Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

	Reg. No. :
	Question Paper Code: 20818
	B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2022.
	Fourth/Fifth/Sixth Semester
	Aeronautical Engineering
	MA 8491 — NUMERICAL METHODS
	(Common to Aerospace Engineering/Agriculture Engineering/Civil gineering/Electrical and Electronics Engineering/Electronics and Instrumentation Engineering/Instrumentation and Control Engineering/Manufacturing Engineering/Mechanical Engineering (Sandwich)/Mechanical and Automation Engineering/Chemical Engineering/Chemical and Electrochemical Engineering/Plastic Technology/Polymer Technology/Textile Technology)
	(Regulations 2017)
in	ne : Three hours Maximum : 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
	Write a sufficient condition for Gauss-Seidel method to converge.
	What is the order of convergence of Newton-Raphson method?
	Find the first divided difference values for the following data.
	X -3 -1 0 3 5
	Y -30 -22 -12 330 3458
	Is it possible to find two different interpolants to the same $(n+1)$ data using Lagrange's interpolation method? Justify.
	How the accuracy can be increased in Trapezoidal rule of evaluating a given definite integral?
	What is the error in Simpson's 1/3 rule in (x_0, x_2) ?
	Given $y' = x + y$, $y(1) = 0$ find $y(1.1)$ by Taylor's method.

Question Paper Sponsored by M.E.T. Engineering College, Chenbagaramanputhoor, Kanyakumari Dist.

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

- 8. What will you do, if there is a considerable difference between predicted value and corrected value in predictor corrector methods?
- 9. In the one dimensional heat equation $u_t = \alpha^2 u_{xx}$, what is α^2 ?
- 10. What is the condition for the partial differential equation $af_{xx} + bf_{xy} + cf_{yy} + df_x + ef_y + uf = k$ to represent a hyperbolic equation, elliptic and parabola?

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- (a) (i) Find the real root between 1 and 2 of the equation 2x³-3x-6=0 by applying Newton-Raphson's method, correct to five decimal places.
 (8)
 - (ii) Using power method, determine the largest eigenvalue and the corresponding eigenvector of the matrix $A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$; Let

initial vector be
$$X_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
. (8)

- (b) Solve the following system of equations by
 - (i) Gauss Jacobi method
 - (ii) Gauss Seidel method $8x-3y+2z=20;\, 4x+11y-z=33;\, 6x+3y+12z=35\;.$
- 12. (a) (i) The table gives the distance in nautical miles of the visible horizon for the given heights in feet above the earth's surface.

X height: 100 150 200 250 300 350 400 Y distance: 10.63 13.03 15.04 16.81 18.42 19.90 21.27

Find the value of y when x = 218 ft by using Newton's forward interpolation formula. (8)

(ii) Using Lagrange's formula of interpolation, find y(9.5) given. (8)

 x
 7
 8
 9
 10

 y
 3
 1
 1
 9

Or

9

20818

Question Paper Sponsored by M.E.T. Engineering College, Chenbagaramanputhoor, Kanyakumari Dist.

Notes Syllabus Question Papers Results and Many more...

Available @ www.binils.com

(b) (i) Form the difference table and using Newton's backward interpolation formula, compute y(17) from the following data. (8)

X: 8 10 12 14 16 18

Y: 10 19 32.5 54 89.5 15.4

(ii) The following are the values of x and y:

X: 1 2 3 4

Y: 1 2 5 11

Find the cubic splines and evaluate y(1.5).

(8)

13. (a) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by (i) Trapezoidal rule (ii) Simpson 1/3 rule (iii) Also check up the results by actual integration. Assume h = 1.

Or

(b) The population of a certain town is given below. Find the rate of growth of the population in (i) 1931 and (ii) 1971 by using Newton's forward and backward formulae respectively.

Year X:

1931 1941 1951 1961 197

Population Y: 40.62 60.80 79.95 103.56 132.65

- 14. (a) Given $\frac{dy}{dx} = 1 y$; y(0) = 0 and y(0.3) = 0.2629. Find
 - (i) y(0.1) using Euler's method
 - (ii) y(0.2) by Modified Euler's method
 - (iii) y(0.4) by Milne's method.

Or

(b) Given $\frac{dy}{dx} = xy + y^2$; y(0) = 1. Find y(0.1), y(0.2), y(0.3) by using Runge-Kutta method of order four and hence obtain y(0.4) by using Adam's method.

3

20818

Question Paper Sponsored by M.E.T. Engineering College, Chenbagaramanputhoor, Kanyakumari Dist.

Notes
Syllabus
Question Papers
Results and Many more...

www.binils.com

Available @

15. (a) Solve $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides x=0, y=0, x=3, y=3 with u=0 on the boundary and mesh length 1 unit.

Or

- (b) Solve $u_{xx} + u_{yy} = 0$ over the square mesh of side 4 units; satisfying the following boundary conditions.
 - (i) u(0, y) = 0 for $0 \le y \le 4$
 - (ii) $u(4, y) = 12 + y \text{ for } 0 \le y \le 4$
 - (iii) u(x, 0) = 3x for $0 \le x \le 4$
 - (iv) $u(x,4) = x^2$ for $0 \le x \le 4$

Question Paper Sponsored by M.E.T. Engineering College, Chenbagaramanputhoor, Kanyakumari Dist.

20818