## B.E/B.TECH, M.E/M.TECH, MBA, MCA, POLYTECHNIC & SCHOOLS

Notes
Syllabus
Question Papers
Results and Many more...

Available @ www.binils.com

|  | Reg. No.:                                                                              |                    |  |  |
|--|----------------------------------------------------------------------------------------|--------------------|--|--|
|  | Question Paper Code: 20512                                                             |                    |  |  |
|  | B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2022.                                      |                    |  |  |
|  | Third/Seventh Semester                                                                 |                    |  |  |
|  | Electrical and Electronics Engineering EE 8391 — ELECTROMAGNETIC THEORY                |                    |  |  |
|  |                                                                                        |                    |  |  |
|  |                                                                                        | (Regulations 2017) |  |  |
|  | Time: Three hours Maximum: 100 marks                                                   |                    |  |  |
|  | Answer ALL questions.                                                                  |                    |  |  |
|  | PART A — $(10 \times 2 = 20 \text{ marks})$                                            |                    |  |  |
|  | 1. State Gauss law.                                                                    |                    |  |  |
|  | 2. State Coulombs law.                                                                 |                    |  |  |
|  | 3. List two applications of static electric field.                                     |                    |  |  |
|  | <ol> <li>Differentiate conductors and dielectrics in terms of conductivity.</li> </ol> |                    |  |  |
|  | 5. Relate magnetic flux density and magnetic intensity.                                |                    |  |  |
|  | 6. Define magnetization.                                                               |                    |  |  |
|  | 7. State Faradays law.                                                                 |                    |  |  |
|  | 8. Outline field theory and circuit theory.                                            |                    |  |  |
|  | 9. What is the value of intrinsic impedance for free space?                            |                    |  |  |
|  | 10. Differentiate lossy and lossless dielectric medium.                                |                    |  |  |
|  | PART B — $(5 \times 13 = 65 \text{ marks})$                                            |                    |  |  |
|  | 11. (a) Illustrate divergence of a vector and derive divergence theorem. (13)          |                    |  |  |
|  |                                                                                        |                    |  |  |
|  |                                                                                        |                    |  |  |

Question Paper Sponsored by M.E.T. Engineering College, Chenbagaramanputhoor, Kanyakumari Dist.

## B.E/B.TECH, M.E/M.TECH, MBA, MCA, POLYTECHNIC & SCHOOLS

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

|     | (b) | Illustrate the electric field due to                                                                                                                                                                   |                |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|     | (b) | (i) infinitely long, charged conductor using Gauss law.                                                                                                                                                | (7)            |
|     |     | (ii) uniformly charged circular disc using Gauss law.                                                                                                                                                  | (6)            |
| 12. | (a) | Explain energy density in electrostatic fields and derive the expression for energy storage.                                                                                                           | ssion<br>(13)  |
|     | (b) | Using Maxwell's equation, derive the conditions for electric field between mediums mentioned below:                                                                                                    | ween           |
|     |     | (i) Dielectric 1 and Dielectric 2                                                                                                                                                                      | (7)            |
|     |     | (ii) Dielectric and conductor                                                                                                                                                                          | (3)            |
|     |     | (iii) Dielectric and free space                                                                                                                                                                        | (3)            |
| 13. | (a) | Derive the magnetic field intensity due to a finite and infinite carrying a current I.                                                                                                                 | wire,<br>(9+4) |
|     | (b) | What are the laws involved in boundary condition and derive<br>conditions for magnetic field, between two mediums mentioned below                                                                      |                |
|     |     | (i) Dielectric 1 and Dielectric 2                                                                                                                                                                      | (7)            |
|     |     | (ii) Dielectric and conductor                                                                                                                                                                          | (3)            |
|     |     | (iii) Dielectric and free space                                                                                                                                                                        | (3)            |
| 14. | (a) | Derive displacement current from circuital analysis and from Am circuital law.                                                                                                                         | pere (13)      |
|     | (b) | State and derive Maxwell's equation in point form and integral form.                                                                                                                                   | (13)           |
| 15. | (a) | Illustrate the properties of uniform plane wave in free space.                                                                                                                                         | (13)           |
|     |     | Or                                                                                                                                                                                                     |                |
|     | (b) | Illustrate the reflection of plane wave by dielectric medium under no incidence.                                                                                                                       | rmal<br>(13)   |
|     |     | PART C — $(1 \times 15 = 15 \text{ marks})$                                                                                                                                                            |                |
| 16. | (a) | In a material for which $\sigma=5.5$ s/m and $\varepsilon_r=1$ and $E=260$ Sin 1 (V/m). Find the conduction and displacement current densities, and frequency at which both have equal magnitudes.  Or |                |
|     | (b) | If $V = \left[2x^2y + 20z - \frac{4}{x^2 + y^2}\right]$ volts.                                                                                                                                         |                |
|     |     | Evaluate E and D at point P (6, -2.5, 3)                                                                                                                                                               | 8+7)           |
|     |     | 2 20                                                                                                                                                                                                   | 0512           |
|     |     |                                                                                                                                                                                                        |                |

Question Paper Sponsored by M.E.T. Engineering College, Chenbagaramanputhoor, Kanyakumari Dist.