Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

г	And the state of the second state of the second
10	Question Paper Code: 20465
B.E./B	Tech. DEGREE EXAMINATIONS, APRIL/MAY 2022.
	Third/Fourth Semester
	Electronics and Communication Engineering
	EC 8392 — DIGITAL ELECTRONICS
(Common to : Bior Mechatronics	medical Engineering/Computer and Communication Engineering s Engineering/Medical Electronics/Robotics and Automation)
	(Regulations 2017)
Time: Three hours	Maximum: 100 mar
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
1. Given a binar	y value 100010010111. Convert to Hexadecimal and octal value
2. Reduce the Bo	oolean expression $ABC'D + A'BD + ABCD$ to two literals.

Draw a 4-bit serial-in, serial-out shift register using suitable flip-flop(s).

What are critical races in combinational circuits? How can it be prevented?

10. How many 32K * 8 RAM chips are needed to provide a memory capacity of

A DRAM chip uses two-dimensional address multiplexing. It has 13 common address pins, with the row address having one bit more than the column

Sketch the block schematic of three-decade decimal BCD counter. List the different types of hazards faced in combinational circuits.

What is a multiplexer? List two applications.

address. What is the capacity of the memory?

5.6.

8. 9.

256K bytes?

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

			PART B	— (5 ×	13 =	65 marks)			
	11.	(a)	Simplify using Karnaugh map and implement the following Boolean function F, using the two-level forms of logic							
			(a) NAND-AND						(4)	
1.5			(b) AND-NOR						(3)	
			(c) OR NAND						(3)	
			(d) NOR-OR						(3)	
			$F(A, B, C, D) = \Sigma (0, 4,8,9, 10, 11, 12, 14)$							
			Or							
		(b) Write the Boolean equations and draw the logic diagram of the circum whose outputs are defined by the truth table shown in Table 1.								
					Tab	le 1				
			in							
			а	b	c	f_1	f2			
			0	0	0	1	1			
			0	0	1	0	1			
			0	1	0	1	0			
				1		1	1			
			1		0	1	0			
			1		1	0	1			
				1		×	×			
			1	1	1	1	0			
	12.	(a)	Implement a four-bit adder with carry look ahead logic. Write the relevant equations for carry generate and carry propagate at each stage. (13)						each stage.	
					C) u				
			Or Implement the following Boolean functions using appropriate							
		(b)	multiplexers:							
		(a) $F(x,y,z) = \sum m(1,2,6,7)$ (7)							(7)	
		(b) $F(A, B, C, D_1) = \sum m(1, 3, 4, 11, 12, 13, 14, 15)$ (6)								
		2 , 20465							20465	
						2 .			20465	

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

13. (a) A sequential circuit with two D flip-flops A and B with two inputs, x and y; and one output z, is specified by the following next-state and output equations:

$$A(t+1) = xy' + xB$$
$$B(t+1) = xA + xB'$$
$$z = A$$

- (i) Draw the logic diagram of the circuit
- (ii) List the state table for the sequential circuit
- (iii) Draw the corresponding state diagram.

Or

- (b) Using JK flip-flops, design a counter with the following repeated binary sequence: 0, 1, 2, 3, 4, 5, 6.
 - (i) Draw the logic diagram of the counter
 - (ii) List the state table for the counter
 - (iii) Draw the corresponding state diagram, considering the unused states too.
- 14. (a) Assume the inverters shown in Figure 1, having a delay of 1 ns and the other gates, have a delay of 2 ns. Initially A = B = C = 0 and D = 1; C changes to 1 at time 2 ns. Draw a timing diagram, showing the glitch, corresponding to the hazard. Modify the circuit, so that it is hazard free. (Leave the circuit as a two-level, OR-AND circuit)

Figure 1

Or

20465

Notes
Syllabus
Question Papers
Results and Many more...

Available @

www.binils.com

(b) Consider the three-level NOR circuit shown in Figure 2. Find all hazards in this circuit. Redesign the circuit, as a three-level NOR circuit, that is free of all hazards.

Figure 2

 (a) Design a Programmable Logic Array (PLA) for the following boolean junctions.

$$F_1 = AB' + AC + A'BC'$$

$$F_2 = (AC + BC)'$$

Draw the corresponding PLA programming table.

Or

(b) Design a combinational circuit using a ROM. The circuit accepts a threebit number and outputs a binary number equal to the square of the input number. Draw the truth table of the combinatorial circuit, block diagram of ROM, and truth table of ROM.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

 (a) Using required number of 64 * 8 ROM chips with an enable input, design a 512 * 8 ROM.

Or

(b) Design a sequential circuit with two JK flip-flops, A and B and two inputs E and F. If E = 0, the circuit remains in the same state regardless of the value of F. When E = 1 and F = 1, the circuit goes through the state transitions from 00 to 01, to 10, to 11, back to 00, and repeats. When E = 1 and F = 0, the circuit goes through the state transitions from 00 to 11, to 10, to 01, back to 00, and repeats. (15)

4

20465