Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com



Question Paper Code: 60032

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2022.

Second Semester

Electronics and Communication Engineering

EC 3251 — CIRCUIT ANALYSIS

(Common to: Electronics and Telecommunication Engineering)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- 1. Ten coulombs of charge flow past a given point in a wire in 2s. How many amperes of current is flowing?
- 2. Define active and passive elements and give examples.
- 3. State Maximum power transfer theorem.
- 4. Draw the dual of the network shown in Figure 1



Figure 1

- 5. Determine the average power delivered to the circuit consisting of an impedance  $z = (5+j8)\Omega$  when the current flowing through the circuit is I = 5|30 Amps.
- For the circuit shown in Figure 2, find the average power delivered by the dependent current source.



Figure 2

Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com

- Write the mathematical expression for unit step function and draw the pattern
- 8. Determine the Quality factor of a coil for the series circuit consisting of  $R=10\Omega,\,L=0.1H$  and  $C=10~\mu\,F.$
- 9. Two inductively coupled coils have self inductances  $L_1=50\,$  mH and  $L_2=200\,$  mH. If the co-efficient of coupling is 0.5, find the value of mutual inductance between the coils.
- List out the properties of tree of a graph.

PART B — 
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) Using mesh analysis determine the voltage Vs which given a voltage of  $50~\rm V$  across the  $10\Omega$  resistor as shown in Figure 3



Figure 3

Or

(b) Using nodal analysis, find the currents through the resistances  $\,R_3\,$  and  $\,R_4\,$  for the circuit shown in Figure 4



Figure 4

2

60032

Notes Syllabus Question Papers Results and Many more...

Available @

www.binils.com

12. (a) Find the voltage across the  $2\Omega$  resistor shown in Figure 5 using superposition theorem.



Figure 5

Or

(b) (i) Determine the resistance between nodes A and B in the circuit shown in Figure 6 (8)



Figure 6

 (ii) Consider the bridge circuit shown in Figure 7. Determine the resistance between nodes A and B and the current supplied by the 24V supply.



Figure 7

3

60032

Notes Syllabus Question Papers Results and Many more...

Available @ www.binils.com

- 13. (a) A coil has a resistance of  $5\Omega$  and an inductance of 31.8 mH.
  - (i) Calculate the current taken by the coil and power factor when connected to 200 V, 50 Hz supply.
  - (ii) Draw the phasor diagram.
  - (iii) If a non-inductive resistance of  $10\Omega$  is then connected in series with coil, calculate the new value of current and its power factor.

Or

(b) The data for the two mesh circuit are

$$V_1 = 110 \mid 0^{\circ} V$$
 and  $V_2 = -120 \mid 45^{\circ} V$ ,  $R = 4\Omega$ ,  $X_L = 4\Omega$ ,  $X_C = 3\Omega$ 

Determine the current through and voltage across the capacitance



Figure 8

14. (a) In the circuit shown in Figure 9, determine the complete solution for the current when the switch S is closed at t=0. Applied voltage is  $v(t)=50\cos\left(10^2t+\frac{\pi}{4}\right)$  volts, Resistance  $R=10\Omega$  abd capacitance  $C=1\mu F$ .



Figure 9

Or

60032

Notes
Syllabus
Question Papers
Results and Many more...

Available @ www.binils.com

