2. If $u(t) = 5 \cos(2000 \pi t)$ and $v(t) = 2 \cos(5000 \pi t)$, determine the Nyquist sampling rate for the signal $y(t) = u(t) \times v(t)$.
- 3. Differentiate between FIR and IIR filters.
- Write the equations used to generate the coefficients of Hamming window and Hanning window.
- 5. What is the basic principle of Welch method to estimate power spectrum?
- Differentiate between Parametric and Non-Parametric methods of power spectrum estimation.
- State any two Nobel identities used in multirate signal processing.
- 8. For the system show in the Figure 1, determine y[n] if $x[n] = \{1, 2, 3, 4, 5, 6\}$.

Figure.1

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

- 9. What is phase shifter? Give its applications.
- 10. Give the working principle of over sampling A/D converter.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Obtain the 8 point DFT of the following sequence using redix-2 DIF-FFT algorithm. Show all the results along the signal flow graph. $x(n) = \{2, 1, 2, 1, 1, 2, 1, 2\}.$

Or

- (b) State and prove Nyquist Sampling Theorem with suitable illustrations.
- (a) Describe the basics of linear prediction filters. Derive the recursive predictor coefficients for optimum Lattice predictor by Levinson-Durbin algorithm.

Or

- (b) Explain with neat sketches the implementation of FIR filters in direct form and Lattice form. Design a digital FIR band pass filter with lower cut off frequency 2000 Hz and upper cutoff frequency 3200 Hz using hamming window of length N = 7. Sampling rate is 10000 Hz.
 - 13. (a) Derive the Yule-Walker equation for ARMA, AR and MA model in detail.

Or

- (b) Explain the Bartlett and Blackman-Tukey methods of power spectrum estimation and compare their performance.
- 14. (a) Implement a decimator x[3n] given the input $x[n] = \{1, 2, 1, 2, 1, 2, 1, 2, 1\}$ and anti-aliasing filter coefficients $h[n] = \{1, 1, 1\}$ using
 - The original structure with an anti-aliasing filter followed by downsampler
 - (ii) An efficient structure
 - (iii) Polyphase filters

Compare the computational efficiency of the above three structures

Or

2

30286

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

- (b) Implement a rational sampling rate convertor to change the sampling rate by the rational sampling factor 5/3 given the input x[n] = [1, 2, 3, 4, 5], anti-imaging filter coefficients g[n] = [1, 2, 3, 4] and anti-aliasing filter coefficients $h[n] = \{1, 3\}$ using polyphase filters. Compare the computational efficiency with that of direct implementation.
- 15. (a) Illustrate the application of multirate signal processing in interfacing of Digital systems with different sampling rates with suitable examples.

Or

- (b) (i) How do you design a phase shifter? Explain with an example. (7)
 - (ii) How do you use subband coding in speech processing? (6

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Design a two stage decimator (16 × 4) for high quality data acquisition system with the following overall specification for the decimation filter: Audio band – 0 to 20 kHz

Input sampling frequency – 3.072 MHz

Output sampling frequency - 48 kHz

Passband ripple < 0.001 dB

Stopband attenuation >80 dB

Also specify the computations and storage requirements.

Or

- (b) (i) Show that two channel QMF filter banks will exhibit complimentary frequency response, and derive the Perfect Reconstruction (PR) conditions. (7.5)
 - (ii) Prove that QMF bank is a perfect reconstruction system if the filters are chosen to be (7.5)

$$H_0(z) = 4z^{-2}$$
, $H_1(z) = z^{-1}$, $G_0(z) = 0.5z^{-1}$ and $G_1(z) = z^{-2}$

3

30286