B.E/B.TECH, M.E/M.TECH, MBA, MCA, POLYTECHNIC & SCHOOLS

Notes Syllabus Question Papers Results and Many more... Available @ www.binils.com

	Reg. No. :
	Question Paper Code: 20749
	B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2022.
	Sixth Semester
	Instrumentation and Control Engineering
	IC 8651 — ADVANCED CONTROL SYSTEM
	(Common to : Electrical and Electronics Engineering)
	(Regulations 2017)
Tim	e: Three hours Maximum: 100 mark
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
1.	What is meant by a state variable and eigen value?
2.	Define controllability and observability.
3.	How does pole placement reflect on system stability?
4.	Differentiate linear and nonlinear systems.
5.	Give the relationship of S-domain to Z-domain transformation.
6.	Give the circuit function for LEAD compensator.
7.	What is meant by stability of nonlinear systems?
8.	Classify the different methods available for inverse Z-transform.
9.	Write the merits of optimal control.
10.	Mention any two application of steady state optimal control.

B.E/B.TECH, M.E/M.TECH, MBA, MCA, POLYTECHNIC & SCHOOLS

Notes
Syllabus
Question Papers
Results and Many more...

www.binils.com

Available @

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Determine the state controllability for the system represented by the state equation

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u.$$

Or

- (b) Obtain the state model of the system whose transfer function is given as, $\frac{Y(s)}{U(s)} = \frac{10}{s^3 + 4s^2 + 2s + 1}.$
- 12. (a) Describe the control system design via pole placement by state feedback with suitable example.

Or

(b) The state model of a system is given by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & -3 & 0 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} [u]; \ \ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Convert the state model to controllable phase variable form.

13. (a) Determine the inverse z-transform of the following function,

$$F(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}.$$

Or

- (b) Discuss the two methods used in two methods of analyzing the behaviour or response of a Linear discrete systems.
- 14. (a) If the response of a system is $y = ax^2 + e^{bx}$, explain the procedure to test whether the system is linear or nonlinear.

Or

2

(b) Write briefly about the following

(i) Jump resonance

(4)

ii) Characteristics of nonlinear systems

(5)

(iii) Concepts of phase plane method.

(4)

20749

B.E/B.TECH, M.E/M.TECH, MBA, MCA, POLYTECHNIC & SCHOOLS

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

15. (a) A first order system is described by the differential equation $\dot{x}(t) = 2x(t) + u(t) \,.$ It is desired to find the control law that minimizes the $\mathrm{Pl}\ J = \frac{1}{2} \int\limits_{-\infty}^{t_f} \left(3x^2 + \frac{1}{4}u^2\right) dt \,, \ t_f = 1 \sec .$

Or

(b) Discuss briefly the two approaches to the design of control systems and also outline the steps to be followed during the analytical approach of parameter optimization.

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) A single input system is described by the following state equations.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix} [u].$$

Design a state feedback controller which will give closed-loop poles at $-1,\pm j1$ or -j2,-6.

Or

(b) Determine the z-transform and their ROC of the following discrete sequence (i) $f(k) = \{3,2,5,7\}$ (ii) $f(k) = \{2,4,5,7,3\}$.

20749