FIFTH SEMESTER

Col.	Subject	Cubic of	Hours Per Week					
No.	Code	Subject	Theory	Drawing	Practical	Total		
1	4021510	Fuels, Combustion and Emission Control	6	-	-	6		
2	4021520	Power units and Transmission	5	-	-	5		
Electi	ve Theory -							
	4021531	Two-Wheeler and Three-Wheeler Technology	5	-	-			
3	4021532	Tractor and Farm Equipment	5	-	-	5		
	4021533	Industrial Automation	5	-	-			
4	4021540	Automobile Servicing Practical	-	-	4	4		
5	4021550	Engine Testing and Emission Measurement Practical	-	-	4	4		
Electi	ve Practical			51		m		
	4021561	Two-Wheeler and Three-Wheeler Technology Practical	-	-	4			
6	4021562	Tractor and Farm Equipment Practical	-	-	4	4		
	4021563	Industrial Automation Practical	-	-	4			
7	4020570	Entrepreneurship and Startup *	-	-	4	4		
			16	-	16	32		
	tra / Co-	Physical Education	-	-	-	2		
Curricular activities		Library	-	-	-	1		
* •		Total echanical Engineering				35		

* Common with Mechanical Engineering

Blank Page

www.binils.com

SIXTH SEMESTER

Col.	Subject	Cubicat	Hours Per Week					
No.	Code	Subject	Theory	Drawing	Practical	Total		
1	4021610	Hybrid Electrical Vehicle and Policies	6	-	-	6		
2	4021620	Industrial Management and Transport Engineering	5	-	-	5		
Electi	ive Theory - I	I						
	4020531	Computer Integrated Manufacturing *	5	-	-			
3	4021632	Heavy Vehicle Engineering	5	-	-	5		
	4021633	Heating Ventilation and Air Conditioning Systems	5	-	-			
4	4021640	Hybrid Electrical Vehicle Practical	-	-	5	5		
Electi	ve Practical	- 11						
	4020561	Computer Integrated Manufacturing Practical	hile	S ⁻ (:	n		
5	4021652	Heavy Vehicle Engineering Practical	-	-	5	5		
	4021653	Heating Ventilation and Air Conditioning Systems Practical	-	-	5			
6	4021660	Project work & Internship	-	-	6	6		
		·	16	-	16	32		
Extra / Co- Curricular activities		Physical Education	-	-	-	2		
		Library	-	-	-	1		
		Total				35		

* Common with Mechanical Engineering

Blank Page

www.binils.com

<u>ANNEXURE II</u> STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN AUTOMOBILE ENGINEERING SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020-2021 onwards) SCHEME OF EXAMINATION

1021 DIPLOMA IN AUTOMOBILE ENGINEERING (FULL TIME)

III Semester

			Marks	S		
Subject Code	Subject	Internal Assessment	Board Examination#	Total	Minimum marks for pass	Duration of Exam Hours
4021310	Mechanics of Materials and Material Science	25	100	100	40	3
4021320	Production Technology	25	100	100	40	3
4020330	Measurements and Metrology *	25	100	100	40	3
4021340	Fluid Mechanics and Pneumatics	25	100	100	40	3
4021350	Material Testing and Fluids Mechanics & Pneumatics Practical	25	100	100	50	3
4021360	Production Technology Practical	25	100	100	50	3
4020370	Measurements and Metrology Practical *	25	100	100	50	3

* Common with Mechanical Engineering

Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Blank Page

www.binils.com

IV Semester

			Marks	S		
Subject Code	Subject	Internal Assessment	Board Examination #	Total	Minimum marks for pass	Duration of Exam Hours
4021410	Heat Power Engineering	25	100	100	40	3
4021420	Vehicle Body Engineering	25	100	100	40	3
4021430	Automotive Electrical and Electronics Systems	25	100	100	40	3
4021440	Automotive Engines	25	100	100	40	3
4020350	Machine Drawing and CAD Practical *	25	100	100	50	3
4021460	Automotive Electrical and Electronics Systems Practical	25	100	100	50	3
4021470	Automotive Engines Practical	25	100	100	50	3

* Common with Mechanical Engineering

Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Blank Page

www.binils.com

V Semester

			Marks	1	(0	
Subject Code	Subject	Internal Assessment	Board Examination #	Total	Minimum marks for pass	Duration of Exam Hours
4021510	Fuels, Combustion and Emission Control	25	100	100	40	3
4021520	Power units and Transmission	25	100	100	40	3
Elective Th	neory - I		I	I	I	
4021531	Two-Wheeler and Three- Wheeler Technology	25	100	100		
4021532	Tractor and Farm Equipment	25	100	100	40	3
4021533	Industrial Automation	25	100	100		
4021540	Automobile Servicing Practical	25	100	100	50	3
4021550	Engine Testing and Emission Measurement Practical	25	100	100	50	3
Elective Pr	ractical - I					
4021561	Two-Wheeler and Three- Wheeler Technology Practical	25	100	100		
4021562	Tractor and Farm Equipment Practical	25	100	100	50	3
4021563	Industrial Automation Practical	25	100	100		
4020570	Entrepreneurship and Startup *	25	100	100	50	3

* Common with Mechanical Engineering

Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Blank Page

www.binils.com

VI Semester

			Marks	I		
Subject Code	Subject	Internal Assessment	Board Examination #	Total	Minimum marks for pass	Duration of Exam Hours
4021610	Hybrid Electrical Vehicle and Policies	25	100	100	40	3
4021620	Industrial Management and Transport Engineering	25	100	100	40	3
Elective The	eory - II					
4020531	Computer Integrated Manufacturing *	25	100	100		
4021632	Heavy Vehicle Engineering	25	100	100	40	3
4021633	Heating Ventilation and Air Conditioning Systems	25	100	100		
4021640	Hybrid Electrical Vehicle Practical	25	100	100	50	3
Elective Pra	ctical - II					
4020561	Computer Integrated Manufacturing Practical *	25	100	100		
4021652	Heavy Vehicle Engineering Practical	25	100	100	50	3
4021653	Heating Ventilation and Air Conditioning Systems Practical	25	100	100		
4021660	Project Work & Internship	25	100	100	50	3

* Common with Mechanical Engineering

Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Blank Page

www.binils.com

1021 Diploma in Automobile Engineering (Full Time) N – Scheme

(To be implemented for the students admitted from the year 2020-2021 onwards)

List of Equivalent Subjects for M- Scheme to N - Scheme

III Semester

Subject Code	M SCHEME	Subject Code	N SCHEME
32031	Strength of Materials	4020310	Strength of Materials
32032	Manufacturing Processes	4020320	Manufacturing Technology - I
32033	Machine Drawing		No Equivalent
32034	Computer Applications and CAD Practical		No Equivalent
32035	Foundry and Welding Practical		No Equivalent
32036	Lathe and Drilling Practical		No Equivalent
32137	Strength of Materials and Metrology Practical		No Equivalent

IV Semester VV DINIS.COM

Subject Code	M SCHEME	Subject Code	N SCHEME
32141	Thermal Engineering	4021410	Heat Power Engineering
32042	Special Machines	4020420	Manufacturing Technology - II
32143	Automobile Engines	4021440	Automotive Engines
32144	Autotronics	4021430	Automotive Electrical and Electronics Systems
32145	Thermal Engineering and IC Engines Practical	4021470	Automotive Engines Practical
32046	Special Machines Practical	4020460	Manufacturing Technology - II Practical
32147	Autotronics Practical	4021460	Automotive Electrical and Electronics Systems Practical

Blank Page

www.binils.com

V Semester

Subject Code	M SCHEME	Subject Code	N SCHEME
32151	Industrial Management and Road Transport organization	4021620	Industrial Management and Transport Engineering
32152	Industrial Automation		No Equivalent
32153	Automobile Chassis and Transmission	4021520	Power units and Transmission
ELECTI	/ETHEORY-I		
32071	Total Quality Management		No Equivalent
32172	Alternative fuels and Energy Systems		No Equivalent
32173	Automobile Maintenance & Emission Control		No Equivalent
32055	Process Automation Practical	ni	No Equivalent
32156	Automobile Chassis and Transmission Practical		No Equivalent
30002	Life and Employability Skills Practical.	40001	Communication Skill Practical

Blank Page

www.binils.com

VI Semester

Subject Code	M SCHEME	Subject Code	N SCHEME
32161	Automobile Body Building Engineering	4021420	Vehicle Body Engineering
32062	Computer Aided Design and Manufacturing	4020531	Computer Integrated Manufacturing
ELECTIV	'E THEORY- II		
32181	Two and Three Wheeler Technology	4021531	Two-Wheeler and Three-Wheeler Technology
32182	Tractor and Farm Equipments	4021532	Tractor and Farm Equipment
32183	Automobile Air-Conditioning System	4021633	Heating Ventilation and Air Conditioning Systems
32064	Computer Aided Design and Manufacturing Practical	4020561	Computer Integrated Manufacturing Practical
32165	Automobile Workshop Practical		NoEquivalent
ELECTIV	E PRACTICAL - II	1	
32184	Two and Three WheelerTechnology Practical	4021561	Two-Wheeler and Three-Wheeler Technology Practical
32185	Tractor and Farm Equipments Practical	4021562	Tractor and Farm Equipment Practical
32186	Automobile Air-Conditioning System Practical	4021653	Heating Ventilation and Air Conditioning Systems Practical
32167	Project Work		No Equivalent

Blank Page

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021310
- Semester : III

Subject Title : Mechanics of Materials and Material Science

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	uctions	Examination			
4021310	Hours /	Hours /		Marks		
Mechanics of Materials and	Week	Semester	Internal Assessment	Board Examinations	Total	Duration
Material Science	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit	Topics				
I	Properties of Materials and Heat Treatment of Metals	13			
	Materials Processes, Ferrous, Non Ferrous Metals, Non- Metallic Materials and Special Materials.	13			
III	Direct Stresses and Strains, Geometrical Properties of Sections	16			
IV	Shear Force and Bending Moments, Friction	16			
V	Torsion of Shaft and springs	15			
	Test & Revision	7			
	Total				

RATIONALE:

Mechanics of Materials and Material Science is a core subject which aims at enabling the student to understand and analyze various materials used in automobile industry and types of load, stress and strain along with main causes of change in physical properties. All Automobile parts are subjected to different loading and behave in specific way. The subject is pre-requisite for understanding principle of machine design and strengths of various materials used in automobile industries. Understanding the mechanical properties of materials will help in selecting the suitable materials for automobile engineering applications.

OBJECTIVES:

At the end of the course, the students will be able to

- Determine the simple stress and strain for the engineering materials subject to tension, compression and shear load
- Determine the moment of Inertia of various sections used in industries.
- Define and explain the law of forces and friction.
- Draw the shear force and bending moments diagram of the beam for different loading
- Assess the effect of load on the torsion of shaft and spring.
- State various mechanical properties of materials.
- Describe the plastic deformation of the metals
- Describe the various heat treatment process for engineering materials
- Explain the processing of materials and non-metallic materials.
- Explain the various materials used in automobile components

4021310 - MECHANICS OF MATERIALS AND MATERIAL SCIENCE DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	PROPERTIES OF MATERIAL AND HEAT TREATMENT OF METALS	
	1.1: Properties of material	7
	Definition of mechanical properties - Compressive strength, tensile	
	strength, ductility, brittleness, hardness, toughness, malleability, impact	
	strength, stiffness, fatigue, creep, Endurance limit, cyclic loading,	
	repeated loading and fatigue loading. Atomic structure - Bonds -	
	Primary bond and Secondary bonds - Crystals - Cubic structure -	
	Simple Cubic structure, body centred Cubic structure - face centred	
	Cubic structure Hexagonal closed packed structure -deformation of	
	metal – Elastic and plastic deformation – Stress-strain diagram of ductile	
	and brittle material – Slip and Twinning – Strain Hardening.	
	1.2: Heat Treatment of Metals:	6
_	Heat treatment of metals -Cooling curve for solidification of pure metal -	
	Phase diagram – Iron-carbon phase diagram – critical temperature on heating and cooling – cooling curve for pure iron – Normalizing, annealing	
	hardening – Nitriding, cyaniding, carbonitriding, age hardening, flame	
	and induction hardening. Description only	
II	MATERIALS PROCESSES, FERROUS, NON FERROUS METALS,	
	NON METALLIC MATERIALS AND SPECIAL MATERIALS.	
	2.1: Materials processes	3
	Introduction - approaches to material processes – materials process	
	steps - process of metals – process of glass - process of polymers.	
	2.2 : Ferrous and Non Ferrous metals	6
	Properties and automobile applications of Cast iron, Plain carbon steel,	
	High Strength steel and Stainless steel.	
	Alloy steel - need of alloying, alloying elements, effect of alloying on	
	properties, automobile application - Aluminium alloy - Copper alloy	
	2.3 : Non metallic materials and Special materials:	4
	Non metallic materials - composition, characteristics and automobile	
	application of plastics, Polymer matrix composites and glass.	

	Introduction and automotive applications of Smart materials &							
	Nanomaterials.							
III	DIRECT STRESSES AND STRAINS, GEOMETRICAL PROPERTIES							
	OF SECTIONS							
	3.1: Direct Stresses and Strains	8						
	Introduction - Definition and explanation of tensile, compressive, shear,							
	stress and strain - behaviour of ductile material under tension- limit of							
	proportionality, elastic limit, yield point, breaking point, ultimate stress,							
	percentage elongation and percentage reduction in area - problems -							
	Hooke's law – Young's modulus – working stress – factor of safety - bars							
	of varying section – shear stress and shear strain – modulus of rigidity –							
	problems in tension, compression and shear. Lateral strain – Poisson's							
	ratio – volumetric strain – bulk modulus – elastic constants and their							
	relationship – problems connecting lateral, linear and volumetric							
	deformation – problems on elastic constants.							
	3.2: Geometrical properties of sections							
	Introduction - centre of gravity – centroid – position of centroids of plane geometrical figures such as rectangle, triangle, circle and trapezium –							
	determination of centroid of angles, channels, I and T sections -							
	problems – moment of inertia – definition – parallel axes theorem –							
	perpendicular axes theorem - M.I of angle, channel, I and T sections - no							
	derivations required - polar moment of inertia - radius of gyration -							
	problems.							
IV	SHEAR FORCE AND BENDING MOMENTS, THEORY OF BENDING							
	AND FRICTION							
	4.1: Shear Force and Bending Moments:	9						
	Introduction – classification of beams – definition - shear force - bending							
	moment – sign convention – types of loads – relation between load,							
	shear force and bending moment – shear force diagram and bending							
	moment diagram of cantilever and simply supported beam subjected to							
	concentrated load and uniform distributed load only – maximum Bending							
	moment - problems on shear force diagram and bending moment							
	diagram for cantilever and simply supported beam only.	L						

	4.2: Theory of Bending	5
	Theory of simple bending – derivation of bending equation $\frac{M}{I} = \frac{f}{y} = \frac{E}{R}$,	
	and assumptions used - neutral axis - bending stress distribution -	
	moment of resistance – simple problem.	
	4.3 : Friction	•
	Friction - force of friction - limiting friction - static friction - dynamic	2
	friction - laws of static and dynamic friction - angle of friction - co-	
	efficient of friction.	
V	TORSION OF SHAFT AND SPRINGS	
	5.1: Torsion of Shaft:	8
	Theory of torsion – Assumptions – torsion equation $\frac{T}{J} = \frac{f_s}{R} = \frac{C\theta}{l}$ strength	
	of solid and hollow shafts – power transmitted – Definition – Polar	
	modulus – Torsional rigidity – strength and stiffness of shafts –	
	comparison of hollow and solid shafts in weight and strength	
	considerations – Advantages of hollow shafts over solid shafts –	
	Problems.	
	5.2: Springs:	
	Types of springs – Laminated and coiled springs and applications –	■7
	Types of coiled springs – Difference between open and closely coiled	
	helical springs – closely coiled helical spring subjected to an axial load –	
	problems to determine shear stress, deflection, stiffness and resilience of	
	closed coiled helical springs	

Reference Books

- 1. R. S. Khurmi," Strength of Materials" S.Chand Publication, Ram Nagar, New Delhi
- 2. R.K.Rajput," Strength of Materials" S.Chand Publication, Ram Nagar, New Delhi
- 3. S.S.Rattan, "Strength of materials", Tata McGraw hill, New Delhi
- 4. R.K. Bansal, "Strength of Materials", Laxmi Publications Pvt. Ltd., New Delhi
- 5. N. Khurmi & R S Khurmi, "Applied Mechanics" S.Chand Publication ,Ram Nagar, New Delhi.
- 6. William F Smith, Javad Hashemi and Ravi Prakash, "Material Science and Engineering", McGraw Hill Education, Noida

- 7. Jason Rowe "Advanced Materials in Automotive Engineering" Woodhead Publishing
- 8. Brain Cantor, Patric Grant and Colin Johnston, "Automobile Engineering -Light weight, Functional and novel material, Taylor & Francis Group, New York and London
- 9. James Maxwell, "Plastics in the Automotive Industry", Woodhead Publishing
- 10. Lorraine F. Francis, "Materials Processing A Unified Approach to Processing of Metals, Ceramics and Polymers" Academic Press is an imprint of Elsevier.
- 11. S Sedha and R.SKhurmi, "Material science", S.Chand & Co ,Ram Nagar, New Delhi

Reference Web Link / Video

Торіс	Website	Link		
Strength of Materials	Dote E-Lecture	https://www.youtube.com/watch?v=IT- 3In1szHY&list=PL1b9Ht9ISqIFInLTS7xxQ 6dRdIp4Jc8Vh		
Strength of Materials	NPTEL	https://nptel.ac.in/noc/courses/noc21/SEM 2/noc21-ce38/		
Basics of Materials Engineering	NPTEL	https://nptel.ac.in/noc/courses/noc21/SEM 2/noc21-me113/		
Materials Science		https://nptel.ac.in/courses/112/108/112108 150/		

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	:	1021 Diploma in Automobile Engi	neering
-------------	---	---------------------------------	---------

Subject Code : 4021320

Semester : III

Subject Title : Production Technology

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	uctions		Examinatior	ı	
4021320	Hours /	Hours /		Marks		
Production	Week	Semester	Internal	Board	Total	Duration
Technology			Assessment	Examinations		
	-5	80	25	100*	100	3 Hrs.
* Examinations	will be cor	ducted for 10	00 marks and it v	vill be reduced to	75 marks	s for result.

Topics and Allocation of Hours

Unit	Topics	Hours			
I	Foundry Technology, Forging				
П	II Welding Technology				
- 111	III Theory of metal cutting and Centre Lathe, Shaper				
IV	IV Milling Machines and Drilling Machines				
V	V Grinding and CNC Machines				
	Test & Revision				
	Total				

RATIONALE

Production Technology is a core subject. A diploma holder of Automobile engineering should be proficient in the use of manufacturing processes available. In the process of manufacturing we should possess adequate and through knowledge about the working of conventional as well as non-conventional machines. The topics included in this subject aims the skills of metal cutting, milling, grinding, and other machining processes which are very much essential for a technician. This will provide the students an opportunity to skill themselves for the industrial scenario.

OBJECTIVES

Students must be able to:

- Acquire Knowledge about types of pattern, casting, and moulding.
- Describe the various casting processes.
- Knowledge about various welding process and its working principle.
- Appreciate the safety practices used in welding.

Acquire knowledge about forging technologies.

- Acquire knowledge about theory of metal cutting.
- Knowledge about the lathe and its working parts.
- Study the working of various machine tools: Shaper and milling.
- Study the milling procedure for spur helical and bevel gears.
- Study the various types of gear generating processes
- Study about the drilling process.
- Study the different types of grinders and grinding wheels.
- Study about the components and working CNC Turning and Milling machines.

4021320 PRODUCTION TECHNOLOGY DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours				
I	Foundry Technology: Introduction - Pattern: Definition - types of	11				
	patterns: Solid, Split, Loose piece, Skeleton. Pattern materials -					
	pattern allowances. Properties of moulding sand - List the major					
	moulding tools and its description. Green sand moulding process.					
	Moulding machines: construction and working principle of Jolt					
	machine, Squeezer, Sand slinger. Core – core sand – properties. CO_2					
	process core making. Construction and working principle of Cupola					
	furnace, Electric arc furnace and induction furnace. Casting:					
	Introduction - Working principle of centrifugal casting - continuous					
	casting. Defects in casting – causes and remedies.					
	Forging: Hot working, cold working - comparison and advantages.	3				
	Description of rolling, drawing, bending, coining, embossing,					
	extrusion, drop forging, upset forging, press forging.					
II Welding Technology: Arc Welding: Introduction – electrode -filler						
	and flux materials -types of welding - Working principle, applications,					
	advantages and disadvantages of Metal arc welding, Metal Inert gas					
	(MIG) welding, Tungsten inert gas (TIG) welding, Submerged arc					
	welding, Electro slag welding.					
	Gas welding: Gas welding equipment - Types of flames - welding	7				
	techniques - filler rods - Flame cutting. Working principle of Oxy-					
	acetylene welding - advantages - limitations. Inspection and testing					
	of welded joints - destructive and non-destructive types of tests -					
	magnetic particle test - radiographic and ultrasonic test - defects in					
	welding – causes and remedies.					
III	Theory of metal cutting: Introduction – orthogonal cutting – oblique	3				
	cutting - single point cutting tool - nomenclature - cutting tool					
	materials - properties - tool wears - factors affecting tool life - cutting					
	fluids.					
	Centre Lathe: Introduction - specifications - simple sketch with	9				

	principal parts. Construction and working of head stock – back geared	
	type – all geared type. Feed mechanism - tumbler gear mechanism –	
	quick change gear box – apron mechanism. Machining operations:	
	straight turning - step turning - taper turning by different methods -	
	thread cutting - boring - eccentric turning. Description of cutting	
	speed - feed - depth of cut - metal removal rate. Work holding	
	devices.	
	Shaper: Introduction – specifications – principles of operations	3
	standard shaper - quick return mechanism - crank and slotted link -	
	hydraulic shaper - feed mechanism.	
IV	Milling Machines: Types - column and knee type - universal milling	10
	machine - principles of operation - specification of milling machines.	
	work holding devices - tool holding devices - arbor - stub arbor -	
	spring collet - adapter. Milling cutters: cylindrical milling cutter -	
	slitting cutter -side milling cutter - angle milling cutter - T-slot milling	
	cutter. Nomenclature of cylindrical milling cutter. Milling operations:	
	straddle milling - gang milling - vertical milling attachment. Dividing	
	head - indexing plate - linear indexing - simple indexing -compound	
	indexing. Procedure for spur, helical and bevel gears. Generating	
	Process: Gear shaper - gear hobbing - principle of operation only.	
	Gear finishing processes: burnishing – shaving - grinding and lapping.	
	Drilling Machines: Drilling machine: bench type - floor type - radial	5
	type - gang drill - multi spindle type -Working principle of upright	
	drilling machine and radial drilling machine. Drills - flat drills - twist	
	drills - nomenclature of twist drill. Tool holding devices: drill chucks -	
	socket and sleeve. Operation: Drilling - reaming - counter sinking -	
	counter boring - spot facing – tapping - deep hole drilling.	
V	Grinding: Types and classification - working principle of pedestal	8
	grinders- cylindrical grinder - centerless grinders - surface grinder -	
	tool and cutter grinder. Grinding wheels - abrasives - natural and	
	artificial diamond wheels - bonds - grit, grade and structure of wheels	
	- wheel shapes and sizes - standard marking systems of grinding	
	wheels - selection of grinding wheel - mounting of grinding wheels -	

Dressing and Truing of wheels - Balancing of grinding wheels.	
CNC machines: Introduction - CNC turning machines - working	7
principles of CNC slant bed turning centre. Tool holders - wok	
holding collets. CNC milling machines: Working principles of vertical	
machining centre – Tool holders – Work holder – Automatic tool	
changer. Coordinate Measuring Machine – Principle of operation.	

Reference Books

- Elements of workshop Technology Volume I & II Hajra Chowdry & Bhattacharaya -IIth Edition - Media Promoters & Publishers Pvt. Ltd.
- Introduction of basic manufacturing processes and workshop technology Rajendersingh – New age International (P) Ltd. Publishers
- 3. Manufacturing process Begeman 5th Edition -McGraw Hill.
- 4. Workshop Technology- WAJ Chapman Volume I, II, & III Vima Books Pvt. Ltd.
- 5. Workshop Technology Raghuwanshi Khanna Publishers.
- 6. Production Technology, Edn. XII, Khanna Publishers.
- 7. Production Technology P. C. SHARMA Edn. X S.Chand& Co. Ltd.
- Production Technology HMT Edn. 18 published by Tata McGraw Hill publishing Co. Ltd

Reference Web Link / Video

Торіс	Website	Link
Fundamentals of manufacturing processes	NPTEL	https://nptel.ac.in/courses/112/107/112107 219/
Manufacturing Processes I	NPTEL	https://nptel.ac.in/courses/112/107/112107 144/
Manufacturing Processes II	NPTEL	https://nptel.ac.in/courses/112/105/112105 127/

Blank Page

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4020330

Semester : III

Subject Title : Measurements and Metrology

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions		Examination		
4020330	4020330 Hours			Marks		
	/ Week	Hours / Semester	Internal	Board	Tatal	Duration
Measurements	ments / Week Semester		Assessment	Examinations	Total	
and Metrology	5	80	25	100*	100	3 Hrs.
* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for re						r result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Basic Concepts of Measurements	15
	Linear and Angular Measurements	15
	Form Measurement	15
IV	Advances in Metrology	14
V	Measurement of Mechanical Parameters	14
Test and Model Exam		7
	Total	80

RATIONALE:

Measurements and metrology are the basic and prominent tools in all the industries in the present scenario. The students should be trained not only in manufacturing also they should have knowledge about the various measuring instruments which is used in industries. This will provide the students an opportunity to skill themselves for how to handle the various metrological equipment available to measure the dimensions of the components.

OBJECTIVES

- Study about the basic concepts of measurements.
- Acquire knowledge about precision and accuracy.
- Describe about the various linear and angular measurements.
- Acquire knowledge about the measurement of screw threads and gears.
- Study about the laser metrology and computer in metrology.
- Describe the measurement of mechanical parameters force, power and flow.

Contents: Theory

Unit	Name of the Topics	Hours	
I	BASIC CONCEPTS OF MEASUREMENTS		
	Chapter: 1.1: Introduction		
	Basic units - system concepts used in measuring technology -		
	measuring instruments - length, angles and surface - scope of		
	Metrology - standardization - international standardization, the		
	bureau of Indian standards - legal Metrology - definition -		
	applications - important elements of measurements - methods of		
	measurements - needs for inspection - need for measurement -		
	important terminology.		
	Chapter: 1.2: Precision and accuracy		
	Precision - definition - accuracy - definition - difference between		
	precision and accuracy - factors affecting the accuracy of the		

	measuring system - general rules for accurate measurements -	
	precautions for use of instruments so as to avoid in accuracy in	
	measurements - reliability - definition - error - definition - sources of	
	errors - classification of error - compare systematic error and	
	random error - selection of measuring instruments - symbols for	
	metallurgical terms (ASME and ISO).	
II	LINEAR AND ANGULAR MEASUREMENTS	
	Chapter: 2.1: Linear measurements	7
	Classification of linear measurement instrument - construction and	
	the principles only - Steel rule - callipers - outside calliper, inside	
	calliper, Jenny caliper - combination set - feeler gauge - pitch screw	
	gauge - Vernier caliper - digital caliper - Vernier height gauge-	
	micrometer - inside micrometer - thread micrometer - optical	
	micrometer - light wave micrometer - possible sources of errors in	
	micrometers - slip gauges - requirements - Indian standard - care	
	and use.	
	Chapter: 2.2: Angular measurements Introduction - vernier bevel protractor - universal bevel protractor -	m
	optical bevel protractor. Sine bar - types - uses and limitations -	
	working principle of clinometer, autocollimator, angle dekkor.	
	Comparators - uses - application - classification of comparator -	
	mechanical comparator, optical comparator, electrical comparator,	
	pneumatic comparator - principles - advantages and disadvantages -	
	compare comparator with measuring instruments - compare	
	electrical and mechanical comparators.	
	FORM MEASUREMENT	
	Chapter: 3.1: Measurement of screw threads	5
	Screw thread terminology - error in thread - measurement of various	
	elements of thread (description only) - thread gauges - classification	
	- plug screw gauges, ring screw gauges, caliper gauges - adjustable	
	thread gauge - gauging of taps - function of various types of gauges	
	- floating carriage micrometer.	
	·	

	Chapter: 3.2: Measurement of gears	10
	Introduction - types of gear - gear terminology - gear errors - spur	
	gear measurement - run out, tooth measurement, profile	
	measurement, lead checking , backlash checking, tooth thickness	
	measurement - vernier gear tooth caliper - David brown tangent	
	comparator - constant chord method - measurement of concentricity,	
	alignment checking - Parkinson gear tester - Rolling gear testing	
	machine - radius measurement - radius of circle - surface finish	
	measurement - classification of geometrical irregularities - elements	
	of surface texture - methods of measuring surface finish -	
	measuring surface roughness - tracer type profilogram - double	
	microscope.	
IV	ADVANCES IN METROLOGY	
	Chapter: 4.1: Laser Metrology	7
	Basic concepts of lasers - types of lasers - uses, advantages and	
	applications - laser telemetric system - laser and LED based	
	distance measuring instruments - scanning laser gauge - photodiode array imaging - diffraction pattern technique - laser triangulation	m
	sensors - two frequency laser interferometer - gauging wire diameter	
	from the diffraction pattern formed in laser - interferometry - use of	
	laser in interferometry - interferometer - standard interferometer,	
	single beam interferometer, AC interferometer, Michelson	
	interferometer, dual frequency laser interferometer - Twyman green	
	interferometer - applications.	
	Chapter: 4.2: Computer in Metrology	7
	Coordinating measuring machine - introduction - types of measuring machines - types of CMM - futures of CMM - causes of errors in CMM - 3 co-ordinate measuring machine - performance of CMM - applications - advantages disadvantages - computer controlled coordinating measuring machine - mechanical system of computer controlled CMMs - trigger type probe system, measuring type prop	
	system, features of CNC and CMM - features of CMM software -	
	factors affecting CMM - digital devices - Computer based inspection	
	 Computer aided inspection using robots. 	

V	MEASUREMENT OF MECHANICAL PARAMETERS	
	Chapter: 5.1: Force	6
	Measurement of force - Direct methods - equal arm balance,	
	unequal arm balance, multiple lever system, pendulum scale -	
	indirect methods - electromagnetic balance - load cells - hydraulic	
	load cell, pneumatic load cell, strain gauge load cell, shear type load	
	cell, electronic weighing system. Torque measurement - torque	
	measurement using strain gauge - laser optical torque measurement	
	- stroboscope for torque measurement.	
	Chapter: 5.2: Measurement of power	4
	Mechanical dynamometer - DC dynamometer - inductor	
	dynamometer - hydraulic dynamometer - diaphragm pressure	
	sensor - deform cage with LVDT - diaphragm gauge with strain	
	gauges - piezoelectric sensors.	
	Chapter: 5.3: Measurement of flow	4
	Types of flow metres - rotameter, electromagnetic flow metre, hot	
	wire anemometer, ultrasonic flow metre, laser Doppler anemometer (LDA) - reference beam mode, interference French mode.	m

Reference Books:

- 1. Mechanical Measurements and Instrumentation, Rajput R K, S.K.Kataria and Sons.
- 2. Mechanical Measurement and Control, Jalgaonkar R.V, Everest Publishing House.
- 3. Mechanical and Industrial Measurements, Jain R K, Khanna Publications.
- 4. Instrumentation Devices and Systems, Narang C S, Tata McGraw Hill Publications.
- 5. Instrumentation, Measurement and Analysis, Nakra B.C, Chaudhary K.K, Tata McGraw Hill Publications.

Reference Web Link / Video

Торіс	Website	Link
Engineering Metrology	NPTEL	https://nptel.ac.in/courses/112/104/112104 250/
Metrology	NPTEL	https://nptel.ac.in/courses/112/106/112106 179/

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021340
- Semester : III
- Subject Title : Fluid Mechanics and Pneumatics

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4021340	Hours /	Hours /		Marks		
Fluid			Internal	Board	T . (.)	Duration
Mechanics	Week	Semester	Assessment	Examinations	Total	
and						
Pneumatics	5	80	25		100	3 Hrs.
* Examinations	will be cor	ducted for 1	00 marks and it	will be reduced to	75 marks	s for result.

Topics and Allocation of Hours

Unit	Topics	Hours
1	Properties of Fluid and Fluid Static	15
	Fluid Dynamic, kinematics and Hydraulic Machinery's	15
	Hydraulic systems and its components	14
IV	Hydraulic circuits and hydro-pneumatics	
V	V Pneumatic Systems, components and circuits	
Test & Revision		7
Total		

RATIONALE

Knowledge of fluid properties, fluid flow, hydraulic and pneumatic is essential in all fields of engineering. Fluid mechanics and pneumatics have important role in the automobile application like lubrication system, cooling system, combustion process etc., and also in most of the automated industry applications. This subject requires knowledge of basic engineering sciences, applied mechanics, mathematics etc.

OBJECTIVES

At the end of the course, the students will be able

- Define various properties of fluids
- State and explain Pascal's law and its applications
- Explain the working of pressure measuring devices
- State continuity equation, Bernoulli's equation and its applications.
- Estimate various losses in flow through pipes.
- Draw the construction, working of hydraulic pumps and turbines.
- Explain the elements of pneumatics system
- Draw pneumatic circuits for industrial application S_COM
- Draw hydraulic circuits for industrial application
- State the important of hydro-pneumatic systems
- Compare pneumatic, hydraulic and hydro-pneumatic

4021340 FLUID MECHANICS AND PNEUMATICS DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
Ι	PROPERTIES OF FLUID AND FLUID STATIC	
	1.1 : Properties of fluid	6
	Introduction –Fluid Mechanics –Definition of Fluid - Types of fluid.	0
	Properties of Fluid – Density, Specific Weight, Specific Volume, Specific	
	gravity - Simple problem - Viscosity, Absolute Viscosity, Kinematics	
	Viscosity, Compressibility, adhesion, Cohesion, surface tension, capillarity and Bulk Modulus.	
	1.2: Fluid Static	9
	Fluid pressure at a point - Pascal's Law - Proof – Application – Hand	5
	operated Hydraulic Jack and Hydraulic Press. Pressure head-	
	atmospheric, gauge, vacuum and absolute pressures – simple problems	
	 Pressure measurements by piezometer tube, simple manometer, differential manometer and inverted differential manometer – problems – 	Π
	Mechanical pressure gauges - bourdon tube pressure gauge, diaphragm	
	pressure gauge and Dead weight pressure gauge.	
II	FLUID DYNAMIC AND KINEMATICS, HYDRAULIC MACHINERY'S	
	2.1: Fluid Dynamic and kinematics	12
	Introduction - Types of fluid flow – steady and unsteady flow, uniform and	
	non-uniform flow, laminar and turbulent flow, compressible and	
	incompressible flow, rotational and irrotational flow - Reynolds number -	
	Rate of flow-Continuity equations - energies of fluid-simple problems.	
	Bernoulli's equations - statement, assumptions and proof – applications	
	of Bernoulli's -pitot tube, venturimeter, and orificemeter - Simple	
	Problems. Orifice – types of orifice – vena contracta – co-efficient of	
	contraction – co-efficient of velocity – co-efficient discharge – simple	
	problems. law of fluid friction - hydraulic gradient line – total energy line –	
	wetted perimeter – hydraulic mean radius - loss of head in pipe - Major	

	losses - loss of head due to friction Darcy - Weisbach equation and	
	Chezy's equation – problems- Minor losses and its types	
	2.2: Hydraulic Machinery's:	3
	Pelton wheel turbine – Francis turbine – single stage centrifugal pump –	
	double acting reciprocating pump – submergible pump.	
111	HYDRAULIC SYSTEMS AND ITS COMPONENTS:	
	3.1: Hydraulic pump and actuator	7
	Fluid Power – Application of fluid power - service properties of hydraulic	7
	fluids- Hydraulic system Elements - Pump – Positive displacement	
	Pump- External Gear Pump, Internal Gear Pump, Vane pump, Piston	
	pump - Hydraulic actuator - Linear actuator - Single acting cylinder -	
	Double acting cylinder – Telescopic cylinder –Rotary actuator - Hydraulic	
	Motor – Gear type, vane type and piston type motor.	
	3.2: Hydraulic valves and accessories	7
	Directional Control valve: Types – Seat valve and spool valve – operating	
	method – Construction of 2,3 and 4way directional control valve. Pressure control valve: Pressure relief valve Compound relief valve. Flow	n
	control valve - Unloading valve – sequence valve – counterbalance valve	
	 brake valve – pressure reducing valve –hydraulic intensifier. 	
	Hydraulic accumulators – Reservoirs and accumulators - Types – Dead	
	weight, spring loaded and gas loaded type. Filters - Seals and its	
	classification – Filters and its types– Filter location.	
IV	HYDRAULIC CIRCUITS AND HYDRO-PNEUMATIC	
	4.1: Hydraulic Circuits	
	ISO Symbol of hydraulic components - Direst operation of single acting	11
	cylinder, double acting cylinder and hydraulic motor. Speed Control of	
	hydraulic cylinder and Speed Control of hydraulic Motor- Double pump.	
	Hydraulic circuit: sequencing circuit – counterbalancing circuit –	
	Regeneration circuit - Braking circuit – Intensifier circuit – Accumulator	
	circuit – synchronizing circuit - Two hand safety circuit - Fail-safe control	
	circuit by using emergency cut-off valve.	

	 Hydraulic circuit for operation of shaper machine, vertical milling machine and surface grinder 4.2: Hydro-pneumatic Types – Air-oil reservoir, Air-oil cylinder, air-oil intensifier –Comparison of pneumatic, hydraulic and hydro-pneumatic. 	3
V	PNEUMATIC SYSTEMS, COMPONENTS AND PNEUMATIC CIRCUITS	
	 5.1: Pneumatic Systems, components Pneumatic Systems –elements - Compressor – Piston type and Vane type compressor – filter – regulator - lubricator unit – mufflers. Pneumatic actuator – Single acting cylinder – Double acting cylinder – Air motors – Vane type and piston type. Pneumatic valves – Directional control valves 2/2, 3/2, 4/2, 4/3 & 5/2 - Control methods - Pressure relief valves - Check Valve - Flow control Valve - shuttle valve – Twin pressure valve - Quick exhaust valve - Time delay valve. 	8
	5.2: Pneumatic circuits ISO Symbol Pneumatic components - Controlling of single acting and Double acting cylinder - Speed control circuit, Quick exhaust valve circuit, Two step feed control circuit, Time delay circuit, Automatic cylinder reciprocating circuit, Deceleration air cushion of cylinder circuit - two hand safety control circuit.	

Reference Books

- 1. A Text Book of Hydraulics, Fluid Mechanics and Hydraulic Machines, R.S. Khurmi, S.Chand& Co.
- 2. A Text Book of Hydraulics, Fluid Mechanics and Hydraulic Machines, Dr.R.K.Bansal Laxmi Publication Pvt., Ltd.
- 3. Hydraulic Machines, Jagadishlal, Metropolitan Book Co. Pvt. Ltd.
- 4. Fluid Power, Anthony Esposito, Pearson Education.
- 5. Pneumatic System Principles and Maintenance, S.R.Majumdar, McGraw Hill Education.

- 6. Oil Hydraulic System Principles and Maintenance, S.R.Majumdar, McGraw Hill Education.
- 7. Fundamentals of pneumatic control Engineering -FESTO Manual

Reference Web Link / Video

Торіс	Website	Link
Fluid Mechanics	NPTEL	https://nptel.ac.in/courses/112/104/112104118/
Fluid Mechanics and Fluid Power	Dote E- Lecture	https://www.youtube.com/watch?v=xmkh7M9R 7nM&list=PL1b9Ht9ISqIHpYlanUmZMrVUnF_C ABwRk
Oil Hydraulics and Pneumatics	NPTEL	https://nptel.ac.in/courses/112/106/112106300/

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	:	1021 Diploma in Automobile Engineering
Subject Code	:	4021350
Semester	:	III
Subject Title	:	Material Testing and Fluid Mechanics & Pneumatics Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4021350	Hours /	Hours /		Marks		
Material			Internal	Board		Duration
Testing and	Week	Semester	Assessment	Examinations	Total	
Fluid						
Mechanics &		64	25		100	3 Hrs.
Pneumatics	4	04	25	100		3 115.
Practical		2				

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

This subject deals with the testing and behavior of metals at various testing condition and to create better understanding of the behavior of fluids under the condition of rest and motion. This subject deals with hydraulic and pneumatic operation.

OBJECTIVES:

At the end of the course, the students will be able to,

- Acquire skills on different types of testing methods of metals.
- Conduct material testing on elasticity, hardness, shear strength
- Determine modulus of rigidity of open spring coil springs.
- Determine the co-efficient of discharge of venturimeter.
- Determine the co-efficient of friction in pipes.
- Design and operate pneumatic circuit and hydraulic circuit.

4021350 MATERIAL TESTING AND FLUID MECHANICS & PNEUMATICS PRACTICAL DETAILED SYLLABUS

Experiments

PART A

- Tension test on Ductile Materials- Finding Young's Modulus of Elasticity, Yield Points, Percentage Elongation and Percentage Reduction in Area, Stress Strain Diagram Plotting test on Mild Steel with the help of a Universal Testing machine.
- Torsion test Torsion test on mild steel relation between torque and angle of twist determination of shear modulus and shear stress. Draw a graph between torque and angle of twist in radians.
- Test on spring Compression Tests on open coil spring Determination of modulus of rigidity, strain energy, shear stress and stiffness by load deflection method. Draw a graph between load and deflection
- 4. Test on orifice Determination of co-efficient of discharge of a orifice by variable head method and a graph between $\sqrt{H_1} \sqrt{H_2}$ Vs time taken (t).
- 5. Test on venturimeter Determination of co-efficient of discharge of the venturimeter and draw the following graphs between (i) head Loss (h_f) Vs Actual discharge (Q_a) and (ii) head loss (h_f) Vs co-efficient of discharge (C_d)
- 6. Test on pipe friction apparatus Determine the friction factor of the given pipe and draw a graph between friction head (h_f) and Velocity (v).

<u>PART B</u>

Pneumatics Lab.

- 1. Direct operation of pilot control of single acting cylinder and double acting cylinder.
- 2. Speed control of double acting cylinder using metering-in and metering-out circuits.
- 3. Automatic operation of double acting cylinder in single cycle using limit switch.

Hydraulics Lab.

- 4. Direct operation of double acting cylinder
- 5. Direct operation of hydraulic motor.
- 6. Speed control of double acting cylinder metering-in and metering-out control.

BOARD EXAMINATION

Note:

- All the exercises / experiments in both sections should be completed. Two exercises
 / experiments will be given for examination by selecting one from PART A and one
 from PART B.
- All the exercises / experiments should be given in the question paper and students are allowed to select by lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery / equipment before commencement of the board practical examination.

SI. No	Description	Max. Marks	
V			
1	Observation	10	
2	Tabulation and Calculation	40	
3	Result and Graph	5	
	Part- B		
4	Circuit	10	
5	5 Connection as per circuit 20		
6	6 Execution of circuit		
7	Viva-voce	10	
	Total	100	

DETAILLED ALLOCATION OF MARKS

LIST OF EQUIPMENT / TOOLS / MACHINERY REQUIRED

(for a	batch	of 30	students)
--------	-------	-------	-----------

SI. No.	Machinery's / Equipment / Tools	Quantity
1.	Universal Testing Machine (UTM)	01
2.	Torsion testing machine	01
3.	Spring testing machine	01
4.	Pipe friction Apparatus	01
5.	Venturimeter Apparatus	01
6.	Orifice testing kit setup	01
7.	Pneumatics Trainer Kit with all standard accessories	02
8.	Hydraulics Trainer Kit with all standard accessories	02
9.	Measuring instruments	Sufficient
		quantity
10.	Consumables	Sufficient
		quantity

Reference Web Link / Video

Strength of Materials Practical	Virtual Labs	https://sm-nitk.vlabs.ac.in/
Fluid Mechanics Practical	Virtual Labs	https://fm-nitk.vlabs.ac.in/
Fluid Mechanics Practical	Virtual Labs	https://fmc-nitk.vlabs.ac.in/
Pneumatic Components	Virtual Labs	http://vlabs.iitb.ac.in/vlabs- dev/vlab_bootcamp/bootcamp/COEP_KNO WLEDGE_SEEKERS/labs/exp1/index.html

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021360

Semester : III

Subject Title : Production Technology Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	ructions		Examination			
4021360	Hours /	Hours /		Marks			
Production Technology	Week	Semester	Internal Assessment	Board Examinations	Total	Duration	
Practical	4	64	25	100*	100	3 Hrs.	
* Examinatio	* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.						

RATIONALE:

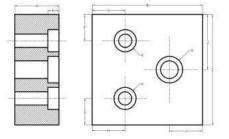
In the process of manufacturing we should possess adequate and through knowledge about the working of metal forming as well as metal cutting processes. The topics included aim to inculcate the skills of metal cutting, milling, grinding, and other machining processes which are very much essential for a technician. This will provide the students an opportunity to skill themselves for the industrial scenario.

OBJECTIVES:

Students must be able to:

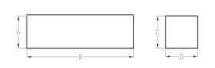
- Identify the tools used in foundry.
- Identify the tools and equipment used in welding
- Prepare sand moulds for different patterns.
- Perform welding operation to make different types of joints.
- Identify the parts of drilling machine.
- Perform the various drilling operations.

- Identify the parts of a lathe.
- Operate the lathe and machine a component using lathe.
- Study the working of various machine tools: Shaper.
- Study various types of milling operations.
- Perform the milling procedure for spur gear
- Study the different types of grinders and grinding wheels.


4021360 PRODUCTION TECHNOLOGY PRACTICAL DETAILED SYLLABUS

EXERCISES

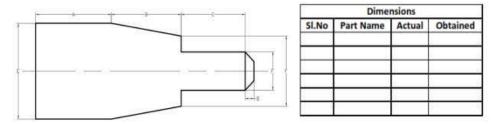
PART-A


- 1. Prepare the green sand moulding using any one Solid Pattern in the foundry.
- 2. Prepare the green sand moulding using any one Split Pattern in the foundry.
- Prepare the specimen and make the T-joint by the Arc Welding (Both sidewelded). (Raw material 25mmX6mm MS flat)
- 4. Prepare the specimen and make the Butt joint by the Gas Welding. (Raw material
- 25mmX3mm MS sheet)
 5. Prepare the specimen and make the drilling and counter boring as shown in figure
- 5. Prepare the specimen and make the drilling and counter boring as shown in fi

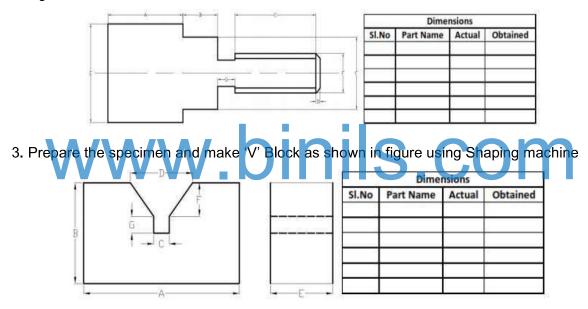
using the upright drilling machine / Radial drilling machine.

	Dime	nsions		
SI.No	Part Name	Name Actual	Obtained	
-				
		1.		

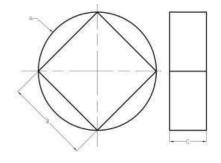
6. Prepare the specimen and make the plain surfaces as shown in figure using the surface Grinder.



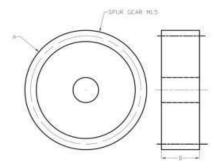
Dimensions						
SI.No	Part Name	Actual	Obtained			
			-			
			ч.,			
			њ			


PART – B

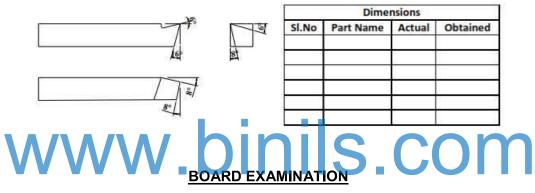
Exercise


1. Prepare the specimen and make the Step Turning & Taper Turning as shown in figure using the Lathe.

2. Prepare the specimen and make the Step Turing & Thread cutting as shown in figure using the Lathe.



4. Prepare the specimen and make round to square as shown in figure using milling machine


Dimensions					
SI.No	Part Name	Actual	Obtained		
		5			
	2 <u></u> 2				
		a i			
	· · · · · ·	<u>.</u>			

5. Prepare the specimen and make Spur Gear as shown in figure using milling machine by indexing method.

	Dimensions						
SI.No	Part Name	Actual	Obtained				

6. Prepare the specimen and make the turning tool as shown in figure using the Tool and Cutter Grinder.

Note:

- All the exercises/experiments in both sections should be completed. Two exercises/experiments will be given for examination by selecting one from PART A and one from PART B.
- All the exercises/experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machineries / equipments before commencement of the board practical examination.

SI. No.	Description	Max. Marks					
	Part- A						
1	Procedure / Preparation	10					
2	Machining / Dimensions	25					
3	Finishing	5					
	Part- B						
4	Procedure / Preparation	10					
5	Machining / Dimensions	35					
6	Finishing	5					
7	Viva-voce	10					
	Total	100					

LIST OF EQUIPMENT / TOOLS / MACHINE REQUIRED

(for a batch of 30 students)

SI. No.	Machines /Tools/ Equipments	Quantity
	Moulding board	5 Nos.
2	Cope box	5 Nos.
3	Drag box	5 Nos.
4	Core box	5 Nos.
5	Shovel	2 Nos.
6	Rammer set	5 Nos.
7	Slick	5 Nos.
8	Strike-off bar	5 Nos.
9	Riddle	2 Nos.
10	Trowel	5Nos.
11	Lifter	5 Nos.
12	Cleaning Brush	5 Nos.
13	Vent rod	5 Nos.
14	Draw spike	5 Nos.
15	Gate cutter	5 Nos.
16	Runner & riser	5 Nos. each
17	Arc welding transformer	1 No
18	Gas welding unit	1 Set
19	Welding shield	5 Nos.

s welding goggles pping hammer ather Glows 18'' right drilling machine / Radial drilling machine mier Height Gauge face plate he tical milling machine versal Milling Machine face Grinding Machine ol and Cutter Grinder	5 Nos. 10 Nos. 10 Sets. 1 No. 1 No. 1 No. 4 Nos. 1 No. 1 No. 1 No. 1 No. 1 No. 1 No. 1 No. 1 No.
ather Glows 18" right drilling machine / Radial drilling machine mier Height Gauge face plate he tical milling machine versal Milling Machine face Grinding Machine	10 Sets. 1 No. 1 No. 4 Nos. 1 No. 1 No.
right drilling machine / Radial drilling machine mier Height Gauge face plate he tical milling machine versal Milling Machine face Grinding Machine	1 No. 1 No. 1 No. 4 Nos. 1 No. 1 No. 1 No. 1 No.
rnier Height Gauge face plate he tical milling machine versal Milling Machine face Grinding Machine	1 No. 1 No. 4 Nos. 1 No. 1 No. 1 No.
face plate he tical milling machine versal Milling Machine face Grinding Machine	1 No. 4 Nos. 1 No. 1 No. 1 No.
he tical milling machine versal Milling Machine face Grinding Machine	4 Nos. 1 No. 1 No. 1 No.
tical milling machine versal Milling Machine face Grinding Machine	1 No. 1 No. 1 No.
versal Milling Machine face Grinding Machine	1 No. 1 No.
face Grinding Machine	1 No.
and Cutter Grinder	
	T NO.
aping Machine	1 No.
ols and Measuring instruments	Sufficient
	quantity
sonal protective equipment	Sufficient
	quantity
e safety equipment	Sufficient
	quantity
nsumable	Sufficient
	quantity
	e safety equipment

Reference Book

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.
- Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw Hill House, 2017

Reference Web Link / Video

Торіс	Website	Link
Manufacturing Processes	Virtual Lab	http://vlabs.iitkgp.ac.in/psac/newlabs20 20/vlabiitkgpAM/#

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU

DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	:	1021 Diploma in Automobile Engineering
Subject Code	:	4020370
Semester	:	III
Subject Title	:	Measurements and Metrology Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4020370	Hours	Hours /		Marks		
Measurements and Metrology	/ Week	Semester	Internal Assessment	Board Examinations	Total	Duration
and Metrology Practical		64	25	Soo* C	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Familiarize about measuring techniques of Metrology instruments.
- Select the range of measuring tools. Study of accuracy of instruments and calibration of instruments.
- Obtain accurate measurements.
- Determine the least count of measuring instruments.
- Acquire knowledge about linear measurement.
- Acquire knowledge about angular measurement.
- Acquire knowledge about geometric measurements.
- Study of Linear Measuring Instruments: Vernier Caliper, Micrometer, Inside Micrometer, Vernier Height gauge and Slip Gauge.
- Study of Angular Measuring Instruments–Universal Bevel Protractor, Sine Bar.
- Study of Geometric measurement Gear tooth Vernier, Thread Vernier.

Exercises

PART A:

- 1. Measure the dimensions of ground MS flat / cylindrical bush using VernierCaliper compare with Digital / Dial Vernier Caliper.
- 2. Measure the diameter of a wire using micrometer and compare the result with digital micrometer
- 3. Measure the thickness of ground MS plates using slip gauges
- 4. Measure the inside diameter of the bore of a bush cylindrical component using inside micrometer compare the result with digital micro meter.
- 5. Measure the height of gauge blocks or parallel bars using vernier height gauge.
- 6. Detect of cracks of the given two specimens using liquid penetrant test and magnetic particle test.

PART B:

- 1. Measure the angle of a V-block / Taper Shank of Drill / Dovetail using universal bevel protractor.
- 2. Measure the angle of the machined surface using sine bar with slip gauges.
- 3. Measure the geometrical dimensions of V-Thread using thread micrometer.
- 4. Measure the geometrical dimensions of spur gear.
- 5. Find out the measurement of given component and compare with a standard component using mechanical comparator and slip gauge.
- 6. Prepare a specimen to examine and find the grain structure using the Metallurgical Microscope.

BOARD EXAMINATION

Note:

- All the exercises in both sections have to be completed. Two exercises will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Part-A	:	45 marks
Procedure / Preparation Observation / Dimensions	10 25	IS.COM
Finishing	10	
Part-B	:	45 marks
Procedure / Preparation	10	
Observation / Dimensions	25	
Finishing	10	
Viva-voce	:	10 marks
Total	:	100Marks

DETAILED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (For 30 students)

- 1. Vernier Caliper - 2 Nos.
- 2. Digital / Dial Vernier Caliper. - 2 Nos.
- 3. Outside micrometer - 2 Nos.
- 4. Inside Micrometer - 2 Nos
- 5. Digital Micrometer - 2 Nos.
- 6. Slip gauges - 2 Nos.
- 7. Universal bevel protractor. - 2 Nos.
- 8. Sine bar - 2 Nos.
- 9. Digital inside micrometer - 2 Nos.
- 10. Surface plate 2 Nos.
- 11. Vernier height gauge 1No.
- 12. Thread Vernier - 1 No.
- 13. Thread micrometer – 1 No.
- 14. Gear tooth Vernier 2 Nos.
- Gear tooth Vernier 2 Nos.
 Mechanical comparator 2 Nos.
 Dial indicator (0-10) 2 Nos.
- 16. Dial indicator (0-10) 2 Nos.
- 17. Abrasive grinder 1 No.
- 18. Polishing Machine 1 No.
- 19. Mounting machine 1 No.
- 20. Metallurgical microscope 2 Nos
- 21. Magnetic yoke 1 No.
- 22. Liquid penetrant test kit 1 set.
- 23. Consumable Sufficient quantity

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021410

Semester : IV

Subject Title : Heat Power Engineering

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
	Hours /	Hours /		Marks		
4021410	Week	Semester	Internal	Board	Total	Duration
Heat Power	vveek	Semester	Assessment	Examinations	Total	
Engineering						
	Л Л	80	25		100	3 Hrs.
* Examinations	will be cor	ducted for 10	00 marks and it v	will be reduced to	75 marks	s for result.

Topics and Allocation of Hours

UNIT	ΤΟΡΙϹ			
I	Steam Generators and Steam Boiler	15		
П	Steam Engine, Steam Turbine and Steam Condenser	15		
	Air Compressors Gas Turbines and Jet Propulsion	15		
IV	Refrigeration and Air-Conditioning	14		
V	Thermal Power Plant and Nuclear Power Plant	14		
	Test & Revision			
	Total			

RATIONALE:

This subject is one of the core subjects. Diploma engineers have to work with various power producing and power absorbing devices. This subject will enable students to establish foundation required to design, operate and maintain the devices. This subject emphasizes on steam boilers and allied components that are used in industrial sectors. Thermal power plants are still contributing major share in electricity production in India. The students will be able to calculate various parameters required to determine the performance of these devices.

OBJECTIVES

- Explain the concepts and applications of steam
- Learn the construction and working of steam boilers, steam engines, steam turbines and steam condensers.
- Explain the concepts and applications of air compressor, gas turbines and jet propulsion
- Explain the concepts and applications of Refrigeration and Air-conditioning.
- Explain the concepts and applications of thermal and nuclear power plants.

4021410 HEAT POWER ENGINEERING DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	STEAM GENERATORS AND STEAM BOILER	
	1.1: Steam Generators	
	Properties of steam - Formation of steam – dryness fraction – wetness	5
	fraction - types of steam - dry steam, wet steam and superheated	
	steam - compare - advantages of superheated steam - enthalpy -	
	entropy – specific volume – simple problems.	
	1.2: Steam Boiler	
	Introduction – Classifications – Essentials of good steam boiler –	7
	selection of a steam boiler – Compare water tube boiler and fire tube	
	boiler – Working principle of BHEL boiler. Boiler act. Boiler Mountings:	
	water level indicator - stop valve - feed check valve - blow of cock.	
	Steam safety valves: Spring loaded safety vale – High steam and Low	
	water safety valve. Boiler accessories: feed pump injector economizer – air preheater – super heater – steam separator.	Π
	Performance of boilers: Evaporative capacity – Equivalent evaporation	
	- Factor of evaporation - Boiler efficiency - Heat losses in a power	3
	plant – simple problems.	
II	STEAM ENGINE, STEAM TURBINE AND STEAM CONDENSER	
	2.1: Steam Engine	
	Introduction - Classification – Reciprocating steam engine parts and	7
	their description - working principle - theoretical indicator diagram -	
	actual indicator diagram – mean effective pressure – Indicated power –	
	brake power. Efficiency: mechanical, relative and overall. Description	
	only.	
	2.2: Steam Turbine	3
	Introduction – classification – advantages – types – compounding:	
	velocity, pressure and pressure velocity. Bleeding – energy losses -	
	Description only.	

	2.3: Steam Condenser	5
	Introduction – classification – Jet condenser: Principles of parallel flow,	
	counter flow and ejector. Surface condenser: Principles of down flow,	
	central flow and evaporative. Compare jet condenser and surface	
	condenser.	
Ш	AIR COMPRESSORS AND GAS TURBINES	
	3.1: Air compressors	8
	Introduction – classification – working of single stage reciprocating air	
	compressor – p-V and T-s diagram – isothermal efficiency, work done:	
	without and with clearance volume - volumetric efficiency - simple	
	problems. Principles of multi-stage reciprocating compressor. Rotary	
	compressor: construction and working of roots blower - vane type	
	blower – centrifugal compressor - axial flow compressor. Compressed	
	air motors: principles of reciprocating type and rotary type air motor.	
	3.2: Gas Turbines	
	Introduction – classifications – advantages and disadvantages of gas	4
	-turbines – constant pressure gas turbine - gas turbine with regenerator - intercooler – reheater – effects – closed cycle gas turbines –merits	Π
	and demerits of open and closed cycle gas turbine.	-
	3.3: Jet Propulsion	
	Turbo jet engines – merits and demerits – turbo propeller engines –	3
	merits and demerits – ramjet - comparison of aircraft and industrial gas	
	turbines.	
IV	REFRIGERATION AND AIR-CONDITIONING	
	4.1: Refrigeration	
	Refrigeration - refrigerators and heat pumps - types and applications of	7
	refrigeration – vapour compression refrigeration system – vapour	
	absorption system - comparison - refrigerating effect - capacity of	
	refrigerating unit - C.O.P – actual C.O.P – power required – mass of ice	
	produced – problems. Refrigerants – desirable properties -	
	classification of refrigerants.	
	4.2: Air-Conditioning	7
	Introduction - psychrometric properties – dry air - moist air – water	

	vapour – saturated air – dry bulb temperature – wet bulb depression –	
	dew point depression - dew point temperature – humidity –specific and	
	relative humidity. Psychrometric chart – psychometric processes -	
	sensible heating and cooling - humidification - dehumidification.	
	Applications of air conditioning system – room air conditioning – central	
	air conditioning – differences between comfort and industrial air	
	conditioning. Factors to be considered in air conditioning - loads	
	encountered in air-conditioning systems.	
V	THERMAL POWER PLANT AND NUCLEAR POWER PLANT	
v		•
	5.1: Thermal Power Plant	6
	Layout of thermal power plant – merits and demerits of thermal power	
	plant - pollutants - effects and control - cyclone separator - wet	
	scrubber – electrostatic precipitator – control of NO_2 and SO_2 - fluidised	
	bed combustion.	
	5.2: Nuclear Power Plant	8
	Nuclear fission and fusion - chain reaction - radioactivity - layout of	
	nuclear power plant - merits and demerits - Nuclear reactors - classification - components of nuclear reactor - reactor core -	Π
	moderators - control rods - coolant - reflectors - biological shield -	
	pressurized water reactor – boiling water reactor – Candu type reactor	
	- fast breeder reactor - effect of nuclear radiation - disposal of	
	nuclear wastes - comparison of nuclear power plants with thermal	
	power plants.	

Reference Book

- 1. Applied Thermodynamics, P.K. Nag, TATA McGraw- Hill Publishing Co.
- 2. Thermal Engineering, R.S. Khurmi and J.K. Gupta, 18th Edition, Chand & Co.
- 3. Thermal Engineering, P.L Ballaney, Khanna Publishers.
- 4. Thermal Engineering, Er.R.K.Rajput, Lakshmi Publications (P) Ltd.
- 5. Applied Thermodynamics, Domkundwar and C.P Kothandaraman, Khanna publishers.
- 6. Refrigeration and Air conditioning, P. L. Ballaney, Khanna Publishers.

- 7. Power Plant Engineering Thermodynamics, Domkundwar and C.P.Kothandaraman, Khanna Publishers.
- 8. Power Plant Engineering, G.R. Nagpal, KhannaPublishers.

Reference Web Link / Video

Торіс	Website	Link			
Thermal and Automobile Engineering	Dote E-Lecture	https://www.youtube.com/watch?v=85K4_4PfRpQ &list=PL1b9Ht9ISqIG_szHgF6Fie9fdDpf8WOE0			
Heat Power Engineering	Dote E-Lecture	https://www.youtube.com/watch?v=NpII017XBMI&I ist=PL1b9Ht9ISqIGJgqTGxcqmSEwLa_WWI83e			
Basic Thermodynamics	NPTEL	https://nptel.ac.in/courses/112/105/112105123/			
Applied Thermodynamics for engineers	NPTEL	https://nptel.ac.in/courses/112/103/112103275/			
Power Plant Engineering	NPTEL	https://nptel.ac.in/courses/112/107/112107291/			
Refrigeration and air Conditioning	NPTEL	https://nptel.ac.in/courses/112/105/112105129/			
www.binils.com					

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021420
- Semester : IV
- Subject Title : Vehicle Body Engineering

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
	Hours /	Hours /		Marks		
4021420	Week	Semester	Internal	Board	Total	Duration
Vehicle Body	WEER	Jemester	Assessment	Examinations	Total	
Engineering	5	80	25		100	3 Hrs.
* Examinations	will be cor	ducted for 10	00 marks and it i	will be reduced to	75 marks	s for result.

Topics and Allocation of Hours

UNIT	TOPIC	TIME		
I	Automotive Aerodynamics	15		
11	Car Bodies	15		
	Bus Bodies	15		
IV	Commercial Vehicle Bodies and Body Materials	14		
V	Vehicle Body Repair Works and Painting	14		
	Test & Revision			
	Total			

RATIONALE:

To impart knowledge to the students about constructional details of different types of vehicle bodies and about vehicle body repair works and painting.

OBJECTIVES:

- To impart knowledge in automotive aerodynamics.
- To understand the construction of car body, design criteria, types of car and safety aspects of car.
- To understand the construction of bus body and dimensions of bus body and safety aspects.
- To understand the types of commercial vehicles; design of cab and in aerodynamic testing, forces and moments.
- To understand the vehicle body repair works and painting.

www.binils.com

4021420 VEHICLE BODY ENGINEERING DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	Automotive Aerodynamics	
	Objectives, Vehicle Drag - Definition, Types and Effects. Forces and	8
	Moments Acting on Vehicle Body - Types and Effects. Various Body	
	Optimization Techniques and Aerodynamic Aids for Optimization of Drag.	
	Drag Reducing Devices in Commercial Vehicles.	
	Wind Tunnel Testing - Concept and Types, Flow Visualization	7
	Techniques, Scale Model Testing, Component Balance to Measure	
	Forces and Moments.	
II	Car Bodies	
	Car Body-Purpose, Requirements and Types - Saloon, Convertibles,	8
	Limousine, Estate Van, Racing and Sports Car. Car Body Construction -	
	Components of Car Body and Purpose of Each Component. Safety	
	Equipments for Car - Seat Belts and Air Bags. Dimensional and Visibility Regulations. Drivers Visibility, Tests for	7
	Visibility, Methods for Improving Visibility and Space in Cars. Crash Test	
	and Roll Over Test.	
III	Bus Bodies	
	Bus Body – Types - Mini Bus, Single Decker, Double Decker, Two Level,	
	Split Level and Articulated Bus. Bus Body Layout - Floor Height - Engine	11
	Location - Entrance and Exit Location - Seating Dimensions.	
	Constructional Details - Frame Construction - Types of Metal Section	
	Used, Double Skin Construction, Conventional and Integral Type	
	Construction.	
	Automatic Door System – Twin Glider Door, Single Glider Door, Folding	4
	Door, Sliding Plug Door and Swing Plug Door.	
IV	Commercial Vehicle Bodies and Body Materials	
	Types of Commercial Vehicle Body - Light Commercial Vehicle Body	9
	Types, Flat Platform, Drop Side, Fixed Side, Tipper Body, Tanker Body -	
	Baffled and Un-Baffled Tanks, Drivers Cab Design - Forward Control Cab	

	and Normal Control Cab.				
	Vehicle Body Materials - Steel, Light Alloys, Plastics, Crp, Grp, Textiles,				
	Glass, Wood, Aluminium Materials, Adhesives and their Properties.				
V	Vehicle Body Repair Works and Painting				
	Hand Tool, Power Tool and Equipments for Body Repair Works. Body	6			
	Repair Methods - Paintless Dent Removal, Body Filler, Hammer & Dolly				
	Method and Patching.				
	Refinishing Process - Paint Removal, Preparing Bare Metal, Prime Coat				
	Selection, Final Sanding, Masking, Surface Cleaning. Painting -	8			
	Objectives, Elements of Paint. Painting Methods – Spray Painting and				
	Immersion Painting. Vacuum Coating, Electrostatic Painting. New				
	Vehicle Painting Process.				

Reference Books

- 1. Vehicle Body Engineering, Powloski, J., Business Books Ltd, 1989.
- 2. Body Repair Technology for 4-Wheelers, James E Duffy, Cengage Learning.
- 3. Body construction and design, Giles, G.J., Illiffe Books Butterworth & Co.
- 4. The Repair of vehicle bodies, Andrew Livesey and A Robinson, Routledge.
- 5. John Fenton, "Handbook of Automotive Body and Systems Design", John Wiley & Sons, 2013.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021430
- Semester : IV

Subject Title : Automobile Electrical and Electronics Systems

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4021430	Hours /	Hours /		Marks		
Automobile			Internal	Board		Duration
Electrical and	Week	Semester	Assessment	Examinations	Total	
Electronics			7.556551116111	Examinations		
Systems	5	80	25	100*	100	3 Hrs.
* Examinations	will be cor	ducted for 10	00 marks and it v	will be reduced to	75 marks	s for result.

Topics and Allocation of Hours

UNIT	ΤΟΡΙϹ	TIME
I	Basic Electrical and Electronic Principles	15
II	Electromagnetic Induction Machines, Starter Motors, Alternators	15
	Lighting and Auxiliary System	15
IV	Electronic Spark Ignition & Diesel Ignition and Engine Management Systems	14
V	Control of Automotive Systems through Electronic Management Systems	14
	Test & Revision	7
Total		80

RATIONALE:

Diploma engineers have to deal with electrical and electronics engineering principles and applications in industrial processes of different fields. It is therefore necessary for them to apply the principles of electrical and electronics engineering. This subject make them conversant with electrical and electronic engineering aspects of manufacturing, production, fabrication, automobile and mechanical based processes in industries,

OBJECTIVES:

- To learn the basics in Automotive Electrical, Electromagnetic & Electronic principles
- To know the basic symbols of Electrical & Electronic Components, Wire & Cable Color Codes & Sizes and using those symbols to draw simple Circuit Diagrams
- To learn all about components applying the principles of Electromagnetic & Electromagnetic Induction in an Automobile like Starting Motors, Alternators, Solenoids, Relays, Transformers, Inductors etc. & Lighting, Auxiliary & Sensors Systems in an Automotive Vehicle.
- To study about the evolution of Automotive Spark Ignition Systems and their working
- To study about Electronic Management of Automotive Systems through use of ECMs & Transducers.

4021430 AUTOMOBILE ELECTRICAL AND ELECTRONICS SYSTEMS DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	Basic Electrical and Electronic Principles	12
	Introduction - Definitions – Charge, Current, Electromotive Force,	
	Potential Difference, Theory of Electron Flow and Conventional Flow.	
	Properties of Conductors, Insulators and Semiconductors. Definitions of	
	Electrical Laws - Ohm's Law, Kirchhoff's Laws, Definitions of Resistance	
	& Resistivity, Inductance and Capacitance. Definitions of Magnetism,	
	Electromagnetism & Electromagnetic Induction, Mutual Induction.	
	Electromagnetic Terms & Definitions, Faraday's Laws, Fleming's Rules,	
	Maxwell's Corkscrew Rules, Lenz's Law and their application in	
	Automobiles. Single Pole & Double Pole Wiring, Electrical Safeties and	
	the benefits of "Earthing To Chassis" in Automotive Wiring, Electrical	
	Symbols, Wire Sizes & Colour Codes, their importance in an Electrical	
	Circuits.	
	Introduction - Basic Principles of Semiconductors. Semiconductor Devices – LED- Seven segment LED - Zener Diodes, Transistors &	3
	SCRs. Rectifier – Half Wave Rectifier, Full Wave Rectifier, Bridge	
	Rectifier & Applications of Semiconductor Devices in various	
	Automotive Systems.	
П	Electromagnetic Machines, Starter Motors & Alternators	3
	Solenoid Actuator, Relays and types of Relays and their automotive usage. Electromagnetic & Thermal Relays	
	Requirements of The Charging System. Charging System Principles. Alternators – Construction, Generation of Electricity, Rectification of AC to DC, Regulation of Output Voltage - Need for the Regulator,	7
	Regulators, Charging Circuits. Advantages of Alternator over Dynamo. Trouble Shooting in the Alternator.	
	Requirements of Starter Motor. Starting Motor – Working Principle - Construction. Starting System Circuit. Starter Drive Mechanisms - Bendix Drive Mechanism, Over Running Clutch Type Drive Mechanism and Coaxial Drive Mechanism in the Heavy Vehicles. Starter Switches	5
	and Solenoids. Stepper Motors & Servo Motors,	

III	Lighting and Auxiliary System	
	Lighting – Purposes & the needs of Traffic Indicators, Sidelights, Rear	8
	Lights, Brake Lights, Reversing Lights, Day Running Lights, Rear Fog	
	Lights, Front Spot, Fog Lights, Park Lamp, Rear Number Plate Lamp,	
	Beam Indicator, Door Lamp, Pillar Lamp, Roof Lamp and Panel Lamps.	
	Dip Switch and Lighting Circuits. Headlight Leveling, Headlight Beam	
	Setting.	
	Wiper and Washer Systems - Construction and Working, Electric Horns	7
	- Construction and Working. Window Glass Panel Operating System,	
	Gauges - Fuel Gauge, Oil Pressure Gauge, Coiling Water Temperature	
	Gauge and Ammeter Charging Indicator.	
IV	Electronic Spark Ignition & Diesel Ignition and Engine Management	
	Systems	
	Evolution of SI Engine Ignition Systems-from Magneto Ignition System	5
	to Electronic Distributer-less Ignition System, the needs for development	
	& benefits gained at each stage. Brief Study of each of the System,	
	Spark Plug types, needs & Usage. Electrical Circuitry Outline of Electronic Engine Controls for MPFI &	6
	CRDI Systems-Difference between Electronically Managed Engines &	
	Mechanically Managed Engines with Inherent Merits & Demerits-	
	Description, Working & Testing of various Sensors, Engine Controller &	
	Actuators used in MPFI & CRDI Systems, On-Board-Diagnostic	
	Systems & Instrument Panel.	
	Types of Sensors – Thermistor Sensor, Pressure Sensor, Inductive	3
	Sensor, Knock Sensor, Fuel Flow Sensor, Oxygen Sensor and Vehicle	
	Speed Sensor.	
V	Control of Automotive Systems through Electronic Management	
	Systems	
	Electronic Control Unit - Working Principle. Sub-Units in Microprocessor	6
	Control Systems. Microprocessor And Microcomputer Controlled	
	Devices In Automobiles - Travel Information System and Keyless Entry	
	System.	
	On-Board-Diagnostics and their functions, Identification of different	8

types of Connectors in the circuits of Microprocessor Controlled Systems – Electrical motor control system - Electrical safety standard in Vehicle – MCB, ELCB – Role Electric Vehicle Technology - Impact of Automobile Industry

Reference Books:

- 1. Automobile Electrical and Electronics Systems, Tom Denton, London.
- 2. Automotive Electrical and Electronics, Barry Holembeak, USA.
- 3. Automotive Computers and Digital Instrumentation, Robert N Brady, New Jersey.
- Automotive Electronics and Electrical Equipment, William H. Crouse and DL. Anglin, McGraw Hill company.
- 5. Automobile Electrical Equipment, William. H. Crouse., McGraw Hill Book Co. Inc., New York.
- 6. Automobile Engineering, RB Gupta, Satya Prakashan, New Delhi.

www.binils.com

Blank Page

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	:	1021 Diploma in Automobile Engineering	

Subject Code : 4021440

Semester : IV

Subject Title : Automotive Engines

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	uctions	Examination				
1001110	Hours / Hours /						
4021440 Automotive	Week	Semester	Internal	Board	Total	Duration	
Engines			Assessment	Examinations			
Linginioo	5	80	25	100*	100	3 Hrs.	
* Examinations	will be cor	ducted for 10	00 marks and it v	will be reduced to	75 marks	s for result.	

TOPICS AND ALLOCATION OF HOURS

UNIT	ΤΟΡΙϹ					
I	Thermodynamics, Air Cycles	15				
П	Fundamentals of IC Engines, Testing of IC engines:					
111	Fuel supply system, Fuel Injection Systems	15				
IV	Ignition Systems	14				
V	V Cooling system, Lubrication System, Super charging, Turbo Charging					
Test and Revision						
	TOTAL					

RATIONALE:

This is the core technology subject. All automotive vehicles are powered by IC engines. Hence the fundamental knowledge of automobile engine is most essential for the auto technicians. This subject will help in understanding the procedure of inspection, diagnosis and testing of engines and other systems. This subject deals with all systems in the automobile engines.

OBJECTIVES

- Explain the basics of systems, laws of thermodynamics and thermodynamic processes.
- Learn the construction and working fundamentals of IC Engines.
- Performance of petrol and diesel engines and its components.
- Explain the concept and applications of IC engines and its performance
 Learn the working principle of fuel feed system of petrol and diesel engines.
- Explain the concept of fuel Injection system of petrol and diesel engines.
- Learn the working principle of Ignition systems.
- Acquire the knowledge on the lubrication and cooling systems of engines.

4021440 AUTOMOTIVE ENGINES <u>DETAILED SYLLABUS</u>

Contents: Theory

Unit	Name of the Topics	Hours			
I	THERMODYNAMICS AND AIR CYCLES				
	1.1: Thermodynamics	7			
	Definitions and units of mass, weight, volume, density, specific weight,				
	specific gravity and specific volume - pressure - units of pressure -				
	temperature - absolute temperature - S.T.P and N.T.P conditions -				
	heat - specific heat capacity at constant volume and at constant				
	pressure – work – power – energy – law of conservation of energy –				
	thermodynamic system - thermodynamic equilibrium - properties of				
	systems - intensive and extensive properties - State of system -				
	process – cycle – point and path functions - Zeroth, First and Second				
	laws of thermodynamics. Description only.				
	1.2: Thermodynamic Processes	3			
	Constant Volume – Constant Pressure – Constant temperature Isentropic – Polytropic - P-V and T-S diagrams. Free expansion –	1			
	Throttling process. Description only.	_			
	1.3: Air Cycles				
	Carnot Cycle - Otto cycle - Diesel Cycle - Dual cycle - Efficiency -				
	Brayton cycle - Stirling cycle. Description only.				
П	FUNDAMENTALS OF IC ENGINES AND TESTING OF IC ENGINES				
	2.1: Fundamentals of IC Engines				
	Introduction – Development of IC engines – Classification – IC Engine	6			
	and Its Components – Working of Four Stroke Cycle Petrol Engine –				
	Working of Four Stroke Cycle Diesel Engine – Valve timing diagram -				
	Working of Two stroke petrol engines - Working of Two stroke diesel				
	engines – Port timing diagram - Applications of IC engines.				
	2.2: Testing of IC engines				
	Performance of IC Engines - Thermodynamic and commercial tests -	9			
	indicated power - brake power - friction power - efficiencies of I.C.				
	engines - indicated thermal, brake thermal, mechanical and relative				

							
	efficiencies – Specific fuel consumption – Morse test – procedure – heat						
	balance sheet – simple problems.						
III	FUEL SUPPLY SYSTEM AND FUEL INJECTION SYSTEMS						
	3.1: Fuel supply System	5					
	SI Engines fuel supply system - General arrangement - Construction						
	and working principle of Mechanical fuel pump, Electrical fuel pump. Air-						
	Fuel mixtures and its requirement – Working principle of Simple						
	carburetor – Working principle of Solex carburetor, SU carburetor.						
	3.2: SI Engines fuel injection systems						
	Types – port injection system, throttle injection system - MPFI –	5					
	advantages and disadvantages of petrol injection system - Electronic						
	Petrol Injection system – D-MPFI System – L-MPFI system – Group						
	Injection System – Cold start injector.						
	3.3: CI Engines fuel injection system	5					
	Requirement of ideal injection - Construction and working principle of						
	Fuel pump – types of nozzles – Working principle of Electronically						
	controlled diesel injection system - Working principle of common rail injection system. Fuel filters.	n					
IV	IGNITION SYSTEMS						
	4.1: Battery ignition system						
	Requirement – Principle of battery ignition system for multi cylinder	4					
	engines - Components of battery ignition system - Construction of						
	Distributor - Spark plug - types.						
	4.2: Magneto ignition system	5					
	Magneto ignition system – working principle – Advantages and						
	disadvantages. Distributor less ignition system – Coil on plug ignition						
	system. Ignition advance – Advancing mechanisms – Factors affecting						
	the angle of advance and its effects.						
	4.3: Electronic ignition systems	5					
	Electronic ignition systems – Transistorised Coil Ignition – Capacitive						
	Discharge Ignition – Computer controlled coil ignition systems. Firing						
	orders. Importance of ignition timing and ignition advance.						
		1					

V	COOLING SYSTEM, LUBRICATION SYSTEM, SUPER CHARGING,	
	TURBO CHARGING	
	5.1: Cooling system	5
	Introduction - effects of overheating – areas of heat flow. Air cooling	
	system – Water cooling system - natural and forced circulation. Engine	
	radiators. Hot and cold weather precautions – use of antifreeze solution.	
	5.2: Lubrication System	5
	Source of friction losses - Effect of frictional losses. Functions of	
	lubrication – Required properties of lubricant – Additives and their	
	function – Grades of lubricating oils. Lubricating system: Splash	
	lubrication, Pressure feed lubrication – wet sump and dry sump –	
	working principles. Oil filters - Crankcase ventilation.	
	5.3: Super charging and Turbo charging	4
	Introduction - thermodynamic cycle with super charging - Types of	
	super chargers – Arrangement of super chargers. Turbo charging:	
	Functions – Types - Construction and working of Turbo charging of a	
	single cylinder engine - advantages and disadvantages	
Refere	nce Books	_

1. Thermal Engg, R.K.Rajput, 8th Edition, Laxmi publications Pvt Ltd.

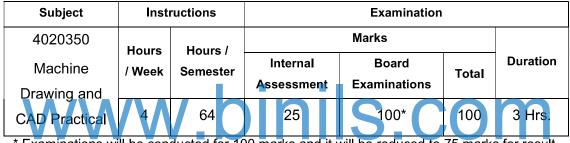
- 2. Applied Thermodynamics, P.K. Nag, 2nd Edition, TATA McGraw Hill Publishing Co.
- 3. Thermal Engineering, R.S.Khurmi and J.K.Gupta, 18th Edition, S.Chand& Co.
- 4. Automobile engineering vol-1, vol-2, Kirpalsingh, Standard publishers.
- 5. Automobile Engineering, G.B.S.Narang, Khanna Publishers.
- Automotive Mechanics, William H.Crouse and Donald L Anglin, Tata McGraw Hill Publishing Company Ltd.
- 7. The Automobile, Harbans Singh Reyat, S.Chand& Co Ltd.
- 8. Thermal Engineering, P.L.Ballaney, 24th Edition, Khanna Publishers.
- 9. Applied Thermodynamics, Domkundwar and C.P Kothandaraman, 2nd Edition, Khanna publishers.
- 10. Vehicle and Engine technology. Vol.-I, Heinz Heisler, ELBS
- 11. Automotive Mechanics, Joseph Heitner, East-west Press (P) Ltd.
- 12. Internal Combustion engines, M.L.Mathur & R.P.Sharma, Dhanpat Rai & Sons,

Reference Web Link / Video

Торіс	Website	Link
Thermal and Automobile	Dote E-	https://www.youtube.com/watch?v=85K4_4PfRpQ
Engineering	Lecture	&list=PL1b9Ht9ISqIG_szHgF6Fie9fdDpf8WOE0
Heat Power Engineering	Dote E-	https://www.youtube.com/watch?v=NpII017XBMI&I
	Lecture	ist=PL1b9Ht9lSqlGJgqTGxcqmSEwLa_WWl83e
Fundamentals of automotive system	NPTEL	https://nptel.ac.in/courses/107/106/107106088/

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU


DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N - SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	:	1020 Diploma in Mechanical Engineering
Subject Code	:	4020350
Semester	:	III
Subject Title	:	Machine Drawing and CAD Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

Mechanical Engineering Diploma Engineer is expected to possess a thorough understanding of drawing, which includes clear visualization and proficiency in reading and interpreting a wide variety of production drawing. Manufacturing of various parts start from the basic drawing of components. The assembly of components is also carried out from the drawing. So drawing is an important subject to be studied by the students to carry and complete the production and assembly process successfully.

OBJECTIVES:

- To learn the parts and assembly of the machine components.
- To appreciate the need for sectional view and types of sections. •
- To draw sectional views.
- To practice manual drawing •
- To use Computer Aided Drafting. •

- To prepare geometrical model of various machine elements.
- To draw the different views of machine elements.
- To interpret the drawing in engineering field and illustrate three dimensional objects.

4020350 MACHINE DRAWING AND CAD PRACTICAL DETAILED SYLLABUS

Contents: Practical

PART-A: MANUAL DRAWING PRACTICE

Sectioning - sectional views – representation of sectional plane – hatching – inclination – spacing – hatching large areas – hatching adjacent parts - full section – half section – types of half sections – conventional representation of materials in section – Dimensioning. Detailed drawings of the machine parts are given to students to assemble and draw any two views of the machine elements in the Drawing Sheet with dimensions. Front View /Full Section / Half SectionFront Viewand Top View / Left Side View / Right Side View.

PART-B: COMPUTER AIDED DRAFTING (CAD)

CAD applications – Hardware requirement – Software requirement – CAD screen interface – menus – Toolbars – types of co-ordinate system – Creating 2D objects – Using draw commands – Creating text – Drawing with precision – Osnap options – drafting settings – drawing aids – Fill, Snap, Grid, Ortho lines – Function keys – Editing and modify commands – Object selection methods – Erasing object – Oops – Cancelling and undoing a command – Copy – Move – Array – Offset – Scale – Rotate – Mirror – Break – Trim – Extend – Explode. Divide – Measure – stretch – Lengthen – Changing properties – Color – line types – LTscale – Matching properties – Editing with grips – Pedit – Ddedit – Mledit - Basic dimensioning – Editing dimensions – Dimension styles – Dimension system variables. Machine drawing with CAD. Creation of blocks – Wblock – inserting a block – Block attributes – Hatching – Pattern types – Boundary hatch – working with layers – Controlling the drawing display – Blipmode – View group commands – Zoom, redraw, regen, regenauto, pan, viewers – Realtime zoom. Inquiry groups – calculating area – Distance – Time – Status ofdrawing – Using calculator. Plot

Detailed drawings of the machine parts are given to students to assemble and create two views of the machine elements in the CAD package with dimensions. Front View / Sectional Front View (Full Section / Half Section) and Top View / Left Side View / Right Side View.

EXERCISE:

Draw the Front View / Sectional Front View (Full Section / Half Section) and Top View / Left Side View / Right Side View for the following given part drawing of the components after assemble in the drawing sheet and CAD package.

- 1. Sleeve & Cotter joint
- 2. Screw jack
- 3. Plummer Block
- 4. Simple Eccentric
- 5. Machine Vice
- 6. Protected type flanged coupling

Reference Books:

- 1. A Textbook of Machine Drawing, Pritam Singh Gill, S.K.Kataria & Sons.
- 2. Machine Drawing, N.D.Bhatt, V.M.Panchal, Charoter Publishing House.
- 3. Introducing Autocad 2010 and Autocad LT 2010, George Omura, Wiley India Pvt. Ltd.
- 4. A Textbook of Engineering Drawing, R.B.Gupta, Satya Prakasan, Technical India Publications.
- 5. Engineering Drawing, D.N. Ghose, Dhanpat Rai & Sons, Delhi

Internal Mark Allocation

Note:

All the students should maintain the observation cum record note book / manual as per the regulation. The printout of the actual CAD output created by the student during practice should be pasted for every exercise in the observation cum record note work.

For every exercise, manual drawing sheet (Two views) should be submitted and evaluated for 50 Marks. (Front view – 30 Marks and Top view/Side view – 20 Marks). The average of the six exercises should be converted to 10 Marks.

Total	-	25 Marks
Attendance	-	05 Marks
Observation and Record work	-	10 Mark
Drawing Sheet (Six Exercise Average)	-	10 Mark

BOARD EXAMINATION

Note: All the exercises should be completed by Manual and CAD. All the exercise should be given for examination, the students are permitted to select by lot or the question paper from DOTE should be followed. Observation cum Record note book should be submitted during examination along with the drawing file. Part A and Part B should be completed for the examination.

PART A: Manual Drawing in the Drawing sheet

Draw the assemble Front View / Sectional Front View (Full Section / Half Section) for the given part drawing of the components in the drawing sheet.

PART B: Computer Aided Drafting in the CAD package

Create the assemble Front View / Sectional Front View (Full Section / Half Section) and Top View / Left Side View / Right Side View for the given part drawing of the components in any one of the CAD package.

Manual Drawing in Drawing s	heet	: 30 marks
Assemble Front view	30	
Computer Aided Drafting		: 60 marks
Drafting	20	
Assembly	20	
Dimensioning	20	
Viva-voce		: 10 marks
Total		: 100 marks

LISTOF EQUIPMENT (For 30 students)

- 1. Personal computer 30 Nos.
- 2. Printer 1 No.
- 3. Required Software's: CAD Package Sufficient to the strength.

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021460
- Semester : IV

Subject Title : Automobile Electrical and Electronics Systems Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examination							
4021460	Hours /	Hours / _ Semester		Marks							
Automobile							Internal		Board		Duration
Electrical and	Week			Δ٩	sessmen	ıt	Examinations	Total			
Electronics						-					
Systems Practical	4	64			25		S ^{100*} C	100	3 Hrs.		

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Evaluating the parts of an Alternator and testing an assembled alternator same on a test bench for proper operation.
- Evaluating the parts of a Starter Motor and testing an assembled Starter Motor on a Test Bench for proper operation.
- Understanding the need for setting of proper ignition timing..
- To understand the Working Principle of Auxiliary Systems
- To understand the Use of Sensors and to test them in an Automobile.
- To construct Electrical Circuits in Automobile and make simple electrical circuits with proper Electrical Symbols, Cable Sizes &Colour Codes.

4021460 AUTOMOBILE ELECTRICAL AND ELECTRONICS SYSTEMS PRACTICAL

Experiments

Part – A

- 1. Testing of Alternator Parts such as Stator, Rotor and Rectifier for Resistance, Continuity for Insulation Effectiveness using Multifunction Tester.
- 2. Testing of Starter Motor Parts such as Test Field Windings, Brush Holders, Armature and Solenoid Switch for Continuity Using Multifunction Tester
- 3. Testing of Electronics fuel Ignition system
- 4. Servicing of the Wiper Motor and Horns Tuning.
- 5. Identifying and testing of the various terminals of 4-Point, 5-Point, 6-Point & 8-Point Relays through their markings using Multifunction Tester
- 6. Testing of Stepper motor drive

Part – B

- 1. Construction and Testing of Half Wave Rectifier, Full Wave Bridge Rectifier without
- Filters.
 Identification and testing of display devices- LED, 7 segment LED
- 3. Testing of various Sensors using Multifunction Tester
- 4. Construction and Testing of Fuel and Temperature Gauges Circuit.
- 5. Construction and Testing of Head Lights, Parking Lights and Direction Indicators Circuit.
- 6. Connection and Testing of MCB, ELCB

BOARD EXAMINATION

Note:

- All the exercises/experiments in both sections should be completed. Two exercises/experiments will be given for examination by selecting one from PART A and one from PART B.
- All the exercises/experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machineries / equipments before commencement of the board practical examination.

DETAILLED ALLOCATION OF MARKS								
SI. No.	Description	Max. Marks						
	Part- A							
1	Circuit Diagram	10						
2	Connection/Reading	20						
3	Calculation/Graph	15						
	Part- B							
4	Circuit Diagram	10						
5	Connection/Reading	20						
6	Calculation/Graph	15						
7	Viva-voce	10						
	Total 100							

LIST OF EQUIPMENT / TOOLS/MACHINERY'S REQUIRED

SI. No.	Machinery's / Equipment / Tools	Quantity
1.	Alternator	2 No's
2.	Starter Motor	2 No's
3.	Wiper Motor	2 No's
4.	Horn	2 No's
5.	Relay (4 point, 5 point, 6 point,8 point)	Each 1 No
6.	Stepper motor drive kit	1 No
7.	Engine crankshaft angular position sensor	2 No's
8.	Speed sensor	2 No's
9.	Pressure sensor	2 No's
10.	Fuel gauge	1 No
11.	Knock sensor	1 No
12.	Oxygen sensor	1 No
13.	Temperature gauge	1 No
14.	Head Light	1 No
15	Parking Light	1 No
16	Direction Indicator	1 Set
17.	Electronic fuel Ignition Systems kit	1 No
18.	ELCB	1 No
19.	МСВ	1 No
20.	Transformer (230 V/ 6 V)	2 No's
21.	Transformer (230 V/ 6 V – 0 V- 6 V)	2 No's
22.	Diode 1N4007	10 No's
23.	Bread Board	2 No's
24.	Digital Multimeter	1 No
25.	Analog Multimeter	1 No

(for a batch of 30 students)

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021470
- Semester : IV
- Subject Title : Automotive Engines Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	uctions	Examination			
4021470	Hours /	Hours /		Marks		
Automotive	Week	Semester	Internal	Board	Total	Duration
Engines			Assessment	Examinations		
Practical	4	64	25	100*	100	3 Hrs.
* Examinations	will be cor	ducted for 10	00 marks and it	will be reduced to	75 marks	s for result.

Objectives

- To Study the Flash and the Fire Point of a Fuel
- To Gain the Practical Exposure on Engine Port and Valve Timings
- To find the Viscosity of Lubricants.
- To find the COP of a refrigerator
- To study the various parts of an Engine
- To get an exposure on assembly and functioning of various pumps and injector.
- To study about MPFI and CRDI systems

4021470 AUTOMOTIVE ENGINES PRACTICAL

Experiments

PART A

- 1. Find Flash and Fire point of fuel using open cup and closed cup apparatus and compare the value for the given sample.
- 2. Find Viscosity of lubricating oil using Saybolt viscometer.
- 3. Find Viscosity of lubricating oil using Red wood viscometer.
- 4. Draw the Port timing diagram of a single cylinder two stroke diesel engine or petrol engine
- 5. Draw the Valve timing diagram of a single cylinder four stroke diesel engine or petrol engine.
- 6. Determine the COP of the vapour compression refrigerator system.

- 2. Dismantle and assemble oil pump and water pump after inspection and service.
- 3. Dismantle and assemble the fuel pump in a petrol engine after inspection and service.
- 4. Dismantle and assemble the distributor pump and injector after inspection and service.
- 5. Identify the components of the MPFI system in the kit.
- 6. Identify the components of the CRDI system in the kit.

BOARD EXAMINATION

Note:

- All the exercises/experiments in both sections should be completed. Two exercises/experiments will be given for examination by selecting one from PART A and one from PART B.
- All the exercises/experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machineries / equipments before commencement of the board practical examination.

Ν	DETAILLED ALLOCATION OF MA								
SI. No.	Description	Max. Marks							
	Part- A								
1	Procedure	10							
2	Tabular Column / Formulae	10							
3	Observation / Calculation / Diagram	25							
4	Result / Graph	5							
	Part- B	<u> </u>							
5	Procedure / Explanation	10							
6	Observation / Dismantling	15							
7	Result / Assemble	15							
	Viva-voce	10							
	Total 100								

LIST OF EQUIPMENT / TOOLS/MACHINERY'S REQUIRED

(for a batch of 30 students)

SI. No.	Machinery's / Equipment / Tools	Quantity
1	Open cup apparatus	1 No.
2	Closed cup apparatus	1 No.
3	Saybolt viscometer	1 No.
4	Redwood viscometer	1 No.
5	Two stroke diesel or petrol engine cut section	1 No.
6	Four stroke diesel or petrol engine cut section	1 No.
7	Refrigerator test rig	1 No
8	Four stroke diesel engine cut section model	1 No
9	Cam shaft	1 No
10	Timing gear	
11	Oil & water pump	1 No (each)
12	Fuel pump	1 No
13	Distributor pump	1 No
14	Injector	1 No
15	MPFI Kit	1 No
16	CRDI Kit	1 No
17	Basic and special tools	sufficient quantity
18	Service tools	sufficient quantity
19	Consumables	sufficient quantity

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name	:	1021 Diploma in Automobile	Engineering
-------------	---	----------------------------	-------------

Subject Code : 4021510

Semester : V

Subject Title : Fuels, Combustion and Emission Control

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	uctions	Examination				
4021510 Fuels,	Hours /	Hours /	Internal	Marks Board	T ()	Duration	
Combustion	Week	Semester	Assessment	Examinations	Total		
and Emission	6	96	25	100*	100	3 Hrs.	
* Examinations	will be cor	ducted for 10	00 marks and it v	vill be reduced to	75 marks	s for result.	

Topics and Allocation of Hours

UNIT	ΝΙΤ ΤΟΡΙΟ					
I	Fuels and Combustion	18				
II	Energy, Fuel for IC engines, Alternate Fuels	18				
- 111	Combustion in SI Engines, CI Engines, Air Pollution	18				
IV	Filters and Manifolds, Engine Noise, Exhaust Control	18				
V	Pollution and Emission Control standards and Act.					
	Test & Revision					
	Total					

RATIONALE

Impart knowledge on the basics of fuels and its types. The need for alternate fuels and emission and pollution control and its standards are taught.

OBJECTIVES

At the end of the course, the students will be able

- To understand the types of fuel, the methods for determining the calorific values of fuels, combustion calculations and the nuances of combustion.
- To create an awareness on air pollution due to I.C. engines and its ill effects.
- To study the methods of reducing or eliminating the harmful gases from engine and gas turbine exhausts.
- To study the different norms and legislations to put a check over the air pollution.
- To study the concepts of alternative fuels, automobile pollution and control.

4021510 FUELS, COMBUSTION AND EMISSION CONTROL

DETAILED SYLLABUS

Conten	ts Theory	1
Unit	Name of the Topics	Hours
I	FUELS AND COMBUSTION	
	1.1: Fuels	
	Classification - solid fuels - liquid fuels - gaseous fuels - merits and	6
	demerits - requirement of good fuel - calorific value of fuels - Higher	
	calorific value - lower calorific value - Construction and working of bomb	
	calorimeter and gas calorimeter – simple problems.	
	1.2: Combustion	12
	Combustion - Elements and compounds – atoms and molecules – atomic	
	weight - molecular weight - combustion of solid fuels - combustion of	
	gaseous fuels - theoretical weight of air required for complete combustion	
	- theoretical volume of air required for complete combustion - Gravimetric	
	analysis - Volumetric analysis - Weight of carbon in flue gases - weight	
	of flue gases per kg of fuel burnt - Excess air supplied - weight of excess	
	air supplied - simple problems.	

II	ENERGY AND ALTERNATE FUELS	
	2.1: Energy	
	Estimation of petroleum reserve – World Energy Scenario - Energy	8
	Survey of India – survey of oil consumption in India - Availability of	
	petroleum products in India. Indian initiatives in alternate fuels. Fuels for	
	IC Engines: Introduction – Desirable properties - Classification –	
	Description the processing of crude oil – Fuels for SI Engines – octane	
	number – octane rating - Fuels for CI Engines – cetane number – cetane	
	rating.	
	2.2: Alternate Fuels	10
	Introduction – list of alternate fuels - Need for alternate fuel – Availability	
	of alternate fuels. Air craft fuels – Liquefied Petroleum Gas (LPG):	
	Schematic diagram of LPG engine – advantages and disadvantages.	
	Compressed Natural Gas (CNG): Schematic diagram of CNG engine -	
	emissions - advantages and disadvantages. Ethanol: production process	
	- emissions - advantages and disadvantages. Methanol: production	
	process – emissions - advantages and disadvantages. Alcohol (Diesel Blends) – Dimethyl ether – Bio diesel.	1
III	COMBUSTION IN SI ENGINES, CI ENGINES AND AIR POLLUTION	
	3.1: Combustion in SI engines	
	Ignition limit – combustion stages – factors affecting SI combustion –	6
	Detonation and its effects - methods to control detonation - requirement	
	of combustion chamber – types – emission of SI engines.	
	3.2: Combustion in CI engines	6
	Combustion stages – factors affecting delay period – knocking of CI	
	engines – methods to control knocking - requirement of combustion	
	chamber – types – emissions of CI engines – particulate matter	
	emissions.	
	3.3: Air Pollution	6
	Introduction - Need - pollutants – sources of pollutants. Exhaust gas	
	analysis: Orsat apparatus – construction and working principle. Smoke	
	meter – exhaust gas analyser – Working principle. Control of smoke	
	emissions from IC engines.	

IV	FILTERS AND MANIFOLDS FOR IC ENGINES, ENGINE NOISE AND	
	EXHAUST CONTROL	
	4.1: Filters and manifolds for IC Engines	6
	Air filters – maintenance of air filter – cleaning of air filters. Engine fuel	
	filter – types – maintenance. Engine oil filter – uses. Manifolds:	
	Introduction – intake manifold - factors involved in design. Exhaust	
	manifold – maintenance.	
	4.2: Engine Noise	5
	Engine noise sources - Engine noise reduction – exhaust muffler –	
	description – types – Engine silencers – selection of silencer.	
	4.3: Exhaust control	7
	Construction and working principles of Catalytic converter, Diesel	
	particulate filter, Exhaust Gas Recirculation, Learn burn engine and	
	Oxygen Sensor (Lambda Sensor). Crank case emission control -	
	evaporative emission control systems.	
V	POLLUTION AND EMISSION CONTROL STANDARDS AND ACT.	
	The air prevention and control of pollution act 1981 - introduction - functions of central boards - functions of state board - power of the board	
	- prevention and control of air pollution - penalties and procedure.	÷.,
	Emission standards - Indian standards of emission for petrol and diesel	6
	engines – Bharat Stage emission standards – BS IV, BS VI. Impact of	
	shifting to BS VI. Euro standards – EURO 4, EURO 5 and EURO 6. Japan	
	emission standards.	
	Fuel quality standards. Microprocessor based control system – computer	4
	controls in automobiles. Pollution controlled vehicles.	

Reference Books:

- 1. Automobile Technology, R.B.Gupta, SatyaPrakashan, New Delhi.
- 2. Internal Combustion Engines, Taylor C F, MIT Press.
- 3. Internal Combustion Engine Fundamentals, Heywood J B, McGraw Hill Book Co.
- 4. Internal combustion engine, Ramalingam. K.K., SciTech publications.
- 5. Advanced IC engines, S.S.Thipse, Jaico Publishing House
- 6. Alternative Fuels Guide Book, Bechtold, R.L., SAE, 1997.

- 7. Alcohols and motor fuels progress in technology, Series No.19, SAE Publication USA 1980.
- 8. SAE Paper Nos.840367, 841156, 841333, 841334.
- 9. The properties and performance of modern alternate fuels SAE Paper No.841210.
- 10. Automobile pollution, Dr.Satykush, IVY Publishing House.
- 11. Service Manuals from Different Vehicle Manufacturers.
- 12. Internal Combustion Engines, "Ganesan.V", Tata-McGraw Hill Publishing Co.
- 13. Engine Emission, "Springer and Patterson", Plenum Press, 1990.
- 14. SAE transactions, " vehicle emission ", 1982 (3 volumes).
- 15. The Air prevention and control of pollution Act, 1981
- 16. Bharat Stage Emission Standards (BS Norms)
- 17. Japan Emission Norms

Reference Web Link / Video

Торіс	Website	
Engine Combustion	NPTEL	https://nptel.ac.in/courses/112/104/112104033/
Fundamentals of automotive system	NPTEL	https://nptel.ac.in/courses/107/106/107106088/

Blank page

www.binils.com

binils app on Google Play Store Anna University, Polytechnic & School Android App 100

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Course Name : 1021 Diploma in Automobile Engineering

Subject Code : 4021520

Semester : V

Subject Title : Pov

: Power Units and Transmission

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Subject	Instr	uctions		Examination			
	4021520	Hours /	Hours /		Marks			
	Power Units	Week	Semester	Internal	Board	Total	Duration	
	and			Assessment	Examinations			
	Transmission	5	80	25	100*	100	3 Hrs.	
Ē	Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.							

Topics and Allocation of Hours COM

UNIT	ΤΟΡΙΟ				
I	Frame, Front Axle and Steering System				
II	Clutch and Gear Box				
	III Final Drive, Differential and Hydrostatic Drive				
IV	V Suspension System and Rear Axle				
V	V Braking System, Wheels and Tires				
	Test & Revision				
Total					

RATIONALE:

This subject provides knowledge about the various components of vehicle and the transmission train used. This subject will also help the students during inspection, installation, operation and maintenance of transmission system of automobile. This subject is a core subject for automobile engineers and they should develop desired knowledge and skills over it.

OBJECTIVES:

- To Understand the Various Transmission Members of the Automotive Vehicle.
- To Understand the Principle of Operation of Clutch.
- To Understand Working and Construction of Various Types of Gear Boxes.
- To Understand Working of Automatic Transmission.
- To Understand the Types and Working of Driveline.
- To Understand the Working of Differential Mechanism.
- To Understand the Types of Rear Axles.
- To Understand Types of Wheels and Tire.
- To Understand the Working of Braking System
 S.COM

4021520 POWER UNITS AND TRANSMISSION

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	FRAME, FRONT AXLE AND STEERING SYSTEM	
	1.1: Frame	
	Chassis - Types of Chassis Layout - Various Types of Frames - Loads	3
	Acting on Vehicle Frame.	
	1.2: Front Axle	5
	Construction - Beam and Tubular. Classification of Axle According to their	
	function - Live Axle and Dead Axle. Stub Axle: Types of Stub Axle – Elliot,	
	Reverse Elliot, Lemoine and Reverse Lamoine.	
	1.3: Steering System	7
	Ackerman's and Davi's Steering Mechanisms. Front Wheel Geometry -	
	Castor, Camber, King Pin Inclination, Toe-In and Toe-Out. Types of	

	Steering Gear Boxes - Recirculating Ball and Rack & Pinion. Power and	
	Power Assisted Steering.	
	CLUTCH AND GEAR BOX	
••	2.1: Clutch	
	Role of Clutch in Driving System, Requirements of Transmission System.	8
	Construction and Working Principle of Different Types of Clutches - Single	Ū
	Plate Clutch, Multiplate Clutch, Cone Clutch, Centrifugal Clutch, Semi-	
	Centrifugal Clutch and Diaphragm Clutch. Hydrodynamic Transmission -	
	Fluid Coupling and Torque Converter.	
	2.2: Gear Box	7
	Objective of the Gear Box. Types of Gear Boxes – Sliding Mesh, Constant	•
	Mesh and Synchromesh Device. Epicyclic Gear Box.Automatic Over-	
	Drive. 4 Wheel Drive - Transfer Cases. Continuously Variable	
	Transmission.	
111	FINAL DRIVE, DIFFERENTIAL AND HYDROSTATIC DRIVE	
•••	3.1: Final Drive	
	Universal Joints – Purpose, Types of Universal Joint - Variable Velocity Joints - Spider Type, Ring Type And Ball and Trunnion Type, Constant	
	Velocity Joints - Rzeppa, Bendix Weiss and Tracta. Propeller Shaft, Rear	
	Axle Drives - Hotchkiss Drive and Torque Tube Drive. Final Drive -	
	Different Types of Final Drive - Worm and Worm Wheel, Straight Bevel	
	Gear, Spiral Bevel Gear and Hypoid Gear Final Drive.	-
	3.2: Differential and Hydrostatic Drive	5
	Differential – Principle and Constructional Details of Differential Unit, Non–	
11/	Slip Differential, Differential Locks. Front Wheel Drive. Hydrostatic Drive.	
IV	SUSPENSION SYSTEM AND REAR AXLE	
	4.2: Suspension System	40
	Need for Suspension System, Types of the Suspension System -Rigid	10
	Axle Suspension and Independent Suspension. Types of Suspension	
	Springs – Leaf Springs - Quarter Elliptic, Semi Elliptic, Three Quarter Elliptic, Full Elliptic and Transverse Leaf Spring, Coil Spring, Torsion Bar,	
	Air Bags and Rubber Spring. Antiroll Bar, Function and Construction of	
	Hydraulic Dampers - Shock Absorbers. Active Suspension System	
	riguraulie Dampers - Shock Absorbers. Active Suspension System	

	4.1: Rear Axle	4
	Types Of Rear Axles -Semi-Floating Axle, Full-Floating Axle, Three	
	Quarter Floating Axle. Multi Axles Vehicles.	
V	BRAKING SYSTEM, WHEELS AND TIRES	
	5.1: Braking System	9
	Need for Brake Systems, Stopping Distance. Brake Types - Drum And	
	Disc Brakes. Types of Braking Systems - Mechanical Braking System,	
	Hydraulic Braking System and Pneumatic Braking System. Principle of	
	Master Cylinder, Wheel Cylinder, Leading and Trailing Shoes. Power -	
	Assisted Braking System, Servo Brakes. Antilock Braking System.	
	Bleeding Of Brakes. Parking Brakes.	
	5.2: Wheels And Tires	6
	Wheels - Types of Wheels - Spoked, Pressed Steel and Cast Alloy	
	Wheel. Tires -Types of Tires – Cross Ply Tires, Radial Tires and Tubeless	
	Tires. Run Flat Tires. Causes of Excessive Tire Wear. Care and	
	Maintenance of Tires.	

Reference Books:

- 1. Chassis, Body and Transmission, Vijay Singh & Raj Kumar, Ishan Publications, Jalandhar.
- 2. Automotive Transmission & Power Train, William H. Grouse.
- 3. Modern Transmission systems, Judge, A.W., Chapman and Hall Ltd., 1990
- 4. Advanced Vehicle Technology, Heinz Heisler, 2nd Edition, 2002, Butterworth-Heinemann
- 5. Dr.kripal Sing, Automobile Engineering Vol 1 & 2, Standard Publisher Distributors, Delhi

Reference Web Link / Video

Торіс	Website	Link
Fundamentals of	NPTEL	https://nptel.ac.in/courses/107/106/107106088/
automotive system		

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

Subject Code : 4021531

Semester : V

Subject Title : Two-Wheeler and Three-Wheeler Technology

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examinatior	า	
4021531 Two-Wheeler	Hours /	Hours /	Internal	Marks Board		Duration
and Three-	Week	Semester	Assessment	Examinations	Total	
Wheeler Technology	5	80	25	100*	100	3 Hrs.
* Examinations	will be cor	ducted for 10	00 marks and it v	vill be reduced to	75 mark	s for result.

Topics and Allocation of Hours

UNIT	ΤΟΡΙϹ			
I	The Power Unit and Fuel System			
П	Ignition Systems and Electrical System			
	I Chassis and Sub Systems			
IV	V Transmission System, Brakes and Wheels			
V	Two and Three Wheeler			
	Test & Revision			
	Total			

Rationale:

There is an increase in need of public transport in cities and rural areas. This has lead to huge demand of two and three wheelers. Presently Two and three wheelers play an important role in the public transport in all over the world. The subject is pre-requisite for understanding concept of transmission unit, fuel system, electrical system Chassis, wheels, tires and maintenance and servicing of two and three wheelers.

Objectives:

At the end of the course, the students will be able

- To learn the different types of two and three wheelers.
- To learn the components and their importance and working in two and three wheelers.
- To learn the maintenance of two and three wheelers.
- To present a problem oriented in depth knowledge of two and three wheeler technology.
- To address the underlying concepts and methods behind two and three wheeler technology.

4021531 TWO-WHEELER AND THREE-WHEELER TECHNOLOGY

Contents: Theory

Unit	Name of the topic	Hours		
I	THE POWER UNIT AND FUEL SYSTEM			
	1.1: The power unit	8		
	Two stroke and four stroke - SI & CI engine construction and working -			
	merits and demerits. Engine selection criteria for two-wheeler and three			
	wheeler. Valve operating mechanism. Symmetrical and unsymmetrical			
	valve & port timing diagrams - Construction and function of exhaust			
	system: Muffler types and their applications – Tail pipe arrangement and			
	location - scavenging process.			
	1.2: Fuel system	7		
	Fuel system: Carburetor – functions – working principle. Electronic petrol			
	injection system. Lubrication system in four stroke engines - Emission			
	control system – Working of Catalytic convertor, Exhaust Gas			
l	Recirculation, Positive crankcase ventilation.			

II	IGNITION SYSTEMS AND ELECTRICAL SYSTEM	
	2.1: Ignition systems	
	Ignition systems - Magneto coil - battery coil ignition system - Electronic	9
	ignition System. Starting system - Kick starter system – Self starter	
	system. DTSI - Speedo meter – Mechanical and Digital - Construction	
	and working.	
	2.1: Electrical system	
	Battery - Ratings in Two and Three wheelers. Layout of electrical system	
	in two and three wheelers. Dash units – Use of Speedo meter, trip meter,	6
	engine speed indicator/tachometer. Arrangements of Head lamp - tail	
	lamp and indicator light.	
	CHASSIS AND SUB SYSTEMS	
	3.1: Chassis	
	Main frame for two and three wheelers: Single cradle frame - double	7
	cradle frame - Tubular frame - twin-spar frame. Chassis: Conventional	
	chassisintegral construction. Layout of two-wheeler and three-wheeler	
	vehicle. Different drive systems for two wheelers and three wheelers 3.2: Sub systems	8
	Clutch -Single plate, multiple plate wet and centrifugal clutch- Gear box-	
	Constant mesh and sliding mesh- CVT -Continuously variable	
	Transmission-Gear controls in two wheelers. Front and rear suspension	
	systems- Shock absorbers. Panel meters and controls on handle bar of	
	two and three wheelers.	
IV	TRANSMISSION SYSTEM, BRAKES AND WHEELS	
	4.1: Transmission system: Layout of transmission system - Multi-disc	
	clutch – chain drive – belt drive – gear box: Constant mesh gear box	7
	working principle – gear shifting mechanism.	
	4.2: Brakes and Wheels: Drum brakes & Disc brakes for two and three	
	wheelers - Construction and Working and its Types - Front and Rear	
	brake link layouts. Brake actuation mechanism. Selection criteria of	7
	wheels and tires - Wheels: Spoked wheel, cast wheel, Disc wheel & its	
	merits and demerits. Tires and tubes Construction & its Types.	

V	TWO AND THREE WHEELER	
	5.1: Two wheeler	
	Two wheeler- case study of Sports bike, Motor cycles, Scooters and	6
	Mopeds – Parts, Components, maintenance and servicing.	
	5.2: Three wheeler and E-Vehicle	
	Three wheeler- Case study of Auto rickshaws, Pick up van, Delivery van	
	Trailer- parts, components, maintenance and Servicing.	8
	E-Vehicle: Manufacturer in India – two wheeler and three wheeler models	
	- Compare.	

Reference Book

- 1. Irving P.E Motor Cycle Engineering. Temple Press Book London.
- 2. The Cycle Motor manual Temple Press Ltd London
- 3. Maintenance Manuals of Leading Two & Three Wheelers Manufacturers in India.
- 4. Dr.Kirpal Sing, Automobile Engineering Vol 1 & 2, Standard Publisher Distributors, Delhi
- 5. Dhruv U. Panchal, Two and Three Wheeler Technology, PHI Learning Private Limited, Delhi

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021532
- Semester : V
- Subject Title : Tractor and Farm Equipment

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examinatior	า	
4021532	Hours / Hours /			Marks		
Tractor and	Week	Semester	Internal	Board	Total	Duration
Farm			Assessment	Examinations		
Equipment	5	80	25	100*	100	3 Hrs.
* Examinations	will be cor	ducted for 10	00 marks and it	will be reduced to	75 marks	s for result.

Topics and Allocation of Hours

UNIT	ΤΟΡΙΟ	
I	General Design of Tractors and Accessories	15
П	Ploughing Implements	
- 111	Harvesting and Threshing Equipments	
IV	Sprayers and Dusters	
V	Maintenance of Tractors	
Test & Revision		
Total		

Rationale:

Farm equipment provide higher work output rates to sustain higher demand for increased agricultural production. Farm tools, implements, and equipment play very important role in horticultural operations. Their availability makes the work much easier and faster. However, even if one may have the most sophisticated tools and implements, but does not know how to use them, they are useless. This subject designed to understand the basic farm equipment.

Objectives:

At the end of the course, the students will be able

- To learn the types of tractors and its operating principles.
- To study about the ploughing implements.
- To understand the harvesting and threshing equipment.
- To address the fertilizers and equipment used for it.
- To know the maintenance procedure of tractors

Theory

Unit	Name of the Topics	Hours		
	GENERAL DESIGN OF TRACTORS AND ACCESSORIES			
	Classification of Tractors – Track laying tractor – heavy wheeled tractors –	7		
	general purpose tractors – two wheeled tractors.			
	Main components of Tractor – safety rules – Power Take Off Shaft – Belt	8		
	pulley – Power Tiller. The tractor hydraulic system – operating principle.			
II	PLOUGHING IMPLEMENTS			
	Primary and Secondary Tillage equipment - DISC Plough – Mould Board	8		
	Plough – Tiller and Harrows – Construction and maintenance – furrow			
	mounted plough – plough controls - Mounting the plough – ploughing			
	methods systematic ploughing, round and round ploughing and one way	7		
	ploughing - hitching – Three point linkage – Cage Wheel and its uses.			

	-				
III	HARVESTING AND THRESHING EQUIPMENTS				
	Harvesting – conventional and Modern Harvesters – Threshing – Principle	8			
	of Paddy Threshers construction and maintenance – combine –				
	construction and advantages, disadvantages – safety precautions.				
	Cultivation machinery – cultivators – effecs and uses of cultivator – disc				
	harrows – spring tine cultivator – seed harrows – effects and uses – chain				
	harrows – effects and uses – rotary cultivator – uses.				
	Corn drills – seed metering mechanisms – depth of sowing – fertilizer				
	metering unit – checking the sowing rate. – Combine harvester – potato				
	crop machinery – hand feed and automatic – sugar feet crop machinery.				
IV	SPRAYERS AND DUSTERS				
	Classification of sprayers and dusters Manual and Power sprayers and	7			
	Dusters – components of sprayers and dusters – different pumps,				
	nozzles, used in sprayers – maintenance.				
	Fertilizer distributors – rotating plate and flicker fertilizer unit – spinning	7			
	disc type - the spreader mechanism - rate of application of manure.				
	Haymaking machinery – Forage harvester – The Buck rake.				
V	MAINTENANCE OF TRACTORS				
	Daily Maintenance of Tractors – Maintenance of Tractors on hour basis –	7			
	Trouble shooting of Tractor engines, clutch, Gear box – Major overhaul of				
	engines.				
	Maintenance of the plough – routine maintenance of cultivating machinery				
	- maintenance to grain drills - maintenance of fertilizer distributor -				
	maintenance of farmyard manure spreaders.				
	1				

Reference Book

- 1. Elements of Agricultural Engineering Jagdishwar Sahay.
- 2. Farm Tractor- Maintenance and Repair S.C.Jain, C.T.Raj, TATA MC Graw Hill.
- 3. Farm Machinery and Equipment Smith & Wilkey, Tata MC Graw Hill.
- 4. Farm Machinery– C.Culpin.
- 5. Basic Farm Machinery, JM Shippen and JC Turner, Pergamon International Library.- Second edition

Reference Web Link / Video

Торіс	Website	Link
Farm Machineries	NPTEL	https://nptel.ac.in/courses/126/105/126105009/

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021533
- Semester : V
- Subject Title : Industrial Automation

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	Instructions			Examination			
4004500	Hours /	Hours	./			Marks		
4021533 Industrial	Week	Semes	ter	Internal		Board	Total	Duration
Automation				Assessmer	nt	Examinations	, otai	
	5	80		25		100*	100	3 Hrs.
* Examinations	will be cor	ducted for	or 10	0 marks and	it v	will be reduced to	75 marks	s for result.

Topics and Allocation of Hours

UNIT	ΤΟΡΙϹ	TIME			
I	Automation				
II	II Drive systems				
	III Robotics, Automated Inspection and Testing				
IV	IV Artificial Intelligence (AI), Industry 4.0				
V	V Rapid Prototyping (RP)				
Test & Revision					
	Total 80				

RATIONALE

Impart knowledge about the automation process in the automobile industries. To acquire knowledge about the hydraulic and pneumatic systems and its functions of the components. Understand the control methods of automation.

OBJECTIVES

- To learn the types of chassis and axles.
- To study about the steering system and its methods.
- To understand the suspension systems and its components.
- To learn the functions of universal joint and propeller shafts.
- To study working principle of differential unit.
- To learn about the types of brakes and tires.
- To know the function of clutch and gear box and its types

4021533 INDUSTRIALAUTOMATION

Conten	ts: Theory	m
Unit	Name of the Topics	Hours
I	AUTOMATION	
	1.1: Introduction to Automation	
	Definition, automation principles and strategies - scope of	2
	automation - low cost automation - Production concepts and	
	automation strategies.	
	1.2: Automation in Manufacturing Industries	5
	Introduction - Automation in production system - Principles and	
	strategies of automation - Basic elements of an automated system.	
	Material handling and identification technologies: Overview of	
	material handling systems - Types of material handling equipment -	
	Conveyor system - Automated guided vehicle system - Automated	
	storage systems – Description of Automatic Identification Methods.	
	1.3: Automation in Process Industries	4
	Introduction to computer based industrial automation - Direct Digital	

	Control (DDC) - Distributed Control System (DCS) - Supervisory	
	Control and Data Acquisition (SCADA) based architectures only.	
	1.4: Programmable Logic Controller (PLC)	4
	Block diagram of PLC - Programming languages of PLC - Basic	
	instruction sets - Levels of process safety through use of PLCs.	
	Introduction to communication protocols - Profibus, Field bus,	
	HART protocols.	
II	DRIVE SYSTEMS	
	2.1: Electrical Drives	6
	Electric machines - Power converter - controllers - DC motor drives	
	- braking. Sensing and feedback elements - current and speed	
	loops, P, PI and PID controllers – response comparison. Induction	
	motor drives – stator voltage control of induction motor – V/F	
	control- Scalar and vector control of induction motor. Synchronous	
	motor drives – principles of synchronous motor control - full and half	
	step motor drives, micro-stepping - Switched reluctance motor	
	drive, Brushless DC motor drive- PMSM drives, BLDC drive.	5
	Introduction – applications - advantages and limitations. Types of	3
	fluid power systems, Properties, Types of fluids – Fluid power	
	symbols. Basics of hydraulics - Hydraulic system and components:	
	Hydraulic Pumps – Classification - selection and design considerations. Fluid Power Actuators – Linear hydraulic actuators	
	-	
	and types – Semi-rotary and rotary actuators.	4
	2.3: Pneumatic system and components	4
	Introduction to Pneumatics – Compressors – Types – Air treatment	
	- FRL Unit - Air control valves, Quick exhaust valves, pneumatic	
	actuators. Fluid power circuit design, Speed control circuits,	
	synchronizing circuit, Pneumo-hydraulic circuit, Sequential circuit	
	design. Servo systems – Hydro mechanical servo systems, Electro	
	hydraulic servo systems and proportional valves. Fluid power	
	system maintenance and troubleshooting: Fluidics – Introduction to	
	fluidic devices. Fluid power circuits; failure and troubleshooting.	

III	ROBOTICS, AUTOMATED INSPECTION AND TESTING				
	3.1: Robotics	8			
	Robot anatomy - Position and orientation – Various joints - Degrees				
	of freedom - Direct kinematics - Inverse kinematics - Linear and				
	angular velocities - Manipulator - rotary joints – Inverse - Wrist and				
	arm - Static analysis - Force and moment Balance - Trajectory				
	planning, Pick and place operations, Continuous path motion,				
	Interpolated motion, Straight line motion. Gripper force analysis and				
	gripper design for typical applications, design of multiple degrees of				
	freedom, active and passive grippers - Factors influencing the				
	choice of a robot, robot performance testing- Impact of robot on				
	industry and society				
	3.2: Automated Inspection and Testing	7			
	Automated Inspection - Principles and Methods - Sensor				
	Technologies for Automated Inspection - Coordinate Measuring				
	Machines - Machine Vision - optical Inspection Methods. Robotic				
	vision systems - image representation - object recognition and categorization- depth measurement - image data compression -	m			
	visual inspection.				
IV	ARTIFICIAL INTELLIGENCE (AI), INDUSTRY 4.0				
	4.1: Artificial Intelligence (AI):	7			
	Introduction - History of AI. Intelligent agents: Agents and				
	Environment - Reactive agent – deliberative - goal-driven, utility-				
	driven, and learning agents. Artificial Intelligence programming				
	techniques. Introduction to ML and DL Concepts				
	Expert systems: - Architecture of expert systems - Roles of expert				
	systems – Knowledge Acquisition – Meta knowledge, Heuristics.				
	Typical expert systems – MYCIN, DART, XOON. AI applications in				
	Industry Automation using - natural language processing - computer				
	vision - speech recognition. Description only.	_			
	4.2: Industry 4.0	7			
	Introduction - The Various Industrial Revolutions. Challenges for				
	Industry 4.0 - Internet of Things (IoT) - Industrial Internet of Things				

	1					
(IIoT). Smart Manufacturing - Smart Devices and Products - Smart						
Logistics - Smart Cities. Technologies for enabling Industry 4.0 -						
Cyber Physical Systems - Robotic Automation - Collaborative						
Robots - Support System for Industry 4.0 - Mobile Computing -						
Cyber Security. (Description only)						
RAPID PROTOTYPING (RP)						
Introduction - History of Rapid Prototyping (RP) systems - Growth of	4					
RP industry - Classification of RP systems. 3D printing technologies						
- selection of material and equipment - 3D printing in Industry 4.0						
environment.						
RP processes: Stereo lithography, Laser Sintering, Fused	6					
Deposition Modeling, Laminated Object Manufacturing, Solid						
Ground Curing – working principle. Rapid Tooling: Indirect rapid						
tooling - Direct rapid tooling - soft tooling Vs hard tooling. Rapid						
Manufacturing Process Optimization- Factors influencing accuracy						
and errors. Software for RP - STL files - internet based software,						
collaboration tools. Augmented reality and virtual reality - The historical development of	4					
AR and Virtual Reality - Requirements for AR and VR - Benefits of						
AR and VR.						
	Cyber Physical Systems - Robotic Automation - Collaborative Robots - Support System for Industry 4.0 - Mobile Computing - Cyber Security. (Description only) RAPID PROTOTYPING (RP) Introduction - History of Rapid Prototyping (RP) systems - Growth of RP industry - Classification of RP systems. 3D printing technologies - selection of material and equipment - 3D printing in Industry 4.0 environment. RP processes: Stereo lithography, Laser Sintering, Fused Deposition Modeling, Laminated Object Manufacturing, Solid Ground Curing – working principle. Rapid Tooling: Indirect rapid tooling - Direct rapid tooling - soft tooling Vs hard tooling. Rapid Manufacturing Process Optimization- Factors influencing accuracy and errors. Software for RP - STL files - internet based software, collaboration tools.					

Reference Books

- 1. Pneumatic Systems Principles and Maintenance S.R. Majumdar Tata McGraw Hill Pub co
- 2. Introduction to Programmable Logic Controllers, Gary Dunning Thomson Delmar Learning
- 3. Fluid Power by Harry L. Stewart Audel Series
- Hydraulics & Pneumatics Power for production Harry L Stewart Industrial Press Inc, New York
- 5. Pneumatic circuit by Harry L. Stewart Audel Series
- 6. Fundamentals of pneumatic control Engg Text book By Festo
- 7. Introduction to Pneumatics Test Book by Festo

Reference Web Link / Video

Торіс	Website	Link
Industrial automation and control	NPTEL	https://nptel.ac.in/courses/108/105/108105088/

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS

N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021540
- Semester : V
- Subject Title : Automobile Servicing Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4021540	Hours /	Hours /		Marks		
Automobile	Week	Semester	Internal	Board	Total	Duration
Servicing	moon	Comocion	Assessment	Examinations	lotar	
Practical	4	64	25	100*	100	3 Hrs.
* Examinations		ductod for 1	20 marks and it i	will be reduced to	75 mork	e for recult

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Identify the analyse faults in a vehicle as per the service manual.
- Learn the procedure for servicing of various components of the car.
- Illustrate the complete methodology of evaluation and maintenance of automobile.
- Perform dismantling and assembling of automobile components using tools.
- Enumerate the importance of maintenance and also the step by step procedure for maintaining the various automotive systems.

4021540 AUTOMOBILE SERVICING PRACTICAL

Exercises

- 1. Check and identify the status of the following as per the preventive maintenance procedure under the hood as per the service manual of a car. Check the air filter, Check the accessory belts, Check the radiator, Check the hoses, Check the fluid levels and Check the windshield wipers.
- 2. Check and identify the status of the following as per the maintenance procedure of a vehicle cooling system.

Look at radiators, analyse about antifreeze / coolant, Review radiator pressure caps, Shoot the breeze about fan, understand water pumps, study about thermostats, Explore heater cores

 Check and identify the status of the following as per drive train of a car.
 How power flows through drive train, Manual transmission, Automatic transmission, Trouble shooting, Maintenance of the drive train, Common transmission repairs

4. Check and identify the status of the following as per the manual of a vehicle in the brake system.

Check the brake system, check fluid level and leaks, change the fluid, Bleeding procedure, adjust parking brake, check the antilock braking system (ABS).

5. Check and identify the status of the following as per the manual of a vehicle in the steering and suspension systems

Understand the steering system and suspension systems

6. Check and identify the status of the spark plug.

Remove the spark plug, Inspect the spark plug, Measure and re-gape the spark plug, Install the spark plug, Check distributor, dwell meters, timing light.

7. Check and identify the status of the Fuel system.

Check and replace fuel and air filter, check your fuel pump, PCV valve and accelerator pump, adjust idle speed, idle mixture and choke, Install carburetor.

8. Check and identify the status of the engine oil.

Oil grade and additives requirement, how often to change, change the oil and oil filter, recycle the oil and filter

9. Check and identify the status of the lubrication oil.

Study the lube oils, need of lube oil, lubricate steering linkage, lubricate suspension system.

10. Check and identify the status of the tires.

Understand the anatomy of a tire, Deciphering tire codes, choose right tire, check for wear. Maintenance of the tire – air pressure, rotate, align and balance.

11. Check and identify for the heart burn issues in car.

Check and add coolant, remove radiator cap, determine the coolant needs to be flushed or changed, flush and change the coolant, find leaks and repair, replace hoses and hose clamps, replace water pumps, adjust / replace the accessory belt,

12.Check, measure and adjust the caster, chamfer, king pin inclination, toe-in and

toe- out of a car using Wheel alignment.

replace a thermostat.

13. Remove the wheel from the vehicle and balance the wheel using wheel balancing machine.

BOARD EXAMINATION

Note:

- All the exercises should be completed before the Board Examinations. Any one exercise will be given for examination.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

SI. No.	Description	Max. Marks				
1	Procedure/Explanation	20				
2	Tools and its handling methods	15				
3	Observation reports	25				
4	Service / Maintenance and troubleshooting steps	25				
5	Result	5				
6	Viva-voce	10				
	Total					

DETAILLED ALLOCATION OF MARKS

LIST OF EQUIPMENT / TOOLS/MACHINERY'S REQUIRED

(for a batch of 30 students)

SI. No.	Machinery's / Equipment / Tools	Quantity		
1	LMV	02		
2	Drive train system	01		
3	Brake system	01		
4	Steering system	01		
5	Suspension system	01		
6	Fuel system	01		
7	Coolant system	01		
8	Tires	01		
9	Wheel balancer	01		
10	Wheel aligner			
11	Vehicle lift	01		
12	Hydraulic press	01		
13	Transmission jack	01		
14	Jack and Jack stand 01			
15	Service manuals Sufficient quantity			
16	Automobile Shop floor tools	Sufficient quantity		
17	Tool box	Sufficient quantity		

Blank Page

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021550
- Semester : V

Subject Title : Engine Testing and Emission Measurement Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	uctions	Examination			
4021550	Hours /	Hours /		Marks		
Engine Testing	Week	Semester	Internal	Board	Total	Duration
and Emission		•••••••	Assessment	Examinations		
Measurement Practical	/ ⁴ /	64	25	C ^{100*}	100	3 Hrs.
* Examinations v	vill be con	ucted for 10	0 marks and it w	vill be reduced to 7	75 marks	for result.

Rationale:

This subject will enable the students in determining the performance of petrol and diesel engine at various loading condition and also understanding the procedure of Emission Measurement in diesel and petrol engine.

Objectives:

At the end of the course, the students will be able

- To conduct the performance test of petrol and diesel engines and draw the performance curve
- To analyze the emission gases from petrol and diesel
- To prepare a heat balance sheet petrol or diesel engines
- To prepare Morse test on a petrol or diesel engines
- To conduct the bomb calorimeter experiment and find the calorific value of the diesel
- To find the intensity of smoke from a diesel engine

4021550 ENGINE TESTING AND EMISSION MEASUREMENT PRACTICAL

Experiments

- 1. Conduct the variable speed performance test of a single cylinder petrol engine and draw the curve. 1. BHP, IHP, FHP Vs Speed 2. Volumetric efficiency, SFC Vs Speed.
- 2. Conduct the constant speed performance test of a single cylinder diesel engine and draw the curve. 1. BHP, IHP, FHP Vs Speed 2. Volumetric efficiency, SFC Vs Speed.
- 3. Find the Indicated Horse Power of a multi cylinder engine by Morse test.
- 4. Prepare the heat balance sheet on single cylinder petrol / diesel engine.
- 5. Prepare the heat balance sheet on multi cylinder petrol / diesel engine.

- 7. Find the intensity of smoke from a diesel engine using smoke meter.
- 8. Measure the emissions in exhaust of an engine by exhaust gas analyser.
- 9. Find the Calorific Value of diesel using Bomb calorimeter.

Reference Web Link / Video

Торіс	Website	Link		
Automotive	Virtual Labs	http://vlabs.iitkgp.ernet.in/rtvlas/#		
Systems				

BOARD EXAMINATION

Note:

- All the experiments should be completed before the Board Examinations. Any one experiment will be given for examination.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

SI. No.	Description	Max. Marks		
2	Procedure Observation / Tabular column			
3	Formulae	15		
4	Calculations	35		
5	Result / Graph	5		
6	Viva-voce	10		
	Total	100		

DETAILLED ALLOCATION OF MARKS

LIST OF TOOLS / EQUIPMENTS/ MACHINERY'S

(for a batch of 30 students)

SI. No.	Machinery's / Equipment / Tools	Quantity
1	Single cylinder petrol engine with following arrangement	01
	1.Load test arrangement	
	2. Heat balance test arrangement	
2	Single cylinder diesel engine with following arrangement	01
	1.Load test arrangement	
	2. Heat balance test arrangement	
3	Multi cylinder petrol / diesel engine with following	01
	arrangement	
	1.Morse test arrangement	
	2. Heat balance test arrangement	
4	Orsat apparatus	01
5	Smoke meter	01
6	Exhaust gas analyser	01
\ \ /	Bomb calorimeter with all accessories	1 01
8	Consumables	Sufficient
		quantity
9	Measuring Instruments	Sufficient
		quantity
10	Safety devices (PPE kit, Fire Protecting Equipment etc)	Sufficient
		quantity

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021561
- Semester : V

Subject Title : Two-Wheeler and Three-Wheeler Technology Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination					
4021561	Hours /	Hours /				Marks		
Two-Wheeler	Week	Semeste	er	Internal		Board	Total	Duration
and Three-		-		Assessmen	t	Examinations	Total	
Wheeler Technology Practical	\mathbb{N}	64		25		S ^{100*} C	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Objectives:

At the end of the course, the students will be able

- To demonstrate the various components of two and three wheelers by dismantling and reassemble the same
- To inspect the cooling system, lubrication system and fuel supply system after dismantling and assembling
- To dismantle, Inspect, overhaul and assemble the transmission system.
- To dismantle, Inspect, overhaul and assemble the final drive unit.
- To Inspect the front and rear suspension system after dismantling and assembling

4021561 TWO WHEELER AND THREE WHEELER TECHNOLOGY PRACTICAL

EXERCISES

- 1. Dismantle, check and assemble the engine cooling system of Two and Three wheeler.
- 2. Check the engine oil level and replace the oil in Two and Three wheeler.
- 3. Dismantle and assemble the clutch used in Two and Three wheeler.
- 4. Adjust the clutch free play, throttle cable and inspect the common troubles and causes in Two and Three wheeler.
- 5. Overhaul and lubricate the gear box of Two and Three wheeler.
- 6. Dismantle, lubricate and assemble the propeller shaft and differential
- 7. Dismantle, lubricate and assemble the rear axle of the three wheeler
- 8. Check frame alignment, dismantle and assemble the leaf spring assembly
- 9. Dismantle and assemble the front suspension and rear suspension of two wheeler
- 10. Remove the tire, lubricate bearings, refit and adjust the chain of two wheeler
- 11. Dismantle, Service and assemble the disc brake system Master cylinder, Wheel

BOARD EXAMINATION

Note:

- All the exercises should be completed before the Board Examinations. Any one exercise will be given for examination.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

SI. No.	Description	Max. Marks
1	Procedure/Explanation	20
2 3	Tools handling procedure Dismantling and identifying the components	20 25
4	Assembly	25
5	Viva-voce	10
	Total	100

DETAILLED ALLOCATION OF MARKS

LIST OF TOOLS / EQUIPMENTS / MACHINERY'S

(for a batch of 30 students)

SI. No.	Machinery's / Equipment / Tools	Quantity
1	Two Wheeler	2
2	Three Wheeler	1
3	Special tools	5 sets
4	Shop Floor Tools	3 sets
5	Two Wheeler engine	1
6	Three Wheeler Engine	1
7	Spare components	Sufficient quantity

Blank Page

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021562
- Semester : V
- Subject Title : Tractor and Farm Equipment Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Subject	Instructions			Examination		
	4021562	Hours / Hours /		4021562 Hours / Hours / Marks			
	Tractor and	Week	Semester	Internal	Board	Total	Duration
	Farm	Treen		Assessment	Examinations	10tal	
	Equipment Practical	/ ⁴ Λ	64	25	C ^{100*}	100	3 Hrs.
*	Examinations will b	e conduct	ed for 100 ma	arks and it will b	e reduced to 75 m	arks for	result.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Objectives:

- To learn and practice to operate tractor.
- To understand and practice the ploughing.
- To study and practice with the implements used for farming.
- To know the different types of sprayers used fertilizer.
- To understand and maintain the tractor.

4021562 TRACTOR AND FARM EQUIPMENTPRACTICAL

List of Experiments

- 1. Driving the Tractor– Driving Practice only.
- 2. Hitching the given implement with the tractor by three point linkage and unhitching practice.
- 3. Ploughing practice with Mould Board Plough.
- 4. Ploughing practice with DISC harrows.
- 5. Ploughing practice with Tiller.
- 6. Power Tiller- study, its usage in the field and maintenance.
- 7. Cage wheel- fitting the cage wheel after removing the wheels from Tractor.
- 8. Spraying practice with power sprayer and its maintenance.
- 9. Tractor maintenance Schedule.

BOARD EXAMINATION

Note:

- All the exercises should be completed before the Board Examinations. Any one exercise will be given for examination.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

SI. No.	Description	Max.Marks
1	Procedure / Explanation	20
2	Tool Handling / Dismantling	40
3	Observation / Refitting	30
4	Viva voce	10
	Total	100

DETAILLED ALLOCATION OF MARKS

LIST OF TOOLS / EQUIPMENTS / MACHINERY'S

(for a batch of 30 students)

SI. No.	Machinery's / Equipment / Tools	Quantity
1	Tractor	1
2	Power triller	1
3	Ploughing implements kits	1 set
4	Power sprayer	1
5	Special tools	5 set
6	Spanners and Tools	Sufficient quantity

www.binils.com

Blank Page

www.binils.com

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4021563
- Semester : V
- Subject Title : Industrial Automation Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions			Examination		
4021563	Hours /	Hours /		Marks		
Industrial	Week	Semester	Internal	Board	Total	Duration
Automation			Assessment	Examinations		
Practical	/4 /	64	25	100*	100	3 Hrs.
* Examinations v	vill be cond	ducted for 10	0 <mark>mar</mark> ks and it w	vill be reduced to 7	′5 marks	for result.

Objectives:

- Impart knowledge in industrial automation
- Exposure to different PLC programming languages
- Able to provide adequate knowledge in SCADA and DCS
- Study of HART and Field bus protocol.
- Impart knowledge on Robot programming and Robot operation control
- Expose students to SCADA and various data communication protocols
- Learn IOT, 3D Printing

4021563 INDUSTRIAL AUTOMATION PRACTICAL

Experiments

PART A

- 1. Study of HART and Field bus protocol
- 2. Study of Distributed Control System and different instruction sets.
- 3. Study the simulation of movements in HMI and SCADA (using Analog data)
- 4. Trouble Shooting the Sensor and Actuator using Multistation MPS.
- 5. Study the operator control of Robot and jog the Robot
- 6. Application and case studies related to manufacturing industries
- 7. Application and case studies related to process industries.

PART B

- Design and development of IoT based transmitter
 Development of Ladder logic programme for control of real time processes.
- 3. Development of SCADA for a control of real time processes.
- 4. Robot Programming: "In-air" program (Point to Point motion)
- 5. Actuation of Pneumatic circuit for Rotary Pusher Module and interface with Programmable Logic Control
- 6. Actuation of Single Acting Cylinder using a two-way Pressure Valve using Flow Control Valve.
- 7. Design and print a model using 3D printer.

BOARD EXAMINATION

Note:

- All the exercises/experiments in both sections should be completed. Two exercises/experiments will be given for examination by selecting one from PART A and one from PART B.
- All the exercises/experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machineries / equipment before commencement of the board practical examination.

١٨	DETAILLED ALLOCATION OF MARKS						
SI. No.	Description	Max. Marks					
	PART - A						
1	Procedure / Explanation	30					
	PART - B	1					
2	Procedure	15					
3	Circuit / Layout	20					
4	Programming / Execution	20					
5	Result	05					
6	Viva voce	10					
	Total	100					

LIST OF TOOLS / EQUIPMENTS / MACHINERY'S

(for a batch of 30 students)

Machinery's / Equipment / Tools	Quantity
Robot kit	1
3D printer	1
PLC Kit	1
Pneumatic kit	1
SCADA Software	Sufficient quantity
IOT Components	1
Consumables	Sufficient quantity
Kits/components required for the study experiment	om
	Robot kit 3D printer PLC Kit Pneumatic kit SCADA Software IOT Components Consumables

STATE BOARD OF TECHNICAL EDUCATION &TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS N-SCHEME

(To be implemented for the students admitted from the year 2020 - 2021 onwards)

- Course Name : 1021 Diploma in Automobile Engineering
- Subject Code : 4020570
- Semester : V
- Subject Title : Entrepreneurship & Startups

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination				
4020570	Hours /	Hours /		Marks			
	Week	Semester	Internal	Board	Total	Duration	
Entrepreneurship	week	Semester	Assessment	Examinations	Total		
& Startups							
	4	64	25	100*	100	3 Hrs.	
* Examinations wil	* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.						

UNIT	Торіс	Hours
1	Entrepreneurship – Introduction and Process	10
2	Business Idea and Banking	10
3	Start ups, E-cell and Success Stories	10
4	Pricing and Cost Analysis	10
5	Business Plan Preparation	10
	Field visit and Preparation of case study report	14
	Total	64

Topics and Allocation of Hours

RATIONALE:

Development of a diploma curriculum is a dynamic process responsive to the society and reflecting the needs and aspiration of its learners. Fast changing society deserves changes in educational curriculum particularly to establish relevance to emerging socioeconomic environments; to ensure equity of opportunity and participation and finally promoting concern for excellence. In this context the course on entrepreneurship and start ups aims at instilling and stimulating human urge for excellence by realizing individual potential for generating and putting to use the inputs, relevant to social prosperity and thereby ensure good means of living for every individual, provides jobs and develop Indian economy.

OBJECTIVES:

At the end of the study of 5th semester the students will be able to

- o To excite the students about entrepreneurship
- o Acquiring Entrepreneurial spirit and resourcefulness

- Learning the process and skills of creation and management of entrepreneurial venture
- Familiarization with various uses of human resource for earning dignified means of living
- Know its contribution in and role in the growth and development of individual and the nation
- Understand the formation of E-cell
- \circ $\,$ Survey and analyze the market to understand customer needs
- o Understand the importance of generation of ideas and product selection
- o Learn the preparation of project feasibility report
- o Understand the importance of sales and turnover
- \circ $\,$ Familiarization of various financial and non financial schemes $\,$
- \circ $\;$ Aware the concept of incubation and starts ups

DETAILED SYLLABUS		
Unit	Name of the Topics	Hours
1	ENTREPRENEURSHIP – INTRODUCTION AND PROCESS	10
	 Concept, Functions and Importance 	
	 Myths about Entrepreneurship 	
	 Pros and Cons of Entrepreneurship 	
	 Process of Entrepreneurship 	
	 Benefits of Entrepreneur 	
	 Competencies and Characteristics 	
	 Ethical Entrepreneurship 	
	 Entrepreneurial Values and Attitudes 	
	Motivation	
	Creativity	
	Innovation	
V	 Entrepreneurs - as problem solvers Mindset of an employee and an entrepreneur Business Failure – causes and remedies 	m
	Role of Networking in entrepreneurship	
2	BUSINESS IDEA AND BANKING	10
	 Types of Business: Manufacturing, Trading and Services 	
	 Stakeholders: Sellers, Vendors and Consumers 	
	E- Commerce Business Models	
	 Types of Resources - Human, Capital and Entrepreneurial tools 	
	 Goals of Business and Goal Setting 	
	 Patent, copyright and Intellectual Property Rights 	
	 Negotiations - Importance and methods 	
	Customer Relations and Vendor Management	
	Size and Capital based classification of business enterprises	
	Role of Financial Institutions	

	Role of Government policy	
	Entrepreneurial support systems	
	 Incentive schemes for State Government 	
	 Incentive schemes for Central Government 	
3	STARTUPS, E-CELL AND SUCCESS STORIES	10
	Concept of Incubation centre's	
	 Activities of DIC, financial institutions and other relevance 	
	institutions	
	 Success stories of Indian and global business legends 	
	Field Visit to MSME's	
	Various sources of Information	
	Learn to earn	
	Startup and its stages	
	 Role of Technology – E-commerce and Social Media 	
	Role of E-Cell	
	E-Cell to Entrepreneurship	\mathbf{n}
4	PRICING AND COST ANALYSIS	10
	Calculation of Unit of Sale, Unit Price and Unit Cost	
	 Types of Costs - Variable and Fixed, Operational Costs 	
	Break Even Analysis	
	 Understand the meaning and concept of the term Cash 	
	Inflow and Cash Outflow	
	Prepare a Cash Flow Projection	
	 Pricing and Factors affecting pricing 	
	 Understand the importance and preparation of Income 	
	Statement	
	 Launch Strategies after pricing and proof of concept 	
	 Branding - Business name, logo, tag line 	
	Promotion strategy	
5	BUSINESS PLAN PREPARATION	10
	 Generation of Ideas, 	

	٠	Business Ideas vs. Business Opportunities
	٠	Selecting the Right Opportunity
	٠	Product selection
	٠	New product development and analysis
	٠	Feasibility Study Report – Technical analysis, financial
		analysis and commercial analysis
	•	Market Research - Concept, Importance and Process
	٠	Marketing and Sales strategy
	٠	Digital marketing
	٠	Social Entrepreneurship
	•	Risk Taking-Concept
	•	Types of business risks

REFERNCE BOOKS:

- Dr. G.K. Varshney, Fundamentals of Entrepreneurship, Sahitya Bhawan Publications, Agra - 282002
- 2. Dr. G.K. Varshney, Business Regulatory Framework, Sahitya Bhawan Publications, Agra - 282002
- Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Entrepreneurship , McGraw Hill (India) Private Limited, Noida - 201301
- 4. M.Scarborough, R.Cornwell, Essentials of Entrepreneurship and small business management, Pearson Education India, Noida 201301
- 5. Charantimath Poornima M. Entrepreneurship Development and Small Business Enterprises, Pearson Education, Noida - 201301
- Trott, Innovation Management and New Product Development, Pearson Education, Noida - 201301
- 7. M N Arora, A Textbook of Cost and Management Accounting, Vikas Publishing House Pvt. Ltd., New Delhi-110044
- 8. Prasanna Chandra, Financial Management, Tata McGraw Hill education private limited, New Delhi
- 9. I. V. Trivedi, Renu Jatana, Indian Banking System, RBSA Publishers, Rajasthan
- 10. Simon Daniel, HOW TO START A BUSINESS IN INDIA, BUUKS, Chennai 600018

11. Ramani Sarada, The Business Plan Write-Up Simplified - A practitioners guide to writing the Business Plan, Notion Press Media Pvt. Ltd., Chennai 600095.

Board Examination – Evaluation Pattern

Internal Mark Allocation

Assignment (Theory portion)*	-	10
Seminar Presentation	-	10
Attendance	-	5
Total	-	25

Note: * Two assignments should be submitted. The same must be evaluated and converted to 10 marks.

Guidelines for assignment:

Each assignment should have five three marks questions and two five marks questions.

BOARD EXAMINATION

Note

- 1. The students should be taught all units and proper exposure and field visit also arranged. All the portions should be completed before examinations.
- The students should maintain theory assignment and seminar presentation. The assignment and seminar presentation should be submitted during the Board Practical Examinations.
- 3. The question paper consists of theory and practical portions. All students should write the answers for theory questions (45 Marks) and practical portions (55 Marks) should be completed for board examinations.
- 4. All exercises should be given in the question paper and students are allowed

to select by lot. If required the dimensions of the exercises may be varied for every batch. No fixed time allotted for each portion and students have liberty to do the examination for 3Hrs.

 For Written Examination: theory question and answer: 45 Marks Ten questions will be asked for 3 marks each. Five questions from each unit 1 & 2. (10 X 3 = 30).

Three questions will be asked for 5 marks each. One question from each unit 1, 2 & 3. $(3 \times 5 = 15)$

6. For Practical Examination: The business plan/Feasibility report or Report on Unit 4 & 5 should be submitted during the board practical examinations. The same have to be evaluated for the report submission (40 marks).

SI.	Description	Marks
No		
Part A	Written Examination - Theory Question and answer	45
	3 questions x 5 marks = 15 marks	
Part B	Practical Examination – Submission on Business Plan/Feasibility Report or Report on Unit 4 & 5	40
Part C	Viva voce	15
	Total	100

DETAILED ALLOCATION OF MARKS