STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 1052: DIPLOMA IN COMPUTER ENGINEERING SYLLABUS N-SCHEME

(To be implemented from the year 2020-21 onwards) CURRICULUM OUTLINE

III SEMESTER

Col	SUBJECT		HOURS PER WEEK			
No	CODE	SUBJECT	THEORY	PRACTICAL	TOTAL	
1	4052310	Basics of Electrical and Electronics Engineering	5		5	
2	4052320	Operating System	5		5	
3	4052330	C Programming and Data structures	6		6	
4	4052340	Electrical and Electronics Engineering Practical		4	4	
5	4052350	Linux Practical		4	4	
6	4052360	C Programming and Data Structures Practical		4	4	
7	4052370	E Publishing Practical		4	4	
	1 / / / /	MAY bible	16	16	32	
	VVV	Physical Education			2	
		Library			1	
	Total				35	

Col			HOURS PER WI		
No	CODE	T		PRACTICAL	TOTAL
1	4052410	Computer Architecture	5		5
2	4052420	Web design and Programming	5		5
3	4052430	Object Oriented Programming with Java	5		5
4	4052440	RDBMS	5		5
5	4052450	Web design and Programming Practical		4	4
6	4052460	Java Programming Practical		4	4
7	4052470	RDBMS Practical		4	4
			20	12	32
		Physical Education			2
		Library			1
	Total				35

ANNEXURE – II

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU 1052 : DIPLOMA IN COMPUTER ENGINEERING SYLLABUS

N-SCHEME

(To be implemented from the year 2020-21 onwards)

SCHEME OF EXAMINATION

III SEMESTER

	CODE		Ex	amination	Marks	Minimum	Duration
No		SUBJECT	Internal	External *	Total	for Pass	
1	4052310	Basics of Electrical and Electronics Engineering	25	100	100	40	3
2	4052320	Operating System	25	100	100	40	3
3	4052330	C Programming and Data structures	25	100	100	40	3
4	4052340	Electrical and Electronics Engineering Practical	25	100	100	50	3
5	4052350	Linux Practical	25	100	100	50	3
6	4052360	C Programming and Data Structures Practical	25	100	100	50	3
7	4052370	E Publishing Practical	25	100	100	50	3

IV SEMESTER

Col	CODE	SUD IFOT	Ex	amination	Marks	Minimum	Duration
No		SUBJECT	Internal	External *	Total	for Pass	
1	4052410	Computer Architecture	25	100	100	40	3
2	4052420	Web design and Programming	25	100	100	40	3
3	4052430	Object Oriented Programming with Java	25	100	100	40	3
4	4052440	RDBMS	25	100	100	40	3
5	4052450	Web design and Programming Practical	25	100	100	50	3
6	4052460	Java Programming Practical	25	100	100	50	3
7	4052470	RDBMS Practical	25	100	100	50	3

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU **DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME**

(To be implemented for the students admitted from the year 2021 - 2022 onwards)

Course Name : 1052: Diploma in Computer

EngineeringSubject Code 4052310

Semester :111

Subject Title : Basics of Electrical and Electronics Engineering

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 16 Weeks

	Instructions		Examination			
Subject	Hours	Hours/	Marks			
	/Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Basics of Electrical and Electronics Engineering	5	80		- CO	100	3Hrs

^{*}Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Торіс	Hours		
I	AC FUNDAMENTALS,BATTERIES AND UPS	13		
II	TRANSFORMER AND SPECIAL MOTORS	12		
III	SEMICONDUCTOR DEVICES	16		
IV	BOOLEAN ALGEBRA, LOGIC GATES AND COMBINATIONAL SYSTEMS	16		
V	SEQUENTIAL LOGIC SYSTEM	16		
	Test and Model Exam	7		
TOTAL 80				

RATIONALE:

Diploma Engineers from all branches of engineering are expected to have some basic knowledge of electrical and electronics engineering. Also the technicians working in different engineering fields have to deal with various types of electrical equipments. Various types of electronic circuits are used in different electrical equipments. Hence it is necessary to study electric circuits, different types of electrical machines and electronic devices their principles and working characteristics. The basic concepts studied in this subject will be very useful for understanding of higher level subjects in further study.

OBJECTIVES:

On completion of the following units of syllabus contents, the students must be able to

- > Understand the AC fundamentals
- Understand the working principle of UPS
- Know about servomotors
- > Familiarize with semiconductor devices, rectifier circuits, transistors and its applications
- > Use Binary, Octal and Hexadecimal numbers
- Define logic gates
- > Significance of Boolean algebra in digital circuits
- Understand the working principles of sequential and combinational logic circuits
- > Define Flip-flops and describe behavior of various flip-flops
- Know about Synchronous and Asynchronous counters
- > Know about the function of shift registers

binils.com Anna University FTAILER Schools

Contents: Theory

Unit	Name of the topics	Hours
ı	AC FUNDAMENTALS, BATTERIES AND UPS	
	1.1 AC Fundamental	
	Difference between AC and DC - Advantages of AC over DC Wave	4
	form of sinusoidal A.C. Cycle—Generation of single phase	
	A.C. by elementary alternator - Definition of cycle, frequency, time	
	period, amplitude, peak value, average value and rms value – Define	
	peak factorand form factor -Concept of phase , phase difference and	
	phase angle.Single phase and 3 phase (Definition) - Meaning of	
	lagging and leading sine wave- Advantages of three phase over single	
	phase	
	1.2 Batteries	3
	Classification of cells- Construction of Lead acid cell— Methods of	
	charging –Care and Maintenance of Lead acid battery– Indications	
	ofa fully charge battery—Maintenance free batteries.	
V	1.3 UPS Need for UPS - Online and Offline UPS - Definition - Block	3
	Diagram –Explanation of each block– Merits and demerits of online	
	and offline UPS-Need of heat sink-Specification and ratings-	
	Maintenance of UPS including batteries.	
	1.4 Switches	3
	Basics of switches used - Ratings of switches used for a system	
	Installation – Ratings and types of wires used – necessity of MCB, ELCB.	
II	TRANSFORMER AND SPECIAL MOTORS	
	2.1 Single Phase transformer	5
	Working Principle and Construction of transformer – Brief description	
	of each part – Function and materials used – emf equation of	
	transformer(No derivation) — Voltage and current ratio of a	
	transformer – Efficiency - Losses in a transformer - Auto	
	transformer - Applications — Step up and Step down transformer	
	(Definition only)	

	binils.com Stepper Motor: Definition - Working principle - Types and applications Servo motors: Definition - Working principle - Types and applications	5
	 Factors to be considered for selecting a motor for a particular 	
	application.	
	2.3.Electrical Safety:	0
	Electric shock – need for earthing - types of earthing, fuses- need	2
	-types of fuses	
III	SEMICONDUCTOR DEVICES	
	3.1 Diodes	8
	PN Junction diode– Barrier Voltage, Depletion Region — Forward	
	biased and Reverse biased Junction — Working principle – forward	
,	Reverse characteristics of PN Junction diode - Applications of diode	
	Zener Diode: Construction-Characteristics (Forward and	
	Reverse)– Avalanche and Zener break down - Applications of	
	Zener diode. Light Emitting Diodes-operation, construction and	
	characteristics. LDR: Principle of operation and Characteristics.	
	Photo Diode–Principle of operation (concept only)	
V	3.2 Rectifiers Definition – Need of Rectification – Circuit diagram, Operation, i/p and o/pWaveforms of Half wave - Full wave- Bridge rectifiers (without	4
	filters) - Uses of filters in rectifier circuit — Ripple factor, Efficiency	
	and PIV (No derivation) – Comparison	
	3.3 Bipolar JunctionTransistor	
	Definition- Principle of NPN and PNP transistor- Symbol - Transistor	4
	terminals - Operating principle (NPN transistor only) -Configurations of	
	transistor.	
IV/	BOOLEAN ALGEBRA, LOGIC GATES COMBINATIONAL SYSTEM	
	4.1 Number representation Decimal, Binary, Octal and Hexadecimal number Systems-Conversion of	4
	number from one number system to another (without decimal point) -	

A.2 Logic gates Positive and Negative logic System- Definition, Truth table, Symbol and Logical equations of AND–OR-NOT–EXOR-EXNOR (Only 2-inputs) gates— Universal gates-NAND-NOR—Symbol and truth table. 4.3 Boolean Algebra Basic laws of Boolean algebra — Demorgan's Theorem and proofs—Duality theorem - Simplification of logical equations using Boolean laws -De-Morgan's theorem—Two and three variable Karnaugh map 4.4 Arithmetic Circuits Half Adder and full adder-Truth table, Circuit diagram—Half subtractor and Full subtractor- Truth table, Circuit diagram. 4.5 Combinational logic circuits Parity generator and checker -Multiplexer — De multiplexer — Encoder—Decoder (Definition and Basic Circuits only) SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop — Operation and truth table- Race Condition — JK flip flop—T flip flop—Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between		BCD CODE — ASCII Codes - Parity bit — Use of a parity bit —Odd parity and Even parity	
Positive and Negative logic System- Definition, Truth table, Symbol and Logical equations of AND–OR-NOT–EXOR-EXNOR (Only 2-inputs) gates— Universal gates-NAND-NOR—Symbol and truth table. 4.3 Boolean Algebra Basic laws of Boolean algebra — Demorgan's Theorem and proofs—Duality theorem - Simplification of logical equations using Boolean laws -De-Morgan's theorem—Two and three variable Karnaugh map 4.4 Arithmetic Circuits Half Adder and full adder-Truth table, Circuit diagram—Half subtractor and Full subtractor- Truth table, Circuit diagram. 4.5 Combinational logic circuits Parity generator and checker -Multiplexer — De multiplexer — Encoder—Decoder (Definition and Basic Circuits only) SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop — Operation and truth table- Race Condition — JK flip flop—T flip flop— Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between			
Logical equations of AND–OR-NOT–EXOR-EXNOR (Only 2-inputs) gates— Universal gates-NAND-NOR–Symbol and truth table. 4.3 Boolean Algebra Basic laws of Boolean algebra — Demorgan's Theorem and proofs —Duality theorem - Simplification of logical equations using Boolean laws -De-Morgan's theorem—Two and three variable Karnaugh map 4.4 Arithmetic Circuits Half Adder and full adder-Truth table, Circuit diagram—Half subtractor and Full subtractor- Truth table, Circuit diagram. 4.5 Combinational logic circuits Parity generator and checker -Multiplexer — De multiplexer — Encoder - Decoder (Definition and Basic Circuits only) SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop — Operation and truth table- Race Condition — JK flip flop—T flip flop— Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter- Decade Counter -4bit Synchronous counter-Distinguish between			4
gates- Universal gates-NAND-NOR-Symbol and truth table. 4.3 Boolean Algebra Basic laws of Boolean algebra — Demorgan's Theorem and proofs —Duality theorem - Simplification of logical equations using Boolean laws -De-Morgan's theorem-Two and three variable Karnaugh map 4.4 Arithmetic Circuits Half Adder and full adder-Truth table, Circuit diagram-Half subtractor and Full subtractor- Truth table, Circuit diagram. 4.5 Combinational logic circuits Parity generator and checker -Multiplexer — De multiplexer — Encoder — Decoder (Definition and Basic Circuits only) 5.1 Flip flops Basic principle of operation - S-R, D flip-flop — Operation and truth table- Race Condition — JK flip flop—T flip flop— Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between			·
4.3 Boolean Algebra Basic laws of Boolean algebra — Demorgan's Theorem and proofs —Duality theorem - Simplification of logical equations using Boolean laws -De-Morgan's theorem—Two and three variable Karnaugh map 4.4 Arithmetic Circuits Half Adder and full adder-Truth table, Circuit diagram—Half subtractor and Full subtractor- Truth table, Circuit diagram. 4.5 Combinational logic circuits Parity generator and checker -Multiplexer — De multiplexer — Encoder - Decoder (Definition and Basic Circuits only) SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop — Operation and truth table- Race Condition — JK flip flop—T flip flop— Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter- Decade Counter -4bit Synchronous counter-Distinguish between			
Basic laws of Boolean algebra — Demorgan's Theorem and proofs —Duality theorem - Simplification of logical equations using Boolean laws -De-Morgan's theorem—Two and three variable Karnaugh map 4.4 Arithmetic Circuits Half Adder and full adder-Truth table, Circuit diagram—Half subtractor and Full subtractor- Truth table, Circuit diagram. 4.5 Combinational logic circuits Parity generator and checker -Multiplexer — De multiplexer — Encoder - Decoder (Definition and Basic Circuits only) 5.1 Flip flops Basic principle of operation - S-R, D flip-flop — Operation and truth table- Race Condition — JK flip flop—T flip flop— Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between			
Basic laws of Boolean algebra – Demorgan's Theorem and proofs —Duality theorem - Simplification of logical equations using Boolean laws -De-Morgan's theorem—Two and three variable Karnaugh map 4.4 Arithmetic Circuits Half Adder and full adder-Truth table, Circuit diagram—Half subtractor and Full subtractor- Truth table, Circuit diagram. 4.5 Combinational logic circuits Parity generator and checker -Multiplexer — De multiplexer — Encoder - Decoder (Definition and Basic Circuits only) SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop — Operation and truth table- Race Condition — JK flip flop—T flip flop— Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between			3
laws -De-Morgan's theorem–Two and three variable Karnaugh map 4.4 Arithmetic Circuits Half Adder and full adder-Truth table, Circuit diagram—Half subtractor and Full subtractor- Truth table, Circuit diagram. 4.5 Combinational logic circuits Parity generator and checker -Multiplexer — De multiplexer — Encoder - Decoder (Definition and Basic Circuits only) SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop — Operation and truth table- Race Condition — JK flip flop—T flip flop— Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between			3
4.4 Arithmetic Circuits Half Adder and full adder-Truth table, Circuit diagram—Half subtractor and Full subtractor- Truth table, Circuit diagram. 4.5 Combinational logic circuits Parity generator and checker -Multiplexer — De multiplexer — Encoder - Decoder (Definition and Basic Circuits only) SECUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop — Operation and truth table- Race Condition — JK flip flop—T flip flop— Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between		-Duality theorem - Simplification of logical equations using Boolean	
Half Adder and full adder-Truth table, Circuit diagram—Half subtractor and Full subtractor- Truth table, Circuit diagram. 4.5 Combinational logic circuits Parity generator and checker -Multiplexer — De multiplexer — Encoder - Decoder (Definition and Basic Circuits only) SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop — Operation and truth table- Race Condition — JK flip flop—T flip flop— Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between			
Full subtractor- Truth table, Circuit diagram—Half subtractor and Full subtractor- Truth table, Circuit diagram. 4.5 Combinational logic circuits Parity generator and checker -Multiplexer – De multiplexer – Encoder - Decoder (Definition and Basic Circuits only) SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop – Operation and truth table- Race Condition – JK flip flop—T flip flop— Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between		4.4 Arithmetic Circuits	2
4.5 Combinational logic circuits Parity generator and checker -Multiplexer – De multiplexer – Encoder - Decoder (Definition and Basic Circuits only) SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop – Operation and truth table- Race Condition – JK flip flop–T flip flop– Toggling- Edge Triggered Flip-flop – Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between		Half Adder and full adder-Truth table, Circuit diagram–Half subtractor and	3
Parity generator and checker -Multiplexer – De multiplexer – Encoder - Decoder (Definition and Basic Circuits only) SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop – Operation and truth table- Race Condition – JK flip flop—T flip flop—Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between		Full subtractor- Truth table, Circuit diagram.	
Parity generator and checker -Multiplexer – De multiplexer – Encoder - Decoder (Definition and Basic Circuits only) SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop – Operation and truth table- Race Condition – JK flip flop—T flip flop— Toggling- Edge Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter- Decade Counter -4bit Synchronous counter-Distinguish between		4.5 Combinational logic circuits	0
SEQUENTIAL LOGIC SYSTEM 5.1 Flip flops Basic principle of operation - S-R, D flip-flop - Operation and truth table- Race Condition - JK flip flop-T flip flop- Toggling- Edge Triggered Flip-flop - Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between		Parity generator and checker -Multiplexer – De multiplexer – Encoder	2
V 5.1 Flip flops Basic principle of operation - S-R, D flip-flop – Operation and truth table- Race Condition – JK flip flop–T flip flop– Toggling- Edge Triggered Flip-flop – Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between		- Decoder (Definition and Basic Circuits only)	
 5.1 Flip flops Basic principle of operation - S-R, D flip-flop – Operation and truth table- Race Condition – JK flip flop–T flip flop– Toggling- Edge Triggered Flip-flop – Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between 	1	MANAY binile com	
Basic principle of operation - S-R, D flip-flop – Operation and truth table- Race Condition – JK flip flop–T flip flop– Toggling- Edge Triggered Flip-flop – Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between	V		6
Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between		Basic principle of operation - S-R, D flip-flop - Operation and truth	Ū
flop. 5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter- Decade Counter -4bit Synchronous counter-Distinguish between		table- Race Condition – JK flip flop–T flip flop– Toggling- Edge	
5.2 Counters Need-Types of counters - 4bit Asynchronous counter- Mod N counter- Decade Counter -4bit Synchronous counter-Distinguish between		Triggered Flip-flop — Level Triggered flip flop - JK Master Slave flip	
Need-Types of counters - 4bit Asynchronous counter- Mod N counter-Decade Counter -4bit Synchronous counter-Distinguish between		flop.	
Decade Counter -4bit Synchronous counter-Distinguish between		5.2 Counters	
		Need-Types of counters - 4bit Asynchronous counter- Mod N counter-	5
		Decade Counter -4bit Synchronous counter-Distinguish between	
Synchronous and Asynchronous counter-Application of counters		Synchronous and Asynchronous counter-Application of counters	
5.3 Registers		5.3 Registers	
Shift register-Block diagram representation and wave form of serial in,		Shift register-Block diagram representation and wave form of serial in,	5
Serial Out, Serial in Parallel out, Parallel in-parallel out		Serial Out, Serial in Parallel out, Parallel in-parallel out	
Applications of Shift Registers.		Applications of Shift Registers.	

TEXTBOOKS

				Year of
S.No	Title	Author	Publisher	Publishing
				/ Edition
	Electrical	D.I. Thornia	S.Chand &Co,	Multiple Colour Revised
1	Technology Vol I andII	.B.L.Theraja	NewDelhi	FirstEdition,2012
	Modern Digital		Tata Mc- Graw	
2	Electronics	R.P.Jain	Hill, NewDelhi	Third Reprint2010
	Principles of Digital	14.84	PHI learning	0000
3	Electronics	K.Meena	Private Ltd	2009

REFERENCE BOOKS

S.No	Title	Author	Publisher	Year of Publishing/ Edition
1.	Digital Electronics and	Jaydeep	University Press,	
,	Logic Design	Chakravarthy	Hyderabad	First Edition 2012
2.	Basic Electrical	V.N.Mittle	Tata Mc-GrawHill,	First Edition
	Engineering	V.N.IVIILLIE	NewDelhi	First Edition
3.	Basic Electrical and	R.Muthu	Tata Mc-	Seventh
	Electronics Engineering	subramanian	GrawHill,	Reprint2011
		R.Salivajanan	NewDelhi	
4.	D	N/ 1/2 N/A 1 /	S.Chand &Co,	0 15.55
	Principles of Electronics	V.K.Menta	NewDelhi	Second Edition
5.	Digital Floaturation	C K Kharata	Oxford University	2040
	Digital Electronics	G.K.Kharate	Press	2010

DIPLOMA IN COMPUTER ENGINEERING

SEMESTER PATTERN

II YEAR

N – SCHEME

III SEMESTER

4052320 - Operating System

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2021 - 2022 onwards)

Course Name : 1052:Diploma in Computer Engineering

Subject Code : 4052320

Semester : III

Subject Title : Operating System

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester:16 weeks

	Instructions		Examination			
Subject	Hours	Hours/	Marks			
Subject	/Week Semester		Internal Assessment	Board Examinations	Total	Duration
Operating System	/\ 5	80	N 25 S	100*	100	3Hrs

^{*} Examinations will be conducted for 100marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Topic	Hrs.		
I	Introduction to Operating System	16		
Ш	Process Management	17		
III	Memory Management	13		
IV	I/O and File Management, Security and Protection	13		
V	Linux-Case study	14		
	Test and Model Exam			
	Total	80		

RATIONALE:

Students have to be conversant with computer, its terminology and functioning. The heart of a computer is based around its Operating System. The processor deals with request coming from all directions asynchronously. The operating system has to deal with the problems of contention, resource management and both program and user data management, and provide a useful no-wait user interface. The course provides clear vision, understanding and working of Operating Systems.

OBJECTIVES:

On completion of the following units of syllabus contents, the students must be able to

- > Understand the purpose, goals, functions and evolution of Operating Systems.
- ➤ Understand the concept of process, process states and their scheduling.
- Classify different types of schedulers and scheduling algorithms.
- ➤ Identify the significance of inter-process communication and synchronization.
- ➤ Know about the usage of semaphore in inter-process communication.
- Understand the condition for a dead lock, ways to prevent or recover from thedeadlock.
- ➤ Know about memory protection against unauthorized access and sharing.
- Compare and contrast paging and segmentation techniques.
- > Define virtual memory and its underlying concepts.
- > Describe page replacement policies and disk scheduling techniques.
- > Describe the features and brief history of Linux
- Compare Unix and Linux
- > Explain Linux architecture
- Describe the process management, memory management handled by LINUX
- Describe file management, device drivers handled by Linux
- Learn to manage accounts in Linux OS.
- > Learn to write shell script.

DETAILED SYLLABUS

Contents:Theory

Unit	Name of theTopics	Hours			
I	INTRODUCTION TO OPERATINGSYSTEMS				
	Basics of Operating Systems	4			
	Definition-Types of Operating Systems: Mainframe, Desktop,				
	Multiprocessor, Distributed, Clustered, Multiprogramming, Real time,				
	Embedded and Timesharing, Mobile OS (Android, iOS).				
	Operating System Components	4			
	Process Management component - Memory Management component - I/O				
	Management component — File Management component-Protection				
	System- Networking Management component- Command interpreter.				
	Operating System Services				
	Process Execution — I/O operations— File manipulations —	3			
	Communications-Error detection and recovery-Resource allocation-				
	Accounting–System Protection-System Calls–System call Execution.				
1	Operating System Structures Simple structure, Layered, Monolithic, Microkernel Operating Systems –	3			
	brid Operating System – Views – User, System view –Concept of				
	VirtualMachine–Booting.				
	User Interface				
	Command Line Interface(CLI)based OS–DOS, Unix–Graphic	2			
	User Interface (GUI) based OS-Windows, Linux-Difference between				
	CLIand GUI.				
II	PROCESSMANAGEMENT	4			
	2.1 Processes	4			
	Definition-Process Relationship-Process states-Process State transitions				
	Process Control Block–Context switching–Threads – Concept of				
	multithreads –Benefits of threads–Types of threads.				

binils.com

Anna University, Polytechnic, Schools 2.2.Process Scheduling	6
Definition–Scheduling objectives–Types of Schedulers–Scheduling	9
criteria – CPU utilization, Throughput, Turnaround Time, Waiting Time),
Response Time (Definition only)–Scheduling algorithms – Preemptive	Э
and Non – pre emptive - FCFS – SJF –SRT–PS–RR-MQ	_
Multiprocessor scheduling- Types-Performance evaluation of the	Э
scheduling.	4
2.3.Inter-process Communication and Synchronization	4
Definition – Shared Memory System – Message passing–Critical section	n
–Mutual Exclusion-Semaphores.	
2.4Deadlocks	3
Definition –Deadlock characteristics–Deadlock Prevention–Deadlock	
Avoidance –Deadlock detection and Recovery.	
III MEMORYMANAGEMENT	
Basic Memory Management	6
Definition – Logical and Physical address map – Memory allocation	
 Contiguous Memory allocation – Partition allocation -Single, Fixed 	
and Variable partition–Internal and External fragmentation and Compaction –Swapping - Paging – Principle of operation – Page	
allocation – Hardware support for paging – Protection and sharing –	
Disadvantages of paging.	
Virtual Memory	4
Basics of Virtual Memory – Hardware and control structures – Locality	
of reference, Page fault , Working Set , Dirty page/Dirty bit – Demand	
paging, Segmentation	
Page Replacement Algorithms	3
Optimal (OPT), First In First Out (FIFO), Second Chance (SC), Not	
Recently Used (NRU) and Least Recently Used (LRU), Advantages and	
Disadvantages of Virtual Machine.	

binils.com

/	Anna University, Polytechnic, Schools	
	Disk Management	4
	Disk Structure – Physical structure, Logical structure, Disk formatting, Disk	
	Scheduling and its algorithms, RAID structure of disk, RAID levels0-6.	
	File Management	_
	File concept – File attributes – Name, Identifier, Type, Location, Size,	4
	Time, Date, user identification–File Operations-File system structure–Byte	
	sequence, Record sequence and Tree-based Directory Structure–Single	
	level, Two levels, Tree structured Directory.	
	Access Methods	
	Sequential, Random access – File allocation methods – Contiguous,	2
	Linked, Indexed.	
	Security and Protection	
	Security threats–Security Policies and mechanisms–Authentications	3
/	Linux-Case study	
	5.1.Introduction	6
	History of Linux – Features of Linux – Components of Linux system –	
	Userspace – Kernel space - Linux Architecture - Popular Flavors of Linux-FSF/GNU-Linux Desktop: GNOME-KDE.	
	File System	4
	Second extended file system – ext2 – Virtual File System – Different	
	typesof files - File Management — File Security — 3 levels —	
	Mounting file system— Unmounting	
	Managing Accounts	2
	Types of accounts–Root, System, User–Manage Users and	
	Groups - Create, Modify, Delete a Group - Create, Modify, Delete an	
	account.	

5.4Shell	Anna University, Polytechnic, Schools	
	hell — Types — Graphical, Command Line — Characteristics	2
of Vario	ous shells — Bash, Csh / Tcsh, Zsh, Fish — Shell Prompt —	_
Shell so	cripting–Need for Shell script– Shell script advantages and	
disadva	ntages–Script example.	

REFERENCE BOOKS

- "Operating System Internal and Design Principles", William Stallings, Pearson Education, 7th Edition
- "Operating System, Principles & Design", Pal Chaudhury, PHILearning, FirstEdition
- "Operating System", RohitKhuranalTLESE, Vikas Publishing Ltd, First Edition 2011
- "Operating System concepts", Abraham Siberschatz Galvin, Gagne, WileyPublishers,9thEdition
- "Operating Systems", Harvey M. Deiteland Paul J.Deitel, David R.Choffnes, PearsonEducation, NewDelhi, Third Edition, 2007

Learning Websites

https://en.wikipedia.org/wiki/Operting_system
https://computer.howstuffworks.com/operating-system.htm
https://www.tutorialspoint.com/operating_system/index.htm
https://www.geeksforgeeks.org/operating-systems/
https://codescracker.com/operating-system/

Shell Script Programs Website links

https://www.computerhope.com/os.htm

http://www.codepoc.io/blog/unix

https://books.google.co.in

DIPLOMA IN COMPUTER ENGINEERING

SEMESTER PATTERN

II YEAR

N - SCHEME

III SEMESTER

4052330 - C Programming and Data Structures

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2021 - 2022 onwards)

Course Name : 1052:Diploma in Computer Engineering

Subject Code : 452330

Semester : III

Subject title : C Programming and Data Structures

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per Semester: 16 weeks

	Instru	ıctions	·	Examination	1	
Subject	Hours Hours/		Marks			
Subject	/Week	Semester	Internal Assessment	Board Examinations	Total	Duration
C Programming and	6	96	25	100*	100	3Hrs
Data Structures	/\	hi	nile			

^{*}Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Topics	Hours
I	PROGRAM DEVELOPMENT & INTRODUCTION TO C	18
II	DECISION MAKING, ARRAYS, STRINGS, FUNCTIONS	18
III	STRUCTURES, UNIONS AND POINTERS	17
IV	INTRODUCTION TO DATA STRUCTURES, STACK, QUEUES	17
V	LINKED LIST, TREES, SORTING, SEARCHING	19
	Test and Model Exam	7
	TOTAL	96

RATIONALE:

C' is the most widely used computer language, which is being taught as a core course. C is general purpose structural language that is powerful, efficient and compact, which combines features of high level language and low-level language. It is closer to both

Man and Machine. Due to this inherent flexibility and tolerance it is suitable for different development environments. Due to these powerful features, C has not lost its importance and popularity in recently developed and advanced software industry. C can also be used for system level programming and it is still considered as first priority programming language. This course covers the basic concepts of C. This course will act as "Programming concept developer" for students. It will also act as "Backbone" for subjects like OOPS, Visual Basic, Windows Programming, JAVA etc.

Data structures are the techniques of designing the basic algorithms for real-life projects. In the present era, it is very essential to develop programs and organize data in such a way that it solves a complex problem efficiently. Understanding of data structures is essential and this facilitates to acquire sound knowledge of the insight of hardware requirement to any problem base. The practice and assimilation of data structure techniques is essential for programming.

OBJECTIVES:

At the end of the Course, the Students will able to

- > Define Program, Algorithm and flow chart
- List down and Explain various program development steps
- Write down algorithm and flow chart for simple problems.
- Describe the concepts of Constants, Variables, Data types and operators.
- Develop programs using input and output operations.
- > Use of command line arguments.
- > Explain compiler controlled directives.
- Understand the structure and usage of different looping and branching statements.
- Define arrays and string handling functions.
- Explain user-defined functions, structures and union.
- Define pointers and using the concept of Pointers.
- Define Linear and non-linear data structures.
- List and discuss the different types of linear data structures.
- > Define a tree and the different terms related with trees.
- Write the algorithm for different types of sorting and searching.

binils.com Anna University, Polytechnic, Schools DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
ı	PROGRAM DEVELOPMENT & INTRODUCTION TO C	
	1.1Program	3
	Program Definition - Program development cycle - Algorithm -flowchart -	J
	symbols, importance & advantage of flow chart.	
	1.2 Introduction to C	
	History of C - Features of C Language - Structure of a C program – Execution	3
	of C Program : Compiling, Link and Run a program — Diagrammatic	
	representation of program execution process.	
	1.3 Variables, Constants & Data types	_
	C character set – Tokens – Constants - Keywords – identifiers and	5
	Variables - Data types and storage - Data type Qualifiers - Declaration of	
	variables – Assigning values to variables – Escape sequences - Defining	
	symbolic constants	
	1,4 C operators Arithmetic, Logical, Assignment, Relational, Increment and Decrement,	5
	Conditional, Bitwise, Special Operator precedence and Associativity. C	
	expressions – Arithmetic expressions, Evaluation of expressions- Type	
	cast operator.	
	1.5 I/O statements	•
	Formatted input, formatted output, Unformatted I/O statements	2
	DECISION MAKING, ARRAYS, STRINGS, FUNCTIONS	
II	2.1 Control Statements	
	Simple if statement – if-else, else-if-ladder statements, switch statement,	5
	Looping Statements — while, do _ while and for loop, go to, continue and	
	break statements.	
	2.2 Arrays	1
	Definition – Array element and subscript - Declaration – Initialization of one	4
	dimension array elements - Two dimensional arrays - initialization of	
	elements.	

	2.3 Strings	3				
	Introduction – Declaring and Initializing string variables, Reading strings,	Ū				
	Writing strings, String handling functions — strlen(), strcpy(), strcmp(),					
	strcat() and strrev() functions.					
	2.4.Built in Functions	3				
	Declaration and definition of function. Math functions – Console I/O functions					
	- Standard I/O functions - Character Oriented functions .					
	2.5.User defined functions					
	Defining functions & Needs, Scope and Life time of Variables, Function call,	3				
	return values, Recursion.					
III	STRUCTURES, UNIONS AND POINTERS					
	3.1 Structures and Unions	7				
	Structure Definition – Variable declaration – initialization – Accessing and	7				
	giving values to structures, Structures within structures, Arrays within					
	structures. Unions: Declaration – initialization. Difference between Union and Structure.					
	 3.2 Pointers Introduction - Advantages of pointers - Accessing the address of a variable Declaring and Initializing pointers - Accessing a variable through its pointer 	4				
	-Pointer Expressions.					
	3.3 Dynamic memory allocation					
	Advantages – malloc(), calloc(), realloc() and free() functions.	2				
	3.4 Command line arguments :					
	Introduction – argv and argc arguments .	4				
IV	INTRODUCTION TO DATA STRUCTURES, STACK, QUEUES					
	4.1 Introduction to Data Structures					
	Introduction - Data and Information - Elementary data structure organization	8				
	- Types of data structures - Primitive and Non Primitive data structures,					
	Operations on data structures: Traversing, Inserting, Deleting, Searching,					
	Sorting, Merging, Different Approaches to designing an algorithm: Top-Down					

	approach, Bottom-up approach (Definition and examples only)	
	4.2 Definition of a Stack	
	Operations on Stack (PUSH & POP) - Implementation of stack through	5
	arrays -Polish notations — Conversion of infix to postfixexpression,	
	4.3 Queues	
	Definition – Representation of Queue using arrays – Circular Queue,	4
	Dequeue (Definition and Examples only)	
V	LINKED LIST, TREES, SORTING, SEARCHING	
	5.1 Terminologies	
	Node, Address, Pointer, Information, Null Pointer, Empty list Type of lists :	6
	Singly linked list , Doubly linked list, Circular list - Representation of singly	
	linked lists in Memory-Difference between Linked & sequential List —	
	Advantages and Disadvantages of Linked list. (Concepts only, no	
	implementations)	
	5.2. Trees	
	Terminologies: Degree of a node, degree of a tree, level of a node, leaf	6
	node, Depth / Height of a tree, In-degree & out-Degree, siblings. In order traversal, Preorder traversal, Post order traversal. (Concepts only, no	
	implementations)	
	5.3. Sorting	_
	Introduction, Types of sorting - Bubble sort , Quick Sort - Examples.	3 .
	5.4 Searching	3
	Definition – Algorithms and "C" programs for Linear search and Binary search.	3
	search.	

TEXT BOOKS:

SI.No	TITLE	AUTHOR	PUBLISHER
1.	Programming in ANSI C	Prof. E. Balagurusamy	Tata Mc-Graw Hill, New Delhi, 4 th Edition
REFEI	RENCE BOOKS:		
S.No	TITLE	AUTHOR	PUBLISHER
1.	A Text Book on C	E. Karthikeyan	PHI Private Limited, New Delhi
2.	Programming with C	Byron Gottfried.	Schaum Series -TMGH
3.	Programming and	ISRD Group,	Tata Mc-GrawHill,
J.	Problem solving using C	Lucknow	NewDelhi
4.	Let us C	Yashavent Kanethar	BPB Publication, 2005, New Delhi
5.	Introduction to Data structures with applications.	Trembley and Sorenson	Tata Mc-GrawHill, NewDelhi
6.	Fundamentals of Data structure	s Horowitz , sahni	University Press,
0.	in C	Anderson- freed	Hyderabad
7.	Introduction to Data structures	Bhagat Singh	TMGH, New Delhi
8.	Data Structures and Algorithms	G.A. Vijayalakshmi	TMGH, New Delhi

Pai

DIPLOMA IN COMPUTER ENGINEERING

SEMESTER PATTERN

II YEAR

N - SCHEME

III SEMESTER

4052340 – Electrical and Electronics Engineering
WWW Practical S. COM

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2021 - 2022 onwards)

Course Name : 1052:Diploma in Computer Engineering

Subject Code : 4052340

Semester : III

Subject title : Electrical and Electronics Engineering Practical

TEACHING& SCHEME OF EXAMINATION

No. of weeks per Semester: 16 Weeks

	Instru	ctions		Examination		
Subject	Subject Hours		Marks			
	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Electrical and Electronics Engineering Practical	4	64	nis 25	100*	100	3Hrs

^{*} Examinations will be conducted for 100 Marks and it will be reduced to75marks.

RATIONALE:

Diploma Engineers from all branches of engineering are expected to have some practical knowledge of electrical and electronics engineering. Also the technicians working in different engineering fields have to deal with various types of electrical equipments. Various types of electronic circuits are used in different electrical equipments. Hence it is necessary to have practice with electric circuits, different types of electronic devices to know the principles and working characteristics.

OBJECTIVES

On completion of the following practical contents the students must be able to

- Verify Power supply of SMPS
- > Find the efficiency and voltage regulation of a single phase transformer
- > Study the characteristics of PN junction diode and Zener Diode
- > Function of Rectifier circuit
- > Test the performance of Light devices
- Know about the function of a Transistor
- ➤ How to construct different logic functions using universal gates
- Realize the combinational circuits and sequential circuits

DETAILED SYLLABUS

Contents:Practical

LAB EXERCISES

1	A Checking of power supply in SMPS B Construct the circuit and draw the graph for different stages of Bridge rectifier with filter using CRO.
2	Construct the circuit and draw the forward characteristics of PN junctionDiode and find input resistance.
3	Construct the circuit and draw the reverse characteristics of Zener Diodeand find breakdown voltage.
4	Construct the circuit and draw the VI characteristics of LED
5	Construct the circuit and draw the characteristics of LDR
6	Construct CE configuration circuit and draw the input characteristics and also find input resistance.
7	Construct CE configuration circuit and draw the output characteristics and also find output resistance.

8	Α	Verify the truth tables of NAND,AND,NOR,OR,NOT,XOR using IC's
	В	Realization of basic gates using either NAND or NOR gate.
9		Construct and verify Half adder and Half Subtractor
10		Construct and verify the truth table of Full adder
11		Construct and verify the truth table of Full subtractor
12		Verify the truth tables of RS,D,T and JKFF
13		Construct and test the parity generator and checker function using IC74180
14		Construct and test the 4bit Ripple counter(IC7493)
15		Construct and test decade counter(IC7490)

BOARDEXAMINATION

DETAILED ALLOCATION OF MARKS

SCHEME OF VALUATION	m
Writing any one Experiment (CIRCUIT DIAGRAM, TABULAR COLUMN, TRUTH TABLE / EQUATION / FORMULA)	45 Marks
COLOMIN, TROTTI TABLE I EQUATION I ORMOLINI	
Construction	40 Marks
Result	10 Marks
VIVA-VOCE	05 Marks
Total	100 Marks

LIST OF EQUIPMENTS / COMPONENTS REQUIRED (for a batch of 30 students)

S.No	Name of the Equipments	Range	Required Nos
1	Ammeter	(0-50)ma	6
2	Voltmeter	(0-20)V,(0-1v)	6
3	Power supply	0-30V	6
4	Digital Trainer Kit		6
5	Bread Board		6
6	Fixed dual power supply	0-15V	2
7	Signal generator	1MHz	2
8	CRO Dual Trace	30MHz	6

COMPONENTS

S.No	Name of the components	
1	Resistors	1150Ω,1ΚΩ,2.2ΚΩ,10ΚΩ,220Ω
2	Capacitor	10μF, 4.7μF
3	PN Diode	IN4007
4	Zener Diode	Z11.1
5	Transistor	SL100,CL100
6	IC7400, IC7402, IC7404,	
	IC7408,IC7432,IC7486	
7	lc74180,IC74153,IC7476,IC7474	
8	IC7490,IC7493,IC7495	

DIPLOMA IN COMPUTER ENGINEERING

SEMESTER PATTERN

II YEAR

N - SCHEME

III SEMESTER

4052350 - Linux Practical

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2021 - 2022 onwards)

Course Name : 1052:Diploma in Computer Engineering

Subject Code : 4052350

Semester : III

Subject title : Linux Practical

TEACHING &SCHEME OF EXAMINATION

No. of weeks per Semester :16 Weeks

	Instructions		Examination			
Subject	Hours Hours/		Marks			Duration
	/Week	Semester	Internal Assessment	Board Examinations	Total	Duration
		_	Addeddinent	Examinations		
Linux Practical	V	64	1 25	5. (CO	100	3Hrs.

^{*} Examinations will be conducted for 100 Marks and it will be reduced to 75marks.

RATIONALE:

- Linux is an open-source Operating System which offer a variety of functions, programs or applications and Linux software to choose from, to the users, most of them are free. It has a good graphical user interface (GUI) and almost all the functionality that other proprietary OS offer.
- This practical enables to learn the commands used to perform various operations in a Linux system and write shell scripts for various functions. One of the top practical uses for Linux is web application development.

OBJECTIVES:

On completion of the following exercises ,the students must be able to

- Login and logoff Procedures
- Use of General purpose commands
- Explain the use of simple filters and advanced filters.

- Know the details of process status
- > Use Various communication Commands
- Search patterns
- > Use of shell scripts and define the elements of the shell script
- > Write shell script for various problems.

DETAILEDSYLLABUS

Contents:Practical

Units	Topics	Hours	
I	Basics of Linux OS: Entering and Exiting from a Linux system	2	
	—User Accounts- General understanding of various application		
	programs–Different shells		
II	Linux Commands: Learn the syntax and usage of :	28	
	Directory Management Commands-File Management Commands-		
	General Purpose Commands-Simple Filters–Advanced Filters-		
•	Communication Commands-Check the Process Status-Process Management Commands-Search Patterns- Exercises.	m	
III	Text Editor:	2	
	File operations(New, Open, Close, Save, Save and		
	Exit, Print) –Text Editing operations		
	(Inserting, deleting, finding, replacing, copying and moving).		
IV	ShellScripts:	32	
	Use of shellscripts –Numerical operations-Looping–Swapping		
	Technique-String operations–Using Command line arguments		
	– Filters – Date Functions – Relational operations-Logical		
	operations-Boolean operations-Basic arithmetic operations –		
	Case statement – Search Directory or File -Exercises.		

LAB EXERCISES

Contents:Practical

	PART-A LINUX COMMANDS
Wı	rite down the syntax and usage of the following exercise with all options.
Ch	neck the commands with the system
1	Usage of Directory Management commands: ls, cd, pwd, mkdir, rmdir
2	Usage of File Management commands :cat, chmod, cp, mv, rm, more
3	Use the General Purpose commands: wc, cal, date, who, tty, ln
4	Using the Simple filters: pr, head, tail, cut, paste, nl ,sort
5	Advanced filters: Search for a pattern using grep, egrep, fgrep, uniq
	Communication Commands: write, wall
6	Check the details of process name, PID, status using ps command.
	Process Management commands: &, nohup, kill, nice
7	Device pattern using meta character to match each of the following situation:
	All three character filenames.
	All filenames that contains the characters 'a 'or 'b 'or' c.' All filenames beginning with a particular string.
	All filenames beginning with 'ca' and ending with two digits.
	All filenames beginning with 's 'and having 'a' at somewhere.
	PART- BSHELL SCRIPTS
	Write a shell script that accepts a numerical value N. Then display the
1	Decrementing value of N till it reaches 0.
2	Write a shell script to search a string and display it.
	Write a shell script that takes three command line arguments. The first
3	argument is the name of the destination file and the other two arguments are
	Names of files to be placed in the destination file.

4	Write a shell script to print contents of file from given line number to next giver Number of lines.				
5	Write a shell script that print out date information in this order: time, day of The week, day number, year– that is like this.21:18:00 IST Mon16 Aug2021				
6	Develop a Basic math Calculator using case statement				
7	Write a shell script that represents a multiple choice question, gets the user's Answer and report back whether the answer is right, wrong or not one of the choices.				
8	Write a shell script that takes a command line argument and reports on Whether it is a directory, a file or something else.				

BOARD EXAMINATION

DETAILED ALLOCATION OF MARKS

SCHEME OF VALUATION	ON
Correctness of Commands in Part-A	20 Marks
Execution of Commands in Part-A	20 Marks
Writing program in Part-B	20 Marks
Execution of program in Part-B	25 Marks
Printed Output (Part–A)	5 Marks
Printed Output (Part–B)	5 Marks
VIVA- VOCE	5 Marks
TOTAL	100 Marks

HARDWARE AND SOFTWARE REQUIREMENTS

Minimum Hardware Requirements:

Desktop Computers:30 Nos

Laser Printer: 1No.

Minimum Software Requirements:

Operating System : Any Linux Based GUI Operating System

www.binils.com

DIPLOMA IN COMPUTER ENGINEERING

SEMESTER PATTERN

II YEAR

N - SCHEME

III SEMESTER

4052360 - C Programming and Data Structures

VW Practical S. COM

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2021 - 2022 onwards)

Course Name : 1052:Diploma in Computer Engineering

Subject Code : 4052360

Semester : III

Subject title : C Programming and Data Structures Practical

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per Semester: 16 weeks

	Instructions		Examination			
Subject	Hours Hours /		Marks			D
	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
C Programming and Data Structures	4	/_b		5. C O	100	3Hrs.
Practical						

^{*} Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

As 'C' is the most widely used computer language in software industry to provide the hands on experience on writing C programs and on implementation of linear and non-linear data structure, this course is introduced. The knowledge of 'C' language and data structures will be reinforced by practical exercises during the course of study. This course will help students to develop the capability of selecting a particular data structure.

OBJECTIVES:

At the end of the Course, the Students will able to

- Analyze the given problem.
- > Think the logic to solve the given problem.
- > Describe the concepts of constants, variables, data types and operators.
- Develop programs using input and output operations.
- Write programs using command line arguments.
- Write programs using compiler control directives.
- Write programs using different looping and branching statements.
- Write programs based on arrays.
- Write Programs using string handling functions.
- Write programs using user-defined functions, Structures and Union.
- Write programs using the concept of Pointers.
- Understand the use of arrays
- Implement linear data structure algorithms using C language.
- Implement non linear data structure algorithms using C language.
- Write programs for traversing a binary tree.
- Write programs for searching and sorting.

DETAILED SYLLABUS

Contents: Practical

PART - A

- 1. Write a simple C Program
 - a. Print your Name and Address
 - b. Find Simple interest and Compound interest.
- 2. Write a C program to swap two variable's using
 - (i) third variable and (ii) without using a third variable.
- 3. Write a program to find the largest number between given three numbers.
- 4. Write a program to print all prime numbers from 1 to N.
- 5. Write a program to prepare the total marks for N students by reading the Reg.No,Name, Mark1 to Mark6 by using array of structures.
- 6. Write a program using the function power (a,b) to calculate the value of a raised to b.
- 7. Write a program to find the length of the given string using pointers.
- 8. Write a program to find factorial of a number using recursion.

Write a program in 'C' to create a singly linked list containing at least five

- 9. Write a program in 'C' to create a singly linked list containing at least five elements. Make necessary assumptions.
- 10. Write a "C" program to perform operations in stack using array.
- 11. Write a "C" program to convert an infix expression into post fix expression.
- 12. Write a "C" program to perform operations in queue using array.
- 13. Write a "C" program to add two 3 x 3 matrices and display the result in Matrix form.
- 14. Write a "C" program to read 10 elements and sort the above numbers using bubble sort.
- 15. Write a "C" Program for binary searching.

BOARD EXAMINATION

DETAILED ALLOCATION OF MARKS

SCHEME OF VALUATION				
Writing any one program from PART – A	20 Marks			
Writing any one program from PART – B	25 Marks			
Executing program (PART – A)	20 Marks			
Executing program (PART – B)	20 Marks			
Result with printout (PART – A)	05 Marks			
Result with printout (PART – B)	05 Marks			
VIVA – VOCE	05 Marks			
Total	100 Marks			

www.binils.com

HARDWARE REQUIREMENT

Desktop Computers - 30 No's

Laser Printer - 1 No

SOFTWARE REQUIREMENT

C – Compiler with Editor.

DIPLOMA IN COMPUTER ENGINEERING

SEMESTER PATTERN

II YEAR

N-SCHEME

III SEMESTER

4052370 – E Publishing Practical

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be Implemented for the students admitted from the year 2021 - 2022 onwards)

Course Name : 1052:Diploma in Computer Engineering

Subject Code : 4052370

Semester : III

Subject title : E PUBLISHING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per Semester: 16 Weeks

	Instructions		Examination			
Subject	Hours /Week	Hours/ Semester	Marks			Duration
			Internal	Board	Total	Duration
			Assessment	Examinations	-	
E PUBLISHING PRACTICAL	4	64	25	5.CO 100*	100	3Hrs.

^{*}Board Examination Conducted for 100 Marks and Converted To 75 Marks

RATIONALE:

This course will enable the students to familiarize with the features and use of application packages such as CorelDraw, Photoshop and Adobe indesign. This subject will develop skills in handling the above packages to develop software for-publishing. It makes the students exactly suitable for DTP industry.

OBJECTIVES:

binils.com

On completion of the following exercises the students must be able to

- Learn all tools and options in CorelDraw.
- Create designs like Bit Notice, Notebook Wrapper, Invitation and Calendar in CorelDraw or any open source software.
- Learn all tools and options in Photo Shop.
- Create designs using layers, tools, text effects and filters in Photoshop or any equivalent open source software.
- ➤ Learn to use character styles, paragraph styles, text effects and text framein Adobe In design or any equivalent open source software
- Create master page, multipage document and monthly calendar in Adobe Indesign.

DETAILED SYLLABUS

Contents: Practical

LAB EXERCISES

PART-A

- 1. Create a Bit Notice with specified height and width with various text styles.
- 2. Create a design using all basic tools and make changes using shape tool.
- 3. Create a notebook wrapper design using fountain filling and pattern filling tools.
- 4. Create an invitation using arrange menu commands like transformations, align and distribute and order.
- 5. Create a calendar with the help of Grid Tool, Power clip and import commands.
- 6. Create a simple logo using text tool, rectangle tool and ellipse tool.
- 7. Transform one object into another object using blend tool.

PART-B

- Create a design by using the various Selection Tools, cutting and pasting the images.
- 2. Using multiple layers, create a design with the use of masking various images.
- 3. Create a design by the use of text tools and apply text effects.
- 4. Change the color of an image by the use of selective coloring method.
- 5. Create a design by applying the various filtering effects.
- 6. Create a simple layout and master page by using master page palette and Character Styles.
- 7. Create a multipage document by using character, paragraph, auto flow and text commands.
- 8. Create a stylish monthly calendar sheet by using table and its formatting commands.

binils.com Anna Un**BCARD/EXAM/NATION**C, Schools

DETAILED ALLOCATION OF MARKS

SCHEME OF VALUATION					
Procedure Writing - One Question from PART - A	20 Marks				
Procedure Writing - One Question from PART - B	25 Marks				
Executing Exercise (PART - A)	20 Marks				
Executing Exercise (PART - B)	20 Marks				
Result(Part - A)	5 Marks				
Result(Part - B)	5 Marks				
VIVA - VOCE	5 Marks				
TOTAL	100 Marks				

www.binils.com

HARDWARE REQUIREMENTS

SOFTWARE REQUIREMENTS

Any Open Source Software

- GIMP
- Scribus
- Inkscape
- Krita
- Pinta
- Shotwell or any equivalent open source software.[or]
- Corel draw, Photoshop, Adobe indesign.(optional)

[Open source software usage is recommended than proprietary for doing lab exercises]