

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS COLLEGES AFFILIATED COLLEGES REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM

B. TECH. BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING

CURRICULUM FOR SEMESTERS I TO VIII AND SYLLABI FOR SEMESTERS III AND IV

SEMESTER I

S. No.	COURSE	COURSE TITLE	CATE- GORY		ERIO R W		TOTAL CONTACT	CREDITS
				L	Т	Р	PERIODS	
1.	IP3151	Induction Programme	MHI	25	-//	-	-	0
THEC	DRY	. / . 0		¢ ,		.		
2.	HS3151	Professional English - I	HSMC	3	0	0	3	3
3.	MA3151	Matrices and Calculus	BSC	3	1	0	4	4
4.	PH3151	Engineering Physics	BSC	3	0	0	3	3
5.	CY3151	Engineering Chemistry	BSC	3	0	0	3	3
6.	GE3151	Problem Solving and Python Programming	ESC	3	0	0	3	3
7.	GE3172	அறிவியல் தமிழ் / Scientific Thoughts in Tamil	нѕмс	5	0	0	OM	1
PRAC	CTICALS	1 1 1 1 1 1 1 1 1 1						
8.	GE3171	Problem Solving and Python Programming Laboratory	ESC	0	0	4	4	2
9.	BS3171	Physics and Chemistry Laboratory	BSC	0	0	4	4	2
10.	GE3172	English Laboratory \$	EEC	0	0	2	2	1
		■ PROGRESS THE	TOTAL	16	1	10	27	22

\$ Skill Based Course

S. No.	COURSE	COURSE TITLE	CATE- GORY		ERIO ERWE	_	TOTAL CONTACT	CREDITS
NO.	CODE		GOKT	L	T	Р	PERIODS	
THE	ORY							
1.	HS3251	Professional English - II	HSMC	2	0	0	2	2
2.	MA3251	Statistics and Numerical Methods	BSC	3	1	0	4	4
3.	PH3252	Materials Science for Biotechnologists	PCC	3	0	0	3	3
4.	BE3252	Basic Electrical, Electronics and Instrumentation Engineering	ESC	3	0	0	3	3
5.	GE3251	Engineering Graphics	ESC	2	0	4	6	4
6.	BT3201	Bioorganic Chemistry	PCC	3	0	0	3	3
7.	GE3252	தமிழர் மரபு / Heritage of Tamils	HSMC	1	0	0	1	1
8.		NCC Credit Course Level 1#	wit	2	0	0	2	2
PRA	CTICALS	7.0		C.	Λ,	I		
9.	GE3271	Engineering Practices Laboratory	ESC	0	0	4	4	2
10.	BT3211	Bioorganic Chemistry Laboratory	PCC	0	0	4	4	2
11.	GE3272	Communication Laboratory / Foreign Language	EEC	0	0	4	4	2
			TOTAL	17	1	16	34	26

^{*} NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

\$ Skill Based Course

SEMESTER III

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK L T P			TOTAL CONTACT PERIODS	CREDITS
THE	ORY	PROGRESS THRO	UGHK	NO	Ŵ	Ė	GE	
1.	MA3351	Transforms and Partial Differential Equations	BSC	3	1	0	4	4
2.	BT3392	Biochemistry	PCC	3	0	0	3	3
3.	BT3351	Cell Biology	PCC	3	0	0	3	3
4.	BT3352	Microbiology	PCC	3	0	0	3	3
5.	CH3352	Fluid Mechanics for Chemical Engineers	PCC	3	0	0	3	3
6.	BT3491	Chemical Process Calculations in Biotechnologist	PCC	3	0	0	3	3
PRA	CTICALS							
7.	BT3361	Biochemistry Laboratory	PCC	0	0	3	3	1.5
8.	BI3311	Cell Biology and Microbiology Laboratory	PCC	0	0	3	3	1.5
9.	GE33361	Professional Development ^{\$}	EEC	0	0	2	2	1
	ı	ı	TOTAL	18	1	8	27	23

\$ Skill Based Course

binils app on Google Play Store
Anna University, Polytechnic & School Android App

bigins sterm

_	Appa Halvorotty Dalytochara Sakoolo									
S. NO.	COURSE	Anna University, Po	CATE GORY		RJOI PER VEEK		TOTAL CONTACT PERIODS	CREDITS		
				L	Т	Р	PERIODS			
THE	DRY			•	•					
1.	MA3391	Probability and Statistics	PCC	3	1	0	4	4		
2.	GE3451	Environmental Sciences and Sustainability	BSC	2	0	0	2	2		
3.	BI3401	Chemical Thermodynamics and Bio-Thermodynamics	ESC	4	0	0	4	3		
4.	BT3451	Analytical Techniques In Biotechnology	PCC	2	0	0	3	3		
5.	BT3391	Basic Industrial Biotechnology	PCC	3	0	0	3	3		
6.	BT3452	Industrial Enzymology	PCC	3	0	0	3	3		
7.		NCC Credit Course Level 2#		3	0	0	3	3 #		
PRAG	CTICALS						I			
8.	BI3411	Chemical Engineering Laboratory-1 (Fluid Mechanics & Heat Transfer)	PCC	0	0	3	3	1.5		
9.	BT3461	Analytical Instrumentation Laboratory	PCC	0	0	3	3	1.5		
10.	Bl3511	Industrial Training/Internship I*	EEC		Ę.	A	C -	-		
	TOTAL 17 1 6 25 21									

NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

SEMESTER V

S. NO.	COURSE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS	
140.	CODE		GOKT	L	Т	Р	PERIODS		
THEC	DRY								
1.	BT3551	Bioprocess Principles	PCC	3	0	0	3	3	
2.	BT3552	Immunology	PCC	3	0	0	3	3	
3.	BI3501	Heat and Mass Transfer	PCC	3	0	0	3	3	
4.		Professional Elective I	PEC	3	0	0	3	3	
5.		Professional Elective II	PEC	3	0	0	3	3	
6.		Professional Elective III	PEC	3	0	0	3	3	
7.		Mandatory Course- I&	MC	3	0	0	3	0	
PRAC	CTICALS								
8.	BT3561	Immunology Laboratory	PCC	0	0	3	3	1.5	
9.	BI3511	Industrial Training/Internship I**	EEC	0	0	0	0	2	
	TOTAL 18 0 3 21 21.5								

[&]amp; Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MC-I)

^{*}Four weeks industrial training/internship carries two credits. Industrial training/internship during IV Semester Summer Vacation will be evaluated in V semester

^{**}Four weeks industrial training/internship carries two credits. Industrial training/internship during IV Semester Summer Vacation will be evaluated in V semester

binils.com

Anna Universits EMPsote technic, Schools

S.	COURSE	COURSE TITLE	CATE	Pl	ERIC	DDS EEK	TOTAL CONTACT	CREDITS	
NO.	CODE		GORY	L	Т	Р	PERIODS		
THE	ORY								
1.	BI3601	Chemical Reaction Engineering	PCC	3	0	0	3	3	
2.	BT3651	Bioprocess Engineering	PCC	3	0	0	3	3	
3.		Professional Elective IV	PEC	3	0	0	3	3	
4.		Professional Elective V	PEC	3	0	0	3	3	
5.		Professional Elective VI	PEC	3	0	0	3	3	
6.		Open Elective – I*	OEC	3	0	0	3	3	
7.		Mandatory Course-II&	MC	3	0	0	3	0	
8.		NCC Credit Course Level 3#		3	0	0	3	3	
PRA	CTICALS								
9.	BI3611	Chemical Engineering Lab- 2 (Mass Transfer & Chemical Reaction Engineering)	PCC	0	0	3	3	1.5	
10.	BI3661	Bioprocess Laboratory	PCC	0	0	3	3	1.5	
11.	BI3711	Industrial Training/Internship II**	EEC	5	. 1) -	-	
	TOTAL 21 0 6 27 21								

^{*}Open Elective – I shall be chosen from the emerging technologies.

SEMESTER VII/VIII*

S. NO.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK L T P		EK	TOTAL CONTACT PERIODS	CREDITS	
THE	ORY							<u> </u>	
1.	BT3751	Downstream Processing	PCC	3	0	0	3	3	
2.	GE3791	Human values and Ethics	HSMC	2	0	0	2	2	
3.		Management Elective#	HSMC	3	0	0	3	3	
4.		Open Elective – II**	OEC	3	0	0	3	3	
5.		Open Elective – III***	OEC	3	0	0	3	3	
6.		Open Elective – IV***	OEC	3	0	0	3	3	
PRA	CTICALS								
7.	BT3761	Downstream Laboratory	PCC	0	0	3	3	1.5	
8.	BI3711	Industrial Training/Internship II##	EEC	-	-	-	-	2	
	TOTAL 17 0 3 20 20.5								

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

^{**}Two weeks industrial training/internship carries one credit. Industrial training/Internship during VI Semester Summer Vacation will be evaluated in VII semester

^{*} Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under MC- II)

* NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

^{**}Open Elective - II shall be chosen from the emerging technologies.

^{***}Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes

[#] Elective- Management shall be chosen from the Elective Management courses

^{##}Two weeks industrial training/internship carries one credit. Industrial training/Internship during VI Semester Summer Vacation will be evaluated in VII semester

SEMESTER VIII) VIII

S. NO.	COURSE	Anna University, course title	(±()DV		PER WEER		CONTACT	CREDITS
	0002		CORT	L	Т	Р	PERIODS	
PRA	PRACTICALS							
1.	BI3811	Internship#/ Project Work	EEC	0	0	20	20	10
			TOTAL	0	0	20	20	10

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

TOTAL CREDITS: 165

ELECTIVE - MANAGEMENT COURSES

SL. NO.	COURSE CODE	COURSE TITLE	CATE		PERIODS PERWEEK		TOTAL CONTACT	CREDITS
NO.			GONT	L T P		Р	PERIODS	
1.	GE3751	Principles of Management	HSMC	3	0	0	3	3
2.	GE3752	Total Quality Management	HSMC	3	0	0	3	3
3.	GE3753	Engineering Economics and Financial Accounting	HSMC	3	0	0	3	3
4.	GE3754	Human Resource Management	HSMC	3	0	0	3	3
5.	GE3755	Knowledge Management	HSMC	3	0	0	3	3
6.	GE3792	Industrial Management	HSMC	3	0	0	3	3

MA	NDA	TOF	Y CO	URS	SESI
	ناكنا				

SL. NO	COURSE	COURSE TITLE	CATE			CATE PER WEEK CONTA		TOTAL CONTACT	CREDITS
		1 1 2	GUNT	L	T	Р	PERIODS		
1.	MX3081	Introduction to Women and Gender Studies	МС	3	0	0	3	0	
2.	MX3082	Elements of Literature	MC	3	0	0	3	0	
3.	MX3083	Film Appreciation	MC	3	0	0	3	0	
4.	MX3084	Disaster Management	MC	3	0	0	3	0	

MANDATORY COURSES II

SL. NO.	COURSE CODE	COURSE TITLE	(iORY			TOTAL CONTACT	CREDITS	
140.			GOICI	L	Т	Р	PERIODS	
1.	MX3085	Well Being with traditional practices (Yoga, Ayurveda and Siddha)	МС	3	0	0	3	0
2.	MX3086	History of Science and Technology in India	MC	3	0	0	3	0
3.	MX3087	Political and Economic Thought for a Humane Society	MC	3	0	0	3	0
4.	MX3088	State, Nation Building and Politics in India	MC	3	0	0	3	0
5.	MX3089	Industrial Safety	MC	3	0	0	3	0

[#]15 weeks of continuous Internship in an organization carries 10 credits.

PROFESSIONAL ELECTIVE COURSES: VERTICALS

Vertical I Bioprocess & Biochemical Engineering	Vertical II Biosciences	Vertical III Medical Biotechnology	Vertical IV Computational Biotechnology	Vertical V Quality and Regulatory Affairs	Vertical VI Food & Agriculture Engineering	Vertical VII Plant & Animal Tissue culture	Vertical VIII Environmental Engineering
Bioreactor engineering	Human anatomy ,physiology	Molecular medicine and diagnostics	Clinical data management	Cancer management technology	Agricultural biotechnology	Plant tissue culture	Environmental Pollution Control Engineering
Sustainable bioprocess development	Pathology & microbiology	Cancer biology	Big data analysis	Clinical trials, bioethics	Algae biotechnology	Animal Biotechnology and Cell Culture	Medical waste treatment
Pilot plant, scale up practices	Molecular forensics	Pharmaceutical biotechnology	Genomics, proteomics	Regulation affiairs in Biotechnology	Engineering properties of food materials	Advances in Animal Biotechnology, tissue culture	Role of Biotechnology in Environment
Process dynamics and control	Metabolic engineering	Drug design, discovery	Computational biology	Intellectual property rights in Biotechnology	Storage engineering	Crop improvement	Occupational Safety Management
Bioprocess modelling and simulations	Nanobiotechnology	Tissue engineering	Bioinformatics and basics of R programming	Entrepreneurship & Management	Green Tech in Food processing	Agrochemicals	Industrial Safety & Hazard Analysis
MATLAB programme	Stem cell therapeutics	Vaccine technology	Computer aided drug design	Bioethics and Biosafety	Biomass, Bioenergy	Advances in processing of Horticulture, species, planation products	Industrial Effluent Treatment

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V and VI. These courses are listed in groups called verticals that represent a particular area of specialisation. Students are permitted to choose all Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise). However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E/B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree refer to Regulations 2021 Clause 4.10.

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL I: BIOPROCESS & BIOCHEMICAL ENGINEERING

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		ERIC R W	DDS EEK	TOTAL CONTACT	CREDITS
NO.			GURT	L	Т	Р	PERIODS	
1.	BI3001	Bioreactor Engineering	PEC	3	0	0	3	3
2.	BI3002	Sustainable bioprocess development	PEC	3	0	0	3	3
3.	BI3003	Pilot plant, scale up practices	PEC	3	0	0	3	3
4.	CH3651	Process dynamics and control	PEC	3	0	0	3	3
5.	CBT331	Bioprocess modelling and simulations	PEC	3	0	0	3	3
6.	BI3004	MATLAB programme	PEC	3	0	0	3	3

VERTICAL II: BIOSCIENCES

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		R W		TOTAL CONTACT PERIODS	CREDITS
1.	PY3391	Human Anatomy and physiology	PEC	3	0	0	3	3
2.	BI3005	Pathology & microbiology	PEC	3	0	0	3	3
3.	BI3006	Molecular forensics	PEC	3	0	0	3	3
4.	BI3007	Metabolic engineering	PEC	3	0	0	3	3
5.	BI3008	Nanobiotechnolgy	PEC	3	0	0	3	3
6.	BI3009	Stem cell therapeutics	PEC	3	0	0	3	3

VERTICAL III: MEDICAL BIOTECHNOLOGY

SL.	COURSE CODE	COURSE TITLE	CATE GORY		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.			GURT	L	Т	Р	PERIODS	
1.	BI3010	Molecular medicine and diagnostics	PEC	3	0	0	3	3
2.	CBT372	Cancer biology	PEC	3	0	0	3	3
3.	Bl3011	Pharmaceutical biotechnology	PEC	3	0	0	3	3
4.	BI3012	Drug design, discovery	PEC	3	0	0	3	3
5.	CBT333	Tissue engineering	PEC	3	0	0	3	3
6.	BI3013	Vaccine technology	PEC	3	0	0	3	3

VERTICAL IV: COMPUTATIONAL BIOTECHNOLOGY

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		ERIC R W	DS EEK P	TOTAL CONTACT PERIODS	CREDITS
1.	Bl3014	Clinical data management	PEC	3	0	0	3	3
2.	BI3015	Big data analysis	PEC	3	0	0	3	3
3.	BI3016	Genomics , proteomics	PEC	3	0	0	3	3
4.	BI3017	Computational biology	PEC	3	0	0	3	3
5.	BI3018	Bioinformatics and basics of R programming	PEC	3	0	0	3	3
6.	CPY331	Computer aided drug design	PEC	3	0	0	3	3

VERTICAL V: QUALITY AND REGULATORY AFFAIRS

SL. NO.	COURSE	COURSE TITLE	CATE GORY		ERIC R W	DDS EEK	TOTAL CONTACT	CREDITS
NO.			GORT	L	Т	Р	PERIODS	
1.	BI3019	Cancer Management Technology	PEC	3	0	0	3	3
2.	BI3020	Clinical trials, Bioethics	PEC	3	0	0	3	3
3.	BI3021	Regulation Affairs in Biotechnology	PEC	3	0	0	3	3
4.	BI3022	Intellectual Property Rights in Biotechnology	PEC	3	0	0	3	3
5.	BI3023	Entrepreneurship & Management	PEC	3	0	0	3	3
6.	BI3024	Bioethics and Biosafety	PEC	3	0	0	3	3

VERTICAL VI: FOOD & AGRICULTURE ENGINEERING

SL. NO.	COURSE CODE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.		3 5/	GORT	L	T	Р	PERIODS	
1.	BI3025	Agricultural biotechnology	PEC	3	0	0	3	3
2.	BI3026	Algae biotechnology	PEC	3	0	0	3	3
3.	BI3027	Engineering properties of food materials	PEC	3	9	0	3	3
4.	BI3028	Storage engineering	PEC	3	0	0	3	3
5.	BI3029	Green Tech in Food Processing	PEC	3	0	0	3	3
6.	BI3030	Biomass, Bioenergy	PEC	3	0	0	3	3

VERTICAL VII: PLANT & ANIMAL TISSUE CULTURE

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
140.				L	Т	Р	PERIODS	
1.	BI3031	Plant tissue culture	PEC	3	0	0	3	3
2.	BI3032	Animal Biotechnology and Cell Culture	PEC	3	0	0	3	3
3.	BI3033	Advances in Animal Biotechnology, tissue culture	PEC	3	0	0	3	3
4.	BI3034	Crop improvement	PEC	3	0	0	3	3
5.	BI3035	Agrochemicals	PEC	3	0	0	3	3
6.	BI3036	Advances in processing of Horticulture, species, planation products	PEC	3	0	0	3	3

VERTICAL VIII: ENVIRONMENTAL ENGINEERING

SL. NO.	COURSE CODE	(*A 			ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.			GORT	L	Т	Р	PERIODS	
1.	BI3037	Environmental Pollution Control Engineering	PEC	3	0	0	3	3
2.	BI3038	Medical waste treatment	PEC	3	0	0	3	3
3.	BI3039	Role of Biotechnology in Environment	PEC	3	0	0	3	3
4.	BI3040	Occupational Safety Management	PEC	3	0	0	3	3
5.	BI3041	Industrial Safety & Hazard Analysis	PEC	3	0	0	3	3
6.	BI3042	Industrial Effluent Treatment	PEC	3	0	0	3	3

www.binils.com

PROGRESS THROUGH KNOWLEDGE

OPEN ELECTIVES

Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories.

OPEN ELECTIVE I AND II (EMERGING TECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

SL. NO.	COURSE CODE	COURSE TITLE	CATE	PER PER	RIOD WE		TOTAL CONTACT	CREDITS 3
NO.			GORT	L	Т	Р	PERIODS	
1.	OCS351	Artificial Intelligence and Machine Learning Fundamentals	OEC	2	0	2	4	3
2.	OCS352	IoT Concepts and Applications	OEC	2	0	2	4	3
3.	OCS353	Data Science Fundamentals	OEC	2	0	2	4	3
4.	OCS354	Augmented and Virtual Reality	OEC	2	0	2	4	3

OPEN ELECTIVES - III

SL.	COURSE	COURSE TITLE	CATE		RIOI R WE		TOTAL CONTACT	CREDITS
NO.	1 A /1		GORY	L	1	Р	PERIODS	
1.	OH\$351	English for Competitive Examinations	OEC	3	9)	0	3	3
2.	OCE353	Lean Concepts, Tools And Practices	OEC	3	0	0	3	3
3.	OMG352	NGOs and Sustainable Development	OEC	3	0	0	3	3
4.	OMG353	Democracy and Good Governance	OEC	3	0	0	3 -n 2 F	3
5.	OME353	Renewable Energy Technologies	OEC	3	0	0	3	3
6.	OME354	Applied Design Thinking	OEC	2	0	2	4	3
7.	OMF351	Reverse Engineering	OEC	3	0	0	3	3
8.	OMF353	Sustainable Manufacturing	OEC	3	0	0	3	3
9.	OAU351	Electric and Hybrid Vehicle	OEC	3	0	0	3	3
10.	OAS352	Space Engineering	OEC	3	0	0	3	3
11.	OIM351	Industrial Management	OEC	3	0	0	3	3
12.	OIE354	Quality Engineering	OEC	3	0	0	3	3
13.	OSF351	Fire Safety Engineering	OEC	3	0	0	3	3
14.	OML351	Introduction to non- destructive testing	OEC	3	0	0	3	3

4.5	OMD054	Machatraniaa	050	2	^	^	2	2
15.	OMR351	Mechatronics	OEC	3	0	0	3	3
16.	ORA351	Foundation of Robotics	OEC	3	0	0	3	3
17.	OAE352	Fundamentals of Aeronautical engineering	OEC	3	0	0	3	3
18.	OGI351	Remote Sensing Concepts	OEC	3	0	0	3	3
19.	OAI351	Urban Agriculture	OEC	3	0	0	3	3
20.	OEN351	Drinking Water Supply and Treatment	OEC	3	0	0	3	3
21.	OEE352	Electric Vehicle technology	OEC	3	0	0	3	3
22.	OEI353	Introduction to PLC Programming	OEC	3	0	0	3	3
23.	OCH351	Nano Technology	OEC	3	0	0	3	3
24.	OCH352	Functional Materials	OEC	3	0	0	3	3
25.	OPY352	IPR for Pharma Industry	OEC	3	0	0	3	3
26.	OTT351	Basics of Textile Finishing	OEC	3	0	0	3	3
27.	OTT352	Industrial Engineering for Garment Industry	OEC	3	0	0	3	3
28.	OTT353	Basics of Textile Manufacture	OEC	3	0	0	3	3
29.	OPE351	Introduction to Petroleum Refining and Petrochemicals	OEC	3	(3)	0		3
30.	OPE352	Energy Conservation and Management	OEC	3	0	0	3	3
31.	OPT351	Basics of Plastics Processing	OEC	3	0	0	3	3
32.	OEC351	Signals and Systems	OEC	3	0	0	3	3
33.	OEC352	Fundamentals of Electronic Devices and Circuits	OEC	3	0	0	DGE ³	3
34.	OBM351	Foundation Skills in integrated product Development	OEC	3	0	0	3	3
35.	OBM352	Assistive Technology	OEC	3	0	0	3	3
36.	OMA352	Operations Research	OEC	3	0	0	3	3
37.	OMA353	Algebra and Number Theory	OEC	3	0	0	3	3
38.	OMA354	Linear Algebra	OEC	3	0	0	3	3

OPEN ELECTIVES - IV

SL. NO.	COURSE CODE	COURSE TITLE GO			R WE	EK	TOTAL CONTACT	CREDITS
				L	Т	Р	PERIODS	
1.	OHS352	Project Report Writing	OEC	3	0	0	3	3
2.	OCE354	Basics of Integrated Water Resources Management	OEC	3	0	0	3	3
3.	OMA355	Advanced Numerical Methods	OEC	3	0	0	3	3
4.	OMA356	Random Processes	OEC	3	0	0	3	3
5.	OMA357	Queuing and Reliability Modelling	OEC	3	0	0	3	3
6.	OMG354	Production and Operations Management for Entrepreneurs	OEC	3	0	0	3	3
7.	OMG355	Multivariate Data Analysis	OEC	3	0	0	3	3
8.	OME352	Additive Manufacturing	OEC	3	0	0	3	3
9.	OME353	New Product Development	OEC	3	0	0	3	3
10.	OME355	Industrial Design & Rapid Prototyping Techniques	OEC	2	0	2	4	3
11.	OMF352	Micro and Precision Engineering	OEC	3	0	0	3	3
12.	OMF354	Cost Management of Engineering Projects	OEC	3	0	0	3	3
13.	OAU352	Batteries and Management system	OEC	3	0	0	3	3
14.	OAU353	Sensors and Actuators	OEC	3	0	0	3	3
15.	OAS353	Space Vehicles	OEC	3	0	0	3	3
16.	OIM352	Management Science	OEC	3	0	0	3	3
17.	OIM353	Production Planning and Control	OEC	3	0	0	3	3
18.	OIE353	Operations Management	OEC	3	0	0	3	3
19.	OSF352	Industrial Hygiene	OEC	3	0	0	3	3
20.	OSF353	Chemical Process Safety	OEC	3	0	0	3	3
21.	OML352	Electrical, Electronic and Magnetic materials	OEC	3	0	0	3	3
22.	OML353	Nanomaterials and applications	OEC	3	0	0	3	3
23.	OMR352	Hydraulics and Pneumatics	OEC	3	0	0	3	3
24.	OMR353	Sensors	OEC	3	0	0	3	3

25.	ORA352	Foundation of	OEC	3	0	0	3	3
26.	ORA353	Automation Concepts in Mobile	OEC	3	0	0	3	3
		Robotics		3	0	O		
27.	OMV351	Marine Propulsion	OEC	3	0	0	3	3
28.	OMV352	Marine Merchant Vehicles	OEC	3	0	0	3	3
29.	OMV353	Elements of Marine Engineering	OEC	3	0	0	3	3
30.	OAE353	Drone Technologies	OEC	3	0	0	3	3
31.	OGI352	Geographical Information System	OEC	3	0	0	3	3
32.	OAI352	Agriculture Entrepreneurship Development	OEC	3	0	0	3	3
33.	OEE353	Introduction to control systems	OEC	3	0	0	3	3
34.	OCH353	Energy Technology	OEC	3	0	0	3	3
35.	OCH354	Surface Science	OEC	3	0	0	3	3
36.	OEI354	Introduction to Industrial Automation Systems	OEC	3	0	0	3	3
37.	OPY353	Nutraceuticals	OEC	3	0	0	3	3
38.	OTT354	Basics of Dyeing and Printing	OEC	3	9	0	Can	3
39.	OTT355	Fibre Science	OEC	3	0	0	3	3
40.	OTT356	Garment Manufacturing Technology	OEC	3	0	0	3	3
41.	OPE353	Industrial safety	OEC	3	0	0	3	3
42.	OPE354	Unit Operations in Petro Chemical Industries	OEC	3	0	0	3	3
43.	OPT352	Plastic Materials for Engineers	OEC	3	0	0	EDG 3	3
44.	OPT353	Properties and Testing of Plastics	OEC	3	0	0	3	3
45.	OEC353	VLSI Design	OEC	3	0	0	3	3
46.	OEC354	Industrial IoT and	OEC	2	0	2	4	3
40.		Industry 4.0						
47. 48.	OBM353 OBM354	Industry 4.0 Wearable devices Medical Informatics	OEC OEC	3	0	0	3	3

SUMMARY

B. TECH. BIOTECHNOLOGY AND BIOCHEMICAL ENGINEERING										
S.No	S.No Subject Credits per Semester							Total Credits		
		I	II	Ш	IV	V	VI	VII/VIII	VIII/VII	Ciedits
1	HSMC	4	3					5		12
2	BSC	12	4	4	2					22
3	ESC	5	9		3					17
4	PCC		8	18	16	10.5	9	4.5		66
5	PEC		>			9	9			18
6	OEC			—	111		3	9		12
7	EEC	1	2	1)	AILA	2		2	10	18
8	Non-Credit /(Mandatory)	50			A	V	V	2		
	Total	22	26	23	21	21.5	21	20.5	10	165

PROGRESS THROUGH KNOWLEDGE

Enrollment for B.E. / B. Tech. (Honours) / Minor degree (Optional)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E./B.Tech. (Honours) Minor degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 of Regulations 2021.

VERTICALS FOR MINOR DEGREE (In Additions to All the Verticals of Other Programmes

Vertical I Fintech and Block Chain	Vertical II Entrepreneurship	Vertical III Public Administration	Vertical IV Business Data Analytics	Vertical V Environment and Sustainability
Financial Management	Foundations of Entrepreneruship	Principles of Public Administration	Statistics For Management	Sustainable infrastructure Development
Fundamentals of Investment	Team Building & Leadership Management for Business	Constitution of India	Datamining For Business Intelligence	Sustainable Agriculture and Environmental Management
Banking, Financial Services and Insurance	Creativity & Innovation in Entrepreneurship	Public Personnel Administration	Human Resource Analytics	Sustainable Bio Materials
Introduction to Blockchain and its Applications	Principles of Marketing Management For Business	Administrative Theories	Marketing And Social Media Web Analytics	Materials for Energy Sustainability
Fintech Personal Finance and Payments	Human Resource Management for Entrepreneurs	Indian Administrative System	Operation And Supply Chain Analytics	Green Technology
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and Analysis
-	-	-	-	Integrated Energy Planning for Sustainable Development
-	-	-	-	Energy Efficiency for Sustainable Development

(Choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

VERTICAL 1: FINTECH AND BLOCK CHAIN

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.			GORT	L	Т	Р	PERIODS	
1.	CMG331	Financial Management	PEC	3	0	0	3	3
2.	CMG332	Fundamentals of Investment	PEC	3	0	0	3	3
3.	CMG333	Banking, Financial Services and Insurance	PEC	3	0	0	3	3
4.	CMG334	Introduction to Blockchain and its Applications	PEC	3	0	0	3	3
5.	CMG335	Fintech Personal Finance and Payments	PEC	3	0	0	3	3
6.	CMG336	Introduction to Fintech	PEC	3	0	0	3	3

VERTICAL 2: ENTREPRENEURSHIP

SL. NO.	COURSE CODE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.		/ 5/	GORT	L	Т	P	PERIODS	
1.	CMG337	Foundations of Entrepreneruship	PEC	3	0	0	3	3
2.	CMG338	Team Building & Leadership Management for Business	PEC	3	0	0	con	3
3.	CMG339	Creativity & Innovation in Entrepreneurship	PEC	3	0	0	3	3
4.	CMG340	Principles of Marketing Management For Business	PEC	3	0	0	3	3
5.	CMG341	Human Resource Management for Entrepreneurs	PEC	3	0	0	3	3
6.	CMG342	Financing New Business Ventures	PEC	3	0	0	3	3

VERTICAL 3: PUBLIC ADMINISTRATION

SL. NO.	COURSE	COURSE TITLE	CATE GORY		PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	PERIODS	
1.	CMG343	Principles of Public Administration	PEC	3	0	0	3	3
2.	CMG344	Constitution of India	PEC	3	0	0	3	3
3.	CMG345	Public Personnel Administration	PEC	3	0	0	3	3
4.	CMG346	Administrative Theories	PEC	3	0	0	3	3
5.	CMG347	Indian Administrative System	PEC	3	0	0	3	3
6.	CMG348	Public Policy Administration	PEC	3	0	0	3	3

VERTICAL 4: BUSINESS DATA ANALYTICS

SL. NO.	COURSE	COURSE TITLE	CATE		PERIODS PER WEEK L T P		TOTAL CONTACT PERIODS	CREDITS
1.	CMG349	Statistics For Management	PEC	3	6	0	CO Y	3
2.	CMG350	Datamining For Business Intelligence	PEC	3	9	9	9	3
3.	CMG351	Human Resource Analytics	PEC	3	0	0	3	3
4.	CMG352	Marketing And Social Media Web Analytics	PEC	3	0	0	3	3
5.	CMG353	Operation And Supply Chain Analytics	PEC	3	0	0	3	3
6.	CMG354	Financial Analytics	PEC	3	0	0	3	3

VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		PEI WEE	₹	TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	i LKIODS	
1.	CES331	Sustainable infrastructure Development	PEC	3	0	0	3	3
2.	CES332	Sustainable Agriculture and Environmental Management	PEC	3	0	0	3	3
3.	CES333	Sustainable Bio Materials	PEC	3	0	0	3	3
4.	CES334	Materials for Energy Sustainability	PEC	3	0	0	3	3
5.	CES335	Green Technology	PEC	3	0	0	3	3
6.	CES336	Environmental Quality Monitoring and Analysis	PEC	3	0	0	3	3
7.	CES337	Integrated Energy Planning for Sustainable Development	PEC	3	0	0	3	3
8.	CES338	Energy Efficiency for Sustainable Development	PEC	3	0	0	3	3

www.binils.com

PROGRESS THROUGH KNOWLEDGE

MA3351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

LTPC 3 104

OBJECTIVES:

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

9+3

Formation of partial differential equations —Solutions of standard types of first order partial differential equations - First order partial differential equations reducible to standard types-Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

9+3

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series and cosine series – Root mean square value – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

9+3

Classification of PDE – Method of separation of variables - Fourier series solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (Cartesian coordinates only).

UNIT IV FOURIER TRANSFORMS

9+3

Statement of Fourier integral theorem— Fourier transform pair — Fourier sine and cosine transforms — Properties — Transforms of simple functions — Convolution theorem — Parseval's identity.

UNIT V Z-TRANSFORMS AND DIFFERENCE EQUATIONS

9+3

Z-transforms - Elementary properties - Convergence of Z-transforms - - Initial and final value theorems - Inverse Z-transform using partial fraction and convolution theorem - Formation of difference equations - Solution of difference equations using Z - transforms.

TOTAL: 60 PERIODS

OUTCOMES:

Upon successful completion of the course, students should be able to:

- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
- Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
- Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

TEXT BOOKS:

- 1. Grewal B.S., "Higher Engineering Mathematics", 44thEdition, Khanna Publishers, New Delhi, 2018.
- 2. Kreyszig E, "Advanced Engineering Mathematics ", 10th Edition, John Wiley, New Delhi, India, 2016.

REFERENCES:

- 1. Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 10th Edition, Laxmi Publications Pvt. Ltd, 2015.
- 3. James. G., "Advanced Modern Engineering Mathematics", 4thEdition, Pearson Education, New Delhi, 2016.
- 4. Narayanan. S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2018.
- 6. Wylie. R.C. and Barrett . L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

BT3392 BIOCHEMISTRY L T P C 3 0 0 3

OBJECTIVE

To enable students learn the fundamentals of Biochemical Processes and Biomolecules

Basic principles of organic chemistry, role of carbon, types of functional groups, chemical, nature of water, pH and biological buffers, bio molecules structure and properties of Carbohydrates (mono, di, oligo & polysaccharides) Proteoglycans, glucosaminoglycans. mutarotation, glycosidic bond, reactions of monosaccharides, reducing sugars. Starch, glycogen, cellulose and chitin. Proteoglycans, glycosaminoglycans. hyaluronic acid,

chondroitin sulfate

UNIT II STRUCTURE AND PROPERTIES OF OTHER BIOMOLECULES

9

Structure and properties of Important Biomolecules.

Lipids: fatty acids, glycerol, saponification, iodination, hydrogenation, phospholipids, glycolipids, sphingolipids, cholesterol, steroids, prostaglandins.

Protein: Amino Acids, Peptides, Proteins, measurement, structures, hierarchy of organization primary, secondary, tertiary and quaternary structures, glycoproteins, lipoproteins. Determine of primary structure.

Nucleic acids: purines, pyrimidines, nucleoside, nucleotide, RNA, DNA-Watson-Crick structure of DNA, reactions, properties, measurement, nucleoprotein complexes

UNIT III METABOLISM CONCEPTS AND CARBOHYDRATE METABOLISM 9 Functions of Proteins, Enzymes, introduction to biocatalysts, metabolic pathways, primary and secondary metabolites. Interconnection of pathways and metabolic regulation. Glycolysis, TCA cycle, gluconeogenesis, pentose phosphate shunt & glyoxalate shunt.

UNIT IV INTERMEDIARY METABOLISM AND REGULATION

Fatty acid synthesis and oxidation, reactions of amino acids, deamination, transamination and decarboxylation, urea cycle, Bioenergetics - High energy compounds, electronegative potential of compounds, respiratory chain, ATP cycle, calculation of ATP yield during oxidation of glucose and fatty acids.

PROTEIN TRANSPORT AND DEGRADATION **UNIT V**

Protein targeting, signal sequence, secretion; Folding, Chaperone and targeting of organelle proteins, Protein degradation, receptor-mediated endocytosis, turnover.

TOTAL: 45 PERIODS

OUTCOMES

- To ensure students have a strong foundation in the structure and reactions of Biomolecules.
- To introduce them to metabolic pathways of the major biomolecules and relevance to clinical conditions.
- To correlate Biochemical processes with Biotechnology applications.

TEXT BOOKS

- 1. Lehninger Principles of Biochemistry 6th Edition by David L. Nelson, Michael M. Cox
- 2. Satyanarayana, U. and U. Chakerapani, "Biochemistry" 3rd Rev. Edition, Books & Allied (P) Ltd., 2006.
- 3. Rastogi, S.C. "Biochemistry" 2nd Edition, Tata McGraw-Hill, 2003.
- 4. Conn, E.E., etal., "Outlines of Biochemistry" 5th Edition, John Wiley & Sons, 1987.
- 5. Outlines of biochemistry, 5th Edition: By E E Conn, P K Stumpf, G Bruening and R Y Doi. pp 693. John Wiley and Sons, New York. 1987.

REFERENCES

- Berg, Jeremy M. et al. "Biochemsitry", 6th Edition, W.H. Freeman & Co., 2006.
 Murray, R.K., etal "Harper's Illustrated Biochemistry", 27th Edition, McGraw-Hill, 2006.
- 3. Voet, D. and Voet, J.G., "Biochemistry", 3rd Edition, John Wiley & Sons Inc., 2004.

BT3351 **CELL BIOLOGY** LTPC 3 0 0 3

OBJECTIVES:

- To provide knowledge on the fundamentals of cell biology
- To help students understand the signalling mechanisms

UNIT I CELL STRUCTURE AND FUNCTION OF THE ORGANELLES

Prokaryotic, Eukaryotic cells, Sub-cellular organelles and functions. Principles of membrane organization membrane proteins, cytoskeletal proteins. Extra cellular matrix, cell-cell junctions.

UNIT II CELL DIVISION, CANCER, APOPTOSIS AND IMMORTALIZATION OF CELLS

Cell cycle - Mitosis, Meiosis, Molecules controlling cell cycle, cancer, role of Ras and Raf in oncogenesis and apoptosis. Stem cells, Cell culture and immortalization of cells and its applications.

UNIT III TRANSPORT ACROSS CELL MEMBRANE

Passive and Active Transport, Permeases, Ion channels, ATP pumps. Na+ / K+ /Ca+2Tpumps, uniport, symport antiporter system. Ligand gated / voltage gated channels, Agonists and Antagonists.

UNIT IV SIGNAL TRANSDUCTION

9

Receptors – extracellular signaling, Cell surface / cytosolic receptors and examples, Differentclasses of receptors antocrine / paracrine / endocrine models, Secondary messengers molecules.

UNIT V TECHNIQUES USED TO STUDY CELLS

q

TOTAL: 45 PERIODS

Cell fractionation and flow cytometry, Morphology and identification of cells using microscopic studies like SEM, TEM and Confocal Microscopy. Localization of proteins in cells – Immunostaining.

OUTCOMES:

Upon completion of this course, the students

- Would have deeper understanding of cell at structural and functional level.
- Would have broad knowledge on the molecular interaction between cells.
- Would demonstrate a clear understanding of the signal transduction, secondary
- messengers.
- Would develop skill on working principles of microscopy and identification of cell types.

TEXT BOOKS:

- 1. Lodish, Harvey etal., "Molecular Cell Biology", 7th Edition, W.H.Freeman, 2005.
- 2. Cooper, G.M. and R.E. Hansman "The Cell: A Molecular Approach", VIIth Edition, ASM Press, 2007
- 3. Alberts, Bruce etal., "Molecular Biology of the Cell", IVth Edition, Garland Science (Taylors Francis), 2002.
- 4. Sadava, D.E. "Cell Biology: Organelle Structure and Function", Panima Publishing, 2004.
- 5. Rastogi, S.C. "Cell Biology" IInd Edition, New Age International, 2002.

REFERENCES

1. Becker, W.M. etal., "The World of the Cell", 9th Edition, Pearson Education, 2003.

- 2. Campbell, N.A., J.B. Recee and E.J. Simon "Essential Biology", VIIrd Edition, Pearson International, 2007.
- 3. Alberts, Bruce etal., "Essential Cell Biology", IVth Edition, Garland Press (Taylor & Francis), 2004.

BT3352

MICROBIOLOGY

LTPC 3003

OBJECTIVES

- To introduce students to the principles of Microbiology to emphasize structure and biochemical aspects of various microbes.
- To solve the problems in microbial infection and their control.

UNIT I INTRODUCTION

9

Basics of microbial existence; history of microbiology, classification and nomenclature of microorganisms, microscopic examination of microorganisms, light and electron microscopy; principles of different staining techniques like gram staining, acid fast, capsular staining, flagellar staining.

UNIT II MICROBES- STRUCTURE AND MULTIPLICATION

9

Structural organization and multiplication of bacteria, viruses, algae and fungi, with special mention of life history of actinomycetes, yeast, mycoplasma and bacteriophages.

UNIT III MICROBIAL NUTRITION, GROWTH AND METABOLISM

9

Nutritional requirements of bacteria; different media used for bacterial culture; growth curve and different methods to quantify bacterial growth; aerobic and anaerobic bioenergetics and utilization of energy for biosynthesis of important molecules.

UNIT IV CONTROL OF MICROORGANISMS

9

Physical and chemical control of microorganisms; host-microbe interactions; anti-bacterial, anti-fungal and anti-viral agents; mode of action and resistance to antibiotics; clinically important microorganisms.

UNIT V INDUSTRIAL AND ENVIRONMENTAL MICROBIOLOGY

9

Primary metabolites; secondary metabolites and their applications; preservation of food; production of penicillin, alcohol, vitamin B-12; biogas; bioremediation; leaching of ores by microorganisms; biofertilizers and biopesticides; microorganisms and pollution control; biosensors

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Pelczar MJ, Chan ECS and Krein NR, Microbiology, Tata McGraw Hill Edition, New Delhi, India,2009
- 2. Prescott L.M., Harley J.P., Klein DA, Microbiology, 3rd Edition, Wm. C. Brown Publishers, 1996.

REFERENCE BOOKS

- 1. Black, Text book of microbiology. Freeman Publishers, 2016
- 2. Talaron K, Talaron A, Casita, Pelczar and Reid. Foundations in Microbiology, W.C. Brown Publishers, 1993.
- 3. Ananthanarayan, CK Jayaram Panikars. Text book of Microbiology, 2005, Orient Blackswan Publishers.

CH3352

FLUID MECHANICS FOR CHEMICAL ENGINEERS

L T P C

OBJECTIVE:

 To acquire a sound knowledge on fluid properties, fluid statics, dynamic characteristics of fluid flow for through pipes and porous medium, flow measurement and fluid machineries

UNIT I

Methods of analysis and description - fluid as a continuum – Velocity and stress field - Newtonian and non-Newtonian fluids – Classification of fluid motion

UNIT II 9

Fluid statics – basic equation - equilibrium of fluid element – pressure variation in a static fluid - application to manometer – Differential analysis of fluid motion – continuity, equation of motions, Bernoulli equation and Navier- Stokes equation.

UNIT III 9

The principle of dimensional homogeneity – dimensional analysis, Rayleigh method and the Pitheorem - non-dimensional action of the basic equations - similitude - relationship between dimensional analysis and similitude - use of dimensional analysis for scale up studies

UNIT IV 9

Reynolds number regimes, internal flow - flow through pipes - pressure drop under laminar and turbulent flow conditions - major and minor losses; Line sizing; External flows - boundary layer concepts, boundary layer thickness under laminar and turbulent flow conditions- Flow over a sphere - friction and pressure drag - flow through fixed and fluidized beds.

UNIT V

Flow measurement - Constant and variable head meters; Velocity measurement techniques; Types, characteristics and sizing of valves; Classification, performance characteristics and sizing of pumps, compressors and fans

TOTAL: 45 PERIODS

OUTCOMES:

- Understand the fundamental properties of fluids and its characteristics under static conditions
- Develop empirical correlation using dimensionless analysis.
- Analyze flow of fluid through pipe and over the of solid,
- Understand and select flow meter(s), characteristics of pumps used in Chemical Process Industries

TEXT BOOKS:

- 1. Noel de Nevers, "Fluid Mechanics for Chemical Engineers", Third Edition, McGraw-Hill, (2017).
- 2. McCabe W.L, Smith, J C and Harriot. P "Unit operations in Chemical Engineering", McGraw Hill, VII Edition, 2017
- 3. Munson, B. R., Young, D.F., Okiishi, T.H. "Fundamentals of Fluid Mechanics", 9th Edition", John Wiley, 2021

REFERENCES:

- 1. White, F.M., "Fluid Mechanics", IV Edition, McGraw-Hill Inc., 1999.
- 2. James O Wilkes and Stacy G Bike, "Fluid Mechanics for Chemical Engineers' Prentice Hall PTR (International series in Chemical Engineering) (1999)

BT3491 CHEMICAL PROCESS CALCULATIONSIN BIOTECHNOLOGIST

L T P C 3 0 0 3

OBJECTIVE:

- To enable the students to learn about basic concepts of chemical process and calculations
- The course aims to develop skills of the students in the area of Chemical Engineering with emphasis in process calculations and fluid mechanics.
- This will enable the students to perform calculations pertaining to processes and operations.

UNIT I BASIC CHEMICAL CALCULATIONS

9

Dimension – Systems of units esp. engineering FPS, Engineering MKS & SI systems – Conversion from one system to the other – composition of mixtures and solutions – mass fraction, mass %, mole fraction, mole %, mass ratios, molarity, molality, normality, ppm, composition by density.

UNIT II IDEAL AND ACTUAL GAS EQUATIONS

9

Ideal and actual gas equations, Vander Walls, compressibility factor equations, Application to pure gas & gas mixtures – partial pressures, partial volumes – Air-water vapour systems, Humidity, Molar Humidity, Relative Humidity, % Saturation, humid Volume – Humidity chart – wet, Dry bulb, Dew point temperatures, pH of solutions, Vapour pressure.

UNIT III MATERIAL BALANCE

9

Material balance concept – overall & component – material balance applications for evaporator, gas absorber without reaction, Distillation (Binary system), Liquid extraction, solid-liquid extraction, drying, crystallization, Humidification, Reverse Osmosis separation and Mixing Recycle and Bypass illustration

UNIT IV ENERGY BALANCE

9

General energy balance equation for open systems, closed system sensible heat calculation, Heat required for phase change thermo chemistry, application of steam tables, Saturated and superheated steam application in bioprocess

UNIT V CHEMICAL REACTION

9

Chemical Reaction-Limiting, excess component, Fractional conversion, Percent conversion, Fractional yield in multiple reactions. Simple problems, Combustion Reactions.

TOTAL: 45 PERIODS

OUTCOMES:

Upon success completion of this course, the students will be able to:

- Solve problems related to units and conversions and fit the given data using the methodologies
- Solve problems related to material and energy balance concepts & design reactors for biochemical processes
- Apply their knowledge in the field of biochemical engineering from the principles of Thermodynamics

TEXT BOOKS:

- 1. 1. Bhatt B.I & SB Thakore, Stoichiometry Fifth edition Tata McGraw Hill 2017
- 2. K.A.Kavhane, Introduction to Process calculations, Nirali Publishers, 1st Edition, 2016
- 3. Himmelblau D.M "Basic principles & Calculations in Chemical Engineering" 8th edn PHI 2014.

REFERENCES:

- McCabe W.L & J.C.Smiith & P.Harriot "Unit operations of chemical Engineering" 7thEdn McGraw Hill 2017
- 2. S. Pushpavanam, Introduction to Chemical Engineering, PHI Learning Pvt. Ltd., 2012
- 3. Geankoplis C.J. "Transport process & Separation process Principles 4th edition-PHI 2006.

BT 3361

BIOCHEMISTRY LABORATORY

LTPC 0031.5

AIM

 To learn and understand the principles behind the qualitative and quantitative estimation of biomolecules (proteins, carbohydrates, lipids, metabolites etc.,) and laboratory analysis of the same in the body fluids.

EXPERIMENTS

- 1. General guidelines for working in biochemistry lab (theory)
- 2. Units of volume, weight, density and concentration measurements and their range in biological measurements. Demonstration of proper use of volume and weight measurement devices.
- 3. Accuracy, precision, sensitivity and specificity (theory)
- 4. Preparation of buffer –titration of a weak acid and a weak base.
- 5. Qualitative tests for carbohydrates distinguishing reducing from non-reducing sugars and keto from aldo sugars.
- 6. Quantitative method for amino acid estimation using ninhydrin distinguishing amino from imino acid.
- 7. Protein estimation by Biuret and Lowry's methods.
- 8. Protein estimation by Bradford and spectroscopic methods.
- 9. Extraction of lipids and analysis by TLC.
- 10. Estimation of nucleic acids by absorbance at 260 nm and hyperchromic effect (demo).
- 11. Enzymatic assay: phosphatase from potato.
- 12. Enzymatic assay: estimation of glucose by GOD-POD method after hydrolysis of starch with acid and specificity of the enzymatic method.

Equipment Needed for 20 Students	
Autocalve	1
Hot Air Oven	1
Incubators	2

Light Microscopes 4
Incubator Shaker 1

Colorimeter
Laminar Flow Chamber
2
Classware:

Test tubes (atleast 10 per student)

Beakers – 50 ml, 100 ml, 250 ml one each per student, 500 ml and 1000 ml atleast 5 per batch of 20 students

Watch glasses one per student

Petridishes as required, glass cuvettes as needed

Burette - one per student

Glass pipette – one each in 0.5 ml, 1 ml, 5 ml and 10 ml with suitable pipette aid.

TLC plate as required for the experiment.

Chemicals: glucose, fructose, galactose, maltose, starch, amino acids, DNA, RNA, lipids and commercial enzymes as required. Other chemicals as per the requirement of the standard protocol and commercial kit procured from the vendor followed/ utilised by the department TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Practical Biochemistry by R.C. Gupta and S. Bhargavan.
- 2. Introduction of Practical Biochemistry by David T. Phummer. (II Edition)

REFERENCES

- 1. Harpers Biochemistry Ed. R.K. Murray, D.K. Granner, P.A. Mayes and V.W.Rodwell, Appleton and Lange, Stanford, Conneticut.
- 2. Textbook of Biochemistry with clinical correlations. Ed. Thomas M. Devlin. Wiley Liss Publishers

BT3311 CELL BIOLOGY & MICROBIOLOGY LABORATORY

LTPC 0031.5

AIM

 To demonstrate various techniques to learn the morphology, identification and propagation of cells and microbes

EXPERIMENTS

- 1. Introduction, Laboratory Safety, Use of Equipment; Sterilization Techniques
- 2. Microscopy Working and care of Microscope, phase contrast and fluorescent microscopy
- 3. Culture Media-Types and Use; Preparation of Nutrient broth and agar
- 4. Culture Techniques, Isolation and Preservation of Cultures- Broth: flask, test tubes; Solid:Pour plates, streak plates, slants, stabs
- 5. Identification of given plant, animal, bacterial cells and yeast/mould
- 6. Staining Techniques Simple, Differential- Gram's Staining, spore /capsule staining, Giemsa, and Leishman Staining
- 7. Quantification of Microbes: Sampling and Serial Dilution; Bacterial count in Soil TVC
- 8. Effect of Disinfectants- Phenol Coefficient, Antibiotic Sensitivity Assay
- 9. Osmosis and Tonicity and Tryphan Blue Assay
- 10. Growth Curve in Bacteria and Yeast
- 11. Staining for different stages of mitosis in AlliumCepa (Onion)
- 12. Effect of pH, Temperature, UV radiation on Growth Bacteria

2 4 1

Equipment Needed for 20 Students

Autoclave

Hot Air Oven

Incubators

Light Microscopes

Incubator Shaker

Colorimeter

Lamina Flow Chamber

Glassware: Petridish, Test tubes, Microscopic slides, Inoculation, loop, Gas burner

Chemicals and media

Bacterial culture media, Yeast culture media, 70% ethanol ,antibiotics, Crystal violet, Iodine, Safranin, India ink (capsule staining), Immersion oil

TOTAL: 45 PERIODS

OUTCOMES:

Students will be able to

- Understand the advanced technical information pertaining to laboratory bio-safety and preventive measures from pathogenic microorganism.
- Know the various aseptic techniques and sterilization methods.
- Develop the minimum skills to work on several important techniques for the study of microorganisms in the laboratory.
- To identify the various stages of mitosis

REFERENCES:

- 1. Cappuccino, J.G. and N. Sherman "Microbiology: A Laboratory Manual", 4th Edition, Addison-Wesley, 1999.
- 2. Collee, J.G. etal., "Mackie & McCartney Practical Medical Microbiology" 4th Edition, ChurchillLivingstone, 1996Rickwood, D. and J.R. Harris "Cell Biology: Essential Techniques", Johnwiley, 1996.
- 3. Davis, J.M. "Basic Cell Culture: A Practical Approach", IRL, 1994.

MA3391

PROBABILITY AND STATISTICS

L T P C 3 1 0 4

OBJECTIVES

- This course aims at providing the required skill to apply the statistical tools in engineering problems.
- To introduce the basic concepts of probability and random variables.
- To introduce the basic concepts of two dimensional random variables.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of classifications of design of experiments which plays very important roles in the field of agriculture and statistical quality control.

UNIT I PROBABILITY AND RANDOM VARIABLES

9+3

Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions – Functions of a random variable.

UNIT II TWO-DIMENSIONAL RANDOM VARIABLES

9+3

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

UNIT III ESTIMATION THEORY

9+3

Unbiased estimators - Efficiency - Consistency - Sufficiency - Robustness - Method of moments - Method of maximum Likelihood - Interval estimation of Means - Differences between means, variations and ratio of two variances

UNIT IV NON- PARAMETRIC TESTS

9+3

Introduction - The Sign test - The Signed - Rank test - Rank - sum tests - The U test - The H test - Tests based on Runs - Test of randomness - The Kolmogorov Tests .

UNIT V STATISTICAL QUALITY CONTROL

9+3

Control charts for measurements (\bar{X} and R charts) – Control charts for attributes (p, c and np charts) – Tolerance limits - Acceptance sampling.

OUTCOMES:

Upon successful completion of the course, students will be able to:

- Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.
- Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture and statistical quality control.
- Have the notion of sampling distributions and statistical techniques used in engineering and management problems.

TEXT BOOKS

- 1. Johnson. R.A., Miller. I.R and Freund . J.E, "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2016.
- 2. Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata Mc Graw Hill, 4th Edition, 2007.
- 3. John E. Freund, "Mathematical Statistics", Prentice Hall, 5th Edition, 1992.

REFERENCES:

- 1. Gupta. S.C. and Kapoor. V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 3. Ross . S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 5thEdition, Elsevier, 2014.
- 4. Spiegel. M.R., Schiller. J. and Srinivasan . R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 4th Edition, 2012.
- 5. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 9th Edition, 2010.

GE3451

ENVIRONMENTAL SCIENCES AND SUSTAINABILITY

LTPC

UNIT I ENVIRONMENT AND BIODIVERSITY

6

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ.

UNIT II ENVIRONMENTAL POLLUTION

(

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management. Case studies on Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

UNIT III RENEWABLE SOURCES OF ENERGY.

6

Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

UNIT IV SUSTAINABILITY AND MANAGEMENT

6

Development, GDP, Sustainability- concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

UNIT V SUSTAINABILITY PRACTICES

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment, Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports. Sustainable energy: Non-conventional Sources, Energy Cycles-carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization-Socio-economical and technological change.

TOTAL:30 PERIODS

6

TEXT BOOKS:

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers ,2018.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
- 3. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- 5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 7. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

REFERENCE BOOKS:

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 2005.
- 5. Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 2013.

BI3401 CHEMICAL THERMODYNAMICS AND BIOTHERMODYNAMICS

L T P C 4 0 0 4

OBJECTIVE:

• To enable the students to learn about basic concepts of classical and statistical thermodynamics

UNIT I THERMODYNAMIC LAW AND PROPERTIES OF FLUIDS

First Law of thermodynamics, a generalized balance equation and conserved quantities, Volumetric properties of fluids exhibiting non ideal behavior; residual properties; estimation of thermodynamic properties using equations of state; calculations involving actual property exchanges; Maxwell's relations and applications.

UNIT II SOLUTION THERMODYNAMICS

Partial molar properties; concepts of chemical potential and fugacity; ideal and non-ideal solutions; concepts and applications of excess properties of mixtures; activity coefficient; composition models; Gibbs Duhem equation.

UNIT III PHASE EQUILIBRIA

Criteria for phase equilibria; VLE calculations for binary and multi component systems; liquid-liquid equilibria and solid-solid equilibria.

UNIT IV CHEMICAL REACTION EQUILIBRIA

Equilibrium criteria for homogeneous chemical reactions; evaluation of equilibrium constant; effect of temperature and pressure on equilibrium constant; calculation of equilibrium conversion and yields for single and multiple reactions.

UNIT V THERMODYNAMIC DESCRIPTION OF MICROBIAL GROWTH AND PRODUCT FORMATION

Thermodynamics of microbial growth stoichiometry thermodynamics of maintenance, Calculation of the Operational Stoichiometry of a growth process at Different growth rates, Including Heat using the Herbert –Pirt Relation for Electron Donor, thermodynamics and stoichiometry of Product Formation

TOTAL: 60 PERIODS

OUTCOMES:

At the end of this course, the student would have the ability

- To explain the theoretical concepts of thermodynamics and how it applies to energy conversion in technological applications and biological systems.
- To demonstrate the capability to analyze the energy conversion performance in avariety of modern applications in biological systems.
- To design and carry out bioprocess engineering experiments, and analyze and interpret fundamental data to do the design and operation of bioprocesses.
- To describe the criteria when two phases coexist in equilibrium and the vapour liquid equilibrium calculations microbial growth and product formation.

TEXT BOOKS:

- 1. Smith J.M., Van Ness H.C., and Abbot M.M. "Introduction to Chemical Engineering Thermodynamics", VIth Edition. Tata McGraw-Hill, 2003.
- 2. Narayanan K.V. "A Text Book of Chemical Engineering Thermodynamics", PHI, 2003.
- 3. Christiana D. Smolke, "The Metabolic Pathway Engineering Handbook Fundamentals", CRC Press Taylor & Francis Group, 2010.

REFERENCE:

Sandler S.I. "Chemical and Engineering Thermodynamics", John Wiley, 1989.

BT3451 ANALYTICAL TECHNIQUES IN BIOTECHNOLOGY

LTPC 3003

OBJECTIVES:

To enable the students

- To have a fundamental knowledge about the Light spectrum, Absoprtion, Fluorescence, NMR, Mass spectroscopy
- To acquire knowledge on the different chromotographic methods for separation of biological products.

UNIT I INTRODUCTION TO SPECTROMETRY

9

Properties of electromagnetic radiation- wave properties – components of optical instruments – Sources of radiation – wavelength selectors – sample containers – radiation transducers – Signal process and read outs – signal to noise ratio - sources of noise – Enhancement of signal to noise - types of optical instruments – Principle of Fourier Transform optical Measurements.

UNIT II MOLECULAR SPECTROSCOPY

9

Molecular absorption spectrometry – Measurement of Transmittance and Absorbance – Beer's law – Instrumentation - Applications -Theory of fluorescence and Phosphorescence – Instrumentation – Applications – Theory of Infrared absorption spectrometry – IR instrumentation – Applications – Theory of Raman spectroscopy – Instrumentation – applications

UNIT III MAGNETIC RESONANCE SPECTROSCOPY AND MASS SPECTROMETRY 9

Theory of NMR – environmental effects on NMR spectra – chemical shift- NMR-spectrometers – applications of 1H and 13C NMR- Molecular mass spectra – ion sources – Mass spectrometer. Applications of molecular mass - Electron paramagnetic resonance- g values – instrumentation.

UNIT IV SEPARATION METHODS

g

General description of chromatography – Band broadening and optimization of column performance- Liquid chromatography – Partition chromatography – Adsorption chromatography – Ion exchange chromatography -size exclusion chromatography- Affinity chromatography- principles of GC and applications – HPLC- Capillary electrophoresis – Applications.

UNIT V ELECTRO ANALYSIS AND SURFACE MICROSCOPY

Electrochemical cells- Electrode potential cell potentials – potentiometry- reference electrode – ion selective and molecular selective electrodes – Instrument for potentiometric studies – Voltametry – Cyclic and pulse voltametry- Applications of voltametry . Study of surfaces – Scanning probe microscopes – AFM and STM.

OUTCOME:

TOTAL: 45 PERIODS

• On completion of the course, students will have a better understanding of spectroscopy and the separation techniques used for biological products.

TEXT BOOKS:

- 1. Skoog, D.A. F. James Holler, and Stanky, R.Crouch "Instrumental Methods of Analysis". CengageLearning, 2007.
- 2. Willard, Hobart, etal., "Instrumental Methods of Analysis". VIIth Edition, CBS, 1986.
- 3. Fifield F.W., . Principles and Practice of Analytical Chemistry. Blackwell, Scientific Publishers, 2016

REFERENCES:

- 1. Sharma, B.K. "Instrumental Methods of Chemical Analysis: Analytical Chemistry", Krishna Prakashan Media (P) Ltd, 2014
- 2. Haven, Mary C., etal., "Laboratory Instrumentation". 4th Edition, Wiley India Pvt Ltd, 2010
- 3. Philopose P.M.Analytical Biotechnology. Domihant Publishers & distributors, New Delhi, 2016.

BT3391 BASIC INDUSTRIAL BIOTECHNOLOGY

LTPC 3 0 0 3

OBJECTIVES:

- To make the students aware of the overall industrial bioprocess so as to help them to manipulate the process to the requirement of the industrial needs.
- The course prepares the students for the bulk production of commercially important modern Bioproducts, Industrial Enzymes, Products of plant and animal cell cultures

UNIT I INTRODUCTION TO INDUSTRIAL BIOPROCESS

9

Fermentation- Bacterial, Fungal and Yeast, Biochemistry of fermentation. Traditional and Modern Biotechnology- A brief survey of organisms, processes, products. Basic concepts of Upstream and Downstream processing in Bioprocess, Process flow sheeting – block diagrams, pictorial representation.

UNIT II PRODUCTION OF PRIMARY METABOLITES

9

Primary Metabolites- Production of commercially important primary metabolites like organic acids, amino acids and alcohols.

UNIT III PRODUCTION OF SECONDARY METABOLITES.

9

Secondary Metabolites- Production processes for various classes of secondary metabolites: Antibiotics, Vitamins and Steroids.

UNIT IV PRODUCTION OF ENZYMES AND OTHER BIOPRODUCTS

9

Production of Industrial Enzymes, Biopesticides, Biofertilizers, Biopreservatives, Biopolymers Biodiesel. Cheese, Beer, SCP & Mushroom culture, Bioremediation.

UNIT V PRODUCTION MODERN BIOTECHNOLOGY PRODUCTS

9

Production of recombinant proteins having therapeutic and diagnostic applications, vaccines. Bioprocess strategies in Plant Cell and Animal Cell culture.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, the students will be able

- To explain the steps involved in the production of bioproducts and methods to improve modern biotechnology.
- To apply basic biotechnological principles, methods and models to solve biotechnological tasks.
- To identify and debate the ethical, legal, professional, and social issues in the field of biotechnology.
- To design and deliver useful modern biotechnology products to the Society...

TEXT BOOKS:

- 1. Satyanarayana, U. "Biotechnology" Books & Allied (P) Ltd., 2005.
- 2. Kumar, H.D. "A Textbook on Biotechnology" IInd Edition. Affiliated East West Press Pvt.Ltd., 1998
- 3. Balasubramanian, D. etal., "Concepts in Biotechnology" Universities Press Pvt. Ltd., 2004.
- 4. Ratledge, Colin and Bjorn Kristiansen "Basic Biotechnology" IInd Edition Cambridge University Press, 2001.
- 5. Dubey, R.C. "A Textbook of Biotechnology" S.Chand & Co. Ltd., 2006.

REFERENCES:

- 1. Casida, L.E. "Industrial Microbiology", New Age International (P) Ltd, 1968.
- 2. Presscott, S.C. and Cecil G. Dunn, "Industrial Microbiology", Agrobios (India), 2005.
- 3. Cruger, Wulf and Anneliese Crueger, "Biotechnology: A Textbook of Industrial Microbiology", IInd Edition, Panima Publishing, 2000.
- 4. Moo-Young, Murrey, "Comprehensive Biotechnology", 4 Vols. Pergamon Press, (An Imprintof Elsevier) 2004.
- 5. Stanbury, P.F., A. Whitaker and S.J. Hall "Principles of Fermentation Technology", IInd Edition, Butterworth Heinemann (an imprint of Elsevier), 1995.
- 6. C.F.A Bryce and EL.Mansi, Fermentation microbiology & Biotechnology, 1999.
- 7. K.G.Ramawat & Shaily Goyal, Comprehensive Biotechnology, 2009, S.Chand publications.

BT3452

INDUSTRIAL ENZYMOLOGY

LTPC 3003

OBJECTIVES:

To enable the students

- To learn enzyme reactions and its characteristics along with the production and purification process
- To give the student a basic knowledge concerning biotransformation reactions with the usage of enzymes

UNIT I INTRODUCTION TO ENZYMES

9

Classification of enzymes. Mechanisms of enzyme action; concept of active site and energetics of enzyme substrate complex formation; specificity of enzyme action; principles of catalysis – collision theory, transition state theory; role of entropy in catalysis.

UNIT II KINETICS OF ENZYME ACTION

9

Kinetics of single substrate reactions; estimation of Michelis – Menten parameters, multisubstrate reactions - mechanisms and kinetics; turnover number; types of inhibition & models –substrate, product. Allosteric regulation of enzymes, Monod Changeux Wyman model, pH and temperature effect on enzymes & deactivation kinetics.

UNIT III ENZYME IMMOBILIZATION AND BIOSENSORS

g

Physical and chemical techniques for enzyme immobilization – adsorption, matrix entrapment, encapsulation, cross-linking, covalent binding etc., - examples, advantages and disadvantages, design of enzyme electrodes and their application as biosensors in industry, healthcare and environment.

UNIT IV PURIFICATION AND CHARACTERIZATION OF ENZYMES FROM NATURAL SOURCES 9

Production and purification of crude enzyme extracts from plant, animal and microbial sources; methods of characterization of enzymes; development of enzymatic assays

UNIT V BIOTRANSFORMATION APPLICATIONS OF ENZYMES

9

Hydrolytic- Ester bond, Amide, Epoxides, Nitriles, Reduction reactions –aldehydes, Ketones, C=C, Oxidation reactions – Alkanes, Aromatic, Baeyer-Villiger, Enzymes in organic synthesis – esters, amide, peptide, Modified and Artificial Enzymes, Catalytic antibodies

TOTAL: 45 PERIODS

OUTCOMES:

- The knowledge on enzyme and enzyme reactions will be the key step in to proceed towards various concepts in biotechnology.
- The theoretical and practical aspects of kinetics will provide the importance and utility of enzyme kinetics towards research.
- The process of immobilization has been increased steadily in food, pharmaceutical and chemical industries and thus this study will provide simple and easy method of implementation.
- Ideas on Processing, Production and Purification of enzymes at an industrial scale will be helpful to work technologically.

TEXT BOOKS:

- 1. Trevor Palmer , Enzymes IInd Horwood Publishing Ltd
- 2. Faber K, Biotransformations in Organic Chemistry, IV edition, Springer

REFERENCES:

- 1. Harvey W. Blanch, Douglas S. Clark, Biochemical Engineering, Marcel Dekker, Inc.
- 2. James M. Lee, Biochemical Engineering, PHI, USA.
- 3. James. E. Bailey & David F. Ollis, Biochemical Engineering Fundamentals, McGraw Hill.
- 4. Wiseman, Enzyme Biotechnology, Ellis Horwood Pub.

BI3411

CHEMICAL ENGINEERING LABORATORY-1 (FLUID MECHANICS & HEAT TRANSFER

LTPC 0031.5

OBJECTIVES:

- To provide basic understanding of chemical engineering principles and operations
- Course will enable the students to apply the principles in other chemical engineering and biotechnology subjects offered in higher semesters

EXPERIMENTS

- 1. Flow measurement Orifice meter
- 2. Flow measurement Venturimeter,
- 3. Flow measurement Rotameter
- 4. Pressure drop in flow through pipes
- 5. Pressure drop in flow through packed column
- 6. Pressure drop in flow through fluidized beds
- 7. Heat transfer in Composite wall
- 8. Heat transfer characteristics in double pipe heat exchanger
- 9. Heat transfer characteristics in shell and tube heat exchanger
- 10. Heat transfer characteristics in plate type heat exchanger
- 11. Heat transfer by radiation
- 12. Simple and steam distillation

Equipment Needed for 30 Students

Orifice meter 1 Venturimeter 1 Rotameter 1

Double pipe heat exchanger 1
Shell and tube heat exchanger 1
Plate type heat exchanger 1
Packed had column 1

Packed bed column 1
Fluidzed bed column 1
Composite wall 1

Emissivity measurement apparatus 1 Darcy's friction factor apparatus 1 Distillation set up 1

Glassware, Chemicals, Media as required

OUTCOMES:

Upon completion of this practical course the student will

- Have knowledge on the basic principles of chemical engineering
- Be able to apply the skill of material balance and energy balance in unit operations unit process of chemical engineering and biotechnology
- Be able to analyze the principles of chemical engineering and its applications in chemical, mechanical and biological perspectives
- Understand the design and working principles of fluid moving machinery and transport phenomena

TOTAL: 45 PERIODS

BT3461

ANALYTICAL INSTRUMENTATION LABORATORY

LT PC 0031.5

60

OBJECTIVES:

To train the students

- To have a practical hands on experience on Absoprtion Spectroscopic methods
- To acquire experience in the purification by performing chromatography
- To validate and analysis using spectrometric and microscopic techniques

EXPERIMENTS

1. Precision and validity in an experiment using absorption spectroscopy.

2. Validating Lambert-Beer's law using KMnO4

- 3. Finding the molar absorbtivity and stoichiometry of the Fe (1,10 phenanthroline)3 using absorption spectrometry.
- 4. Finding the pKa of 4-nitrophenol using absorption spectroscopy.
- 5. UV spectra of nucleic acids.
- 6. Chemical actinometry using potassium ferrioxolate.
- 7. Estimation of SO4-- by nephelometry.
- 8. Estimation of Al3+ by Flourimetry.
- 9. Limits of detection using aluminium alizarin complex.
- 10. Chromatography analysis using TLC.
- 11. Chromatography analysis using column chromatography.

Equipment Needed for 20 Students Colorimeter 2 Glassware, Chemicals, Media as required

TOTAL: 45 PERIODS

OUTCOME:

 The students would visualize and interpret the theory of spectroscopic methods by hands on experiments.

REFERENCES:

- 1. Skoog, D.A. etal. "Principles of Instrumental Analysis", Vth Edition, Thomson / Brooks Cole,1998.
- 2. Braun, R.D. "Introduction to Instrumental Analysis", Pharma Book Syndicate, 1987.
- 3. Willard, H.H. etal. "Instrumental Methods of Analysis", VIth Edition, CBS, 1986.
- 4. Ewing,G.W. "Instrumental Methods of Chemical Analysis", Vth Edition, McGraw-Hill, 1985.

