Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

- 5. Define the time constant of RL circuit.
- A series RC circuit consists of resistor of 10 Ω and capacitor of 0.1 F. A
 constant voltage 10 of 20 V is applied to the circuit at time t = 0. Obtain the
 current equation.
- Define Quality factor of the coil.
- Two identical coils, each have self-inductance, L = 0.03 H. If coefficient of coupling, k is 0.8, determine the value of mutual inductance between the coils, M.
- In two wattmeter method of three phase power measurement, compute the readings of wattmeters in terms of voltage, V_L. and current, I_L if the power factor is unity.
- 10. What is power factor leading and power factor lagging?

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

 (a) (i) Determine the mesh currents I₁ and I₂ in the circuit shown in the Fig. 3. (7)

Figure - 3

(ii) Three lamps are connected to a 9 V battery as shown in Fig.4. Draw the resistive circuit equivalent model by modelling each lamp as a resistor. Calculate the total current supplied by the battery. (6)

Figure - 4

Or

2

60033

Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com

(b) (i) Using node voltage method, determine the voltages at node 1 and 2 in the circuit shown in Fig. 5. (7+6)

Figure - 5

(ii) If $R_{eq} = 50 \,\Omega$, in the circuit shown in Fig. 6, determine the value of R. (7+6)

Figure - 6

12. (a) For the circuit shown in Fig.7, find the Thevenin's equivalent circuit and find the value of (i) R_L. for maximum power transfer and (ii) the maximum power transferred to R_L. using maximum power transfer theorem. (13)

Figure - 7

Or

3

60033

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

(b) Determine the current, I in the circuit shown in Fig. 8 using the superposition theorem. (13)

Figure - 8

13. (a) A series RL circuit as shown in Fig. 9, has a dc input voltage, E applied to it at t = 0 seconds through switch. At the instant of switching, the current, i is zero. Derive and find the expression for the transient current, i(t). Also, draw the transient response of the current (13)

Figure - 9

Or

(b) A series RLC circuit as shown in Fig. 10 has a dc input voltage of E applied to it at t = 0 seconds through switch. Derive and find the expression for the transient current, i(t) for the overdamped condition. Assume initial relaxed circuit conditions. (13)

Figure - 10

4

60033

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

 (a) Derive the expression for equivalent inductance, L for the circuit shown in Fig. 11. L₁, L₂ are the self inductances and M is the mutual inductance.

(13)

Figure - 11

Or

- (b) Draw the frequency response of a series RLC circuit and derive the expression for bandwidth, B and Quality factor, Q in terms of resistance, R and inductance. L. (13)
- 15. (a) A balanced star connected load takes 9 kW at a lagging power factor of 0.8 when connected to a three phase, star connected 400 V, 50 Hz supply. Find the per phase values of load elements. Given supply voltage is line voltage. (13)

Or

(b) Three coils of resistance 4 Ω and inductive reactance 3 Ω are connected in delta across 400 V, 50 Hz supply. Find the current in the coil, line current, active, reactive and apparent power. (13)

PART C — $(1 \times 15 = 15 \text{ marks})$

- 16. (a) (i) Why an unbalanced star connected load is not normally used in 3 wire 3 phase system? (6)
 - (ii) A balanced delta connected 3ϕ load is fed from 3ϕ , 400 V supply. The line current is 20 A and total power absorbed by load is 10 kw.

Calculate

- (1) The impedance in each branch
- (2) The power factor
- (3) Total power consumed if some impedance are star connected.

(9)

Or

5

60033

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

