Gram Schmidt Orthogonalisation Process

Theorem:

Every finite dimensional inner product space has an orthonormal basis.(Gram Schmidt Orthogonalization Process)

PROBLEMS

Apply Gram-Schmidt process to construct an orthonormal basis for $V_3(R)$ with the standard inner product for the basis (v_1,v_2,v_3) , Where $v_1=(1,0,1)$; $v_2=(1,3,1)$ and $v_3=(3,2,1)$.

Sol: The first vector in the orthogonal basis is

$$w_1 = v_1 = (1,0,1)$$

The formula for the second vector in the orthogonal basis is $W_2 = v_2 - \frac{(v_2 w_1)}{\|w_1\|^2} w$

The quantities that we need for this step are

$$(v_2,w_2)=((1,3,1),(1,0,1))$$

$$=1+0+1=2$$

$$||w_1||^2 = (w_1, w_2) = 1^2 + 0^2 + 1^2 = 2$$

The quantities that we need for this step are

$$(v_2,w_2)=((1,3,1),(1,0,1))$$

$$=1+0+1=2$$

$$||w_1||^2 = (w_1, w_2) = 1^2 + 0^2 + 1^2 = 2$$
.

Therefore the second vector is

$$w_2 = (1,3,1) - \frac{2}{2}(1,0,1)$$

$$=(1,3,1) - (1,0,1) \Rightarrow (0,3,0).$$

The formula for the third (and final) vector in the orthogonal basis is

$$w_3 = v_3 - \frac{(v_3, w_1)}{\|w_1\|^2} w_1 - \frac{(v_3, w_1)}{\|w_2\|^2} w_2$$

The quantities that we need for this steps are

$$||w_2||^2 = (w_2, w_2) = 0^2 + 3^2 + 0^2 = 9.$$

$$(v_3,w_1)=((3,2,1),(1,0,1))=3+0+1=4$$

$$(v_3,w_2)=((3,2,1),(0,3,0))=0+6+0=6$$

Therefore the third vector is SCOM

$$W_3 = (3,2,1) - \frac{4}{2}(1,0,1) - \frac{6}{9}(0,3,0)$$

=
$$(3,2,1)$$
-2 $(1,0,1)$ - $\frac{2}{3}(0,3,0)$

$$=(1,0,-1).$$

$$||w_3||^2 = (w_3, w_3) = 1^2 + 0^2 + (-1)^2 = 2$$
.

The orthogonal basis is

$$\{(1,0,1),(0,3,0),(1,0,-1)\}$$

binils - Anna University App on Play Store

The orthonormal basis is

$$\beta = \{b_1, b_2, b_3\},$$
Where $b_1 = \frac{(w_1)}{\|w_1\|}$, $b_2 = \frac{(w_2)}{\|w_2\|}$, $b_3 = \frac{(w_3)}{\|w_3\|}$,

$$||w_1||^2 = 2 \implies ||w_1|| = \sqrt{2}$$

$$||w_2||^2 = 9 \implies ||w_2|| = 3$$

$$||w_3||^2 = 2 \Rightarrow ||w_3|| = \sqrt{2}$$

$$b_1 = \frac{(w_1)}{\|w_1\|} = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$$

$$b_2 = \frac{(w_2)}{\|w_2\|} = (0,1,0)$$

$$b_3 = \frac{(w_3)}{\|w_3\|} = {1 \choose \sqrt{2}}, 0, {-1 \choose \sqrt{2}}$$

Therefore the orthonormal basis is

$$\beta = \{b_1, b_2, b_3\}$$

$$\beta = \{(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}), (0,1,0)(\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}})\}.$$

Definition

Let V be a finite dimensional inner product space and let T be a linear operator on V. Then there exist a unique function $T^*: V \to V$ such that $\langle T(x), y \rangle$, $\langle x, T^*(y) \rangle$ for all $x, y \in V$. The linear operator T^* is called adjoint of operator T.

Theorem 3.14: Let T be a linear functional on a finite dimensional inner product space V. Then there exists a unique vector $y \in V$ such that $g(x) = \langle x, y \rangle$ for every $x \in V$.

Proof: Let $\beta = \{v_1, v_2, ..., v_n\}$ be an orthonormal basis of V.

Let
$$y = \overline{g}(\overline{\overline{v}})v + \overline{g}vv_2 + \cdots + \overline{g}vv_n = 0$$

Define $h: V \to F$ by $h(x) = \langle x, y \rangle$ for every $y \in V$.

It is clear that *h* is linear.

Then for i = 1, 2, ..., n,

$$h(v_{i}) = \langle v_{i}, y \rangle = \langle v_{i}, \overline{g} v_{11} + \overline{g} v_{2} + \overline{y} \cdot + \overline{g} v_{n} \rangle$$

$$= \langle v_{1}, \overline{g} \overline{v} v_{11} \rangle [; \langle v_{i}, v_{i} \rangle_{j} = 0 \text{ for } i \neq j]$$

$$= g(v_{i}) \langle v_{i}, v_{i} \rangle = g(v_{i}) ||v_{i}||^{2} [: ||v_{i}||^{2} = 1] : h(v_{i}) = g(v_{i})$$

This is true for each v_i , i = 1, 2, ..., n

$$h = g$$

We have to prove the uniqueness.

Now suppose that y' is another vector in V for which

$$g(x) = \langle x, y' \rangle$$
 for each $x \in V$

Then

$$\langle x, y \rangle = \langle x, y' \rangle$$

 $\Rightarrow (x, y) - \langle x, y' \rangle = 0 \Rightarrow (x, y - y') = 0 \Rightarrow y - y' = 0 \Rightarrow y = y'$
 \therefore y is unique

Let T be a linear operator on a finite dimensional inner prods then there exists a unique linear operator T' on V such that

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle$$
 for every $x, y \in V$.

Proof: Let *y* be an arbitrary but fixed element of *V*.

$$g: V \to = F$$
 by $g(x) = \langle T(x), y \rangle$ for every $y \in V$.

First we prove that g is linear.

La $x_1, x_2 \in V$ and $\alpha \in F$.

$$(i)g(x_1 + x_2) = (T(x_1 + x_2), y)$$

$$= \langle T(x_1) + T(x_2), y \rangle [\because T \text{ is linear }]$$

$$= \langle T(x_1), y \rangle + \langle T(x_2), y \rangle$$

$$= g(x_1) + g(x_2)$$

$$(ii)g(ax_1) = \langle T(\alpha x_1), y \rangle$$

$$= \langle \alpha T(x_1), y \rangle [\because T \text{ is linear }]$$

$$= \alpha \langle T(x_1), y \rangle$$

$$= \alpha g(x_1)$$

Therefore g is a linear transformation on V.

By Theorem 3.14, There exists a unique vector $y' \in V$ such that

Define
$$T^*: V \to V$$
 by $T^*(y) = y'$ for $y \in V$.

Therefore $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for each $x \in V$.

We have to prove that T^* is linear

Let $y_1, y_2 \in V$ and $\alpha \in F$.

$$\langle x, T^*(y_1 + y_2) \rangle = \langle T(x), y_1 + y_2 \rangle$$

$$= \langle T(x), y_1 \rangle + \langle T(x), y_2 \rangle$$

$$= \langle x, T^*(y_1) \rangle + \langle x, T^*(y_2) \rangle$$

Since x is arbitrary,

$$\langle T^*(y_1 + y_2) = T^*(y_1) + T^*(y_2)$$

(ii)
$$\langle x, T^*(\alpha y_1) \rangle == \langle T(x), \alpha y_1 \rangle$$

$$= \bar{\alpha} \langle T(x), y_1 \rangle$$

$$= \bar{\alpha} \langle x, T^*(y_1) \rangle$$

$$= \langle x, \alpha T^*(y_1) \rangle$$

Since x is arbitrary,

$$T^*(\alpha y_1) = \alpha T^*(y_1)$$

Therefore T^* is linear.

Finally, we need to show that T^* is unique. Suppose that $U: V \to V$. is linear and that it satisfies $\langle T(x), y \rangle = \langle x, U(y) \rangle$ for all $x, y \in V$. Then $\langle x, T^*(y) \rangle = \langle x, U(y) \rangle$ for all $x, y \in V$, so $T^* = U$.

Theorem 3.16: Let V be a finite-dimensional inner product space, and let β be an orthonormal basis for V. If T is a linear operator on V, then $[T^*]_{\beta} = [T]_{\beta}^*$

Proof: Let $A = [T^*]_{\beta}$ and $B = [T]^*_{\beta}$ and, $\beta = \{v_1, v_2, ..., v_n\}$ be an orthonormal basis of V. Then

$$B_{ij} = \langle T^*(v_j), v_i \rangle$$

$$= \overline{\langle T(\overline{v}), (\overline{v}) \rangle}$$

$$= \overline{A_{ij}}$$

Thus $B = A^*$

Theorem 3.17: Let T and U be linear operators on a finite dimensional inner product space V and $\alpha \in F$. Then

(i)
$$(T + U)^* = T^* + U^*$$

(ii)
$$(\alpha T)^* = \bar{\alpha} T^*$$

(iii)
$$(TU)^* = U^*T^*$$

$$(iv) (T^*)^* = T$$

$$(\mathbf{v}) I^* = I$$

Proof

(i) Let $x, y \in V$

$$\langle (T+U)x, y \rangle = \langle T(x) + U(x), y \rangle$$

$$= \langle T(x), y \rangle + \langle U(x), y \rangle$$

$$= \langle x, T^*(y) \rangle + \langle x, U^*(y) \rangle$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$= \langle x, T^*(y) + U^*(y) \rangle$$

$$= \langle x, (T^* + U^*)y \rangle$$

$$\therefore \langle (T + U)x, y \rangle = \langle x, (T^* + U^*)y \rangle$$

$$\Rightarrow \langle x, (T + U)^*y \rangle = \langle x, (T^* + U^*)y \rangle$$

By the uniqueness of adjoint implies

$$(T+U)^* = T^* + U^*$$

(ii) Let $\alpha \in F$ and $x, y \in V$

$$\langle (\alpha T)(x), y \rangle = \langle \alpha T(x), y \rangle$$

$$= \alpha \langle T(x)y \rangle$$

$$= \alpha \langle x, T^*(y) \rangle$$

$$\langle (\alpha T)x, y \rangle = \langle x, \bar{\alpha}T^*(y) \rangle$$

$$\therefore \langle x, (\alpha T)^*y \rangle = \langle x, \bar{\alpha}T^*(y) \rangle$$

By the uniqueness of the adjoint implies

$$(\alpha T)^* = \bar{\alpha} T^*$$

(iii) Let $x, y \in V$

$$\langle (TU)(x), y \rangle = \langle T(U(x)), y \rangle$$

$$= \langle U(x), T^*(y) \rangle$$

$$= \langle x, U^*(T^*(y)) \rangle$$

$$= \langle x, (U^*T^*)(y) \rangle$$

$$\therefore \langle (TU)(x), y \rangle = \langle x, (U^*T^*)(y) \rangle$$

$$\langle x, (TU)^*y \rangle = \langle x, (U^*T^*)(y) \rangle$$

By the uniqueness the adjoint implies

$$(TU)^* = U^*T^*$$

(iv) Let $x, y \in V$

$$\langle T^*(x), y \rangle = \overline{\langle T(x) \rangle}$$

$$= \overline{\langle T(x), x \rangle}$$

$$= \langle x, T(y) \rangle$$

$$\therefore (T^*(x), y) = \langle x, T(y) \rangle$$

$$\langle x, (T^*)^*(y) \rangle = \langle x, T(y) \rangle$$

By uniqueness of adjoint implies

$$(T^*)^* = T$$

(v|) Let $x, y \in V$

$$\langle Ix, y \rangle = \langle x, y \rangle$$

= $\langle x, Iy \rangle (\because I(y) = y)$
 $\Rightarrow \langle x, I * (y) \rangle = \langle x, Iy \rangle$

By uniqueness of adjoint implies

$$I^* = I$$

binils.com

3.1. INNER PRODUCT

Definition: Let V be a vector space over a field F, An inner product on V is a function from $V \times V \to F$ that assigns, to ever ordered pair of vectors x and y in V, a scalar in F, denoted by $\langle x, y \rangle$ such that for all $x, y, z \in V$ and scalar $\alpha \in F$ the following axioms hold:

$$I_1: \langle x, x \rangle > 0 \text{ if } x \neq 0$$

 $I_2: \langle x + z, y \rangle = \langle x, y \rangle + (z, y)$
 $I_3: \langle \alpha x, y \rangle = \alpha(x, y)$

 $I_4: \langle x \rangle = \langle y, x \rangle$, where the bar denotes the complex conjucation.

Note:

For real numbers i.e., F = R, the complex conjugate of a number is itself. Then I_3 reduces to

$$\langle x, y \rangle = \langle y, x \rangle$$

Properties of inner product:

If V is an inner product space, then for x, y, $z \in V$ and scalar $a \in F$ the following statements are true.

(i)
$$\langle x, 0 \rangle = (0, x) = 0$$

(ii)
$$(x, x) = 0$$
 if and only if $x = 0$

(iii)
$$\langle x, \alpha y \rangle = \overline{\langle}(x, y)$$

(iv)
$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

(v)
$$(x, y) = \langle x, z \rangle$$
 for all $x \in V$, then $y = z$.

Proof:

(i)
$$\langle 0, x \rangle = \langle 0 + 0, x \rangle$$

= $\langle 0, x \rangle + \langle 0, x \rangle = 0$
 $\therefore \langle x, 0 \rangle = \overline{\langle 0x \rangle} = 0 = 0$

(ii)
$$(x, x) = 0$$
 if and only if $x = 0$

Let
$$x = 0$$
. Then $\langle x, x \rangle = \langle 0, 0 \rangle = 0$

We know that $\langle x, x \rangle > 0$ if $x \neq 0$

Obviously $\langle x, x \rangle = 0$ if and only if x = 0.

$$(x, ay) = \overline{\langle ay x \rangle}$$

$$= \overline{\alpha}(\overline{y}, \overline{x})$$

$$= \overline{\alpha}(y, x)$$

$$= \overline{\alpha}(x, y)$$

$$\therefore \overline{\langle ay \rangle} = \overline{\alpha}(x, y) = \overline{\langle yx \rangle}$$

$$(iv)(x, y + z) = \overline{\langle yx \rangle} + \overline{\langle x \rangle} + \langle x, z \rangle$$

$$= \therefore (x, y + z) = \langle x, y \rangle + \langle x, z \rangle$$

$$(iv)(x, y + z) = \overline{\langle yx \rangle}$$

$$= \overline{\langle yx \rangle} + \overline{\langle x \rangle} = \langle x, y \rangle + (x, z) \therefore (x, y + z) = \langle x, y \rangle + (x, z)$$

$$(v) \text{ Assume } \langle x, y \rangle = \langle x, z \rangle \dots (1), \text{ for all } x \in V$$

Consider $(x, y - z) = \langle x, y \rangle - \langle x, z \rangle$

Take x = y - z, we get,

$\langle y - z, y - z \rangle = 0$ $\Rightarrow y - z = 0$

 $= 0 \dots (2)$

 $= \langle x, y \rangle - \langle x, y \rangle [$ From (iv)]

$$\Rightarrow y = z$$

If $x \neq y$, then from (2), we get

Either
$$x = 0$$
 or $y - z = 0$

$$\therefore y = z$$

1 1

Definition: Inner product space

A vector space endowed with a specific inner product is called product space. Standard inner product of F^n

is called standard inner product on F^n .

Standard inner product of R^n

Let $x, y \in \mathbb{R}^n$. Then $x = (a_1, a_2, ..., a_n)$ and $y = (b_1, b_2, ..., b_n)$. The inner $\langle x, y \rangle = a_1b_1 + a_2b_2 + \cdots + a_nb_n$ is called standard inner product on \mathbb{R}^n .

3.1.1. PROBLEMS UNDER INNER PRODUCT SPACE

1. Let
$$x=(a_1,a_2,\ldots,a_n), y=(b_1,b_2,\ldots,b_n)\in F^n$$
. Define inner product $\langle x,y\rangle=a_1^-\bar{b}_1^+a_2^-\bar{b}_2^+\cdots+a_n^-\bar{b}_n^-$. Verify F^n is an inner space.

Sol: Let $x, y, z \in V$ and $\alpha \in F$.

Let
$$x = (a_1, a_2, ..., a_n); y = (b_1, b_2, ..., b_n)$$
 and $z = (c_1, c_2, ..., c_n)$
Given $\langle x, y \rangle = a_1 \bar{b_1} + a_2 \bar{b_2} + ... + a_n \bar{b_n}$

$$I_1: \langle x, x \rangle > 0 \text{ if } x \neq 0$$

$$\langle x, x \rangle = a_1 a_1 + a_2 a_2 + \dots + a_n a_n a_n$$

= $|a_1|^2 + |a_2|^2 + \dots + |a_n|^2 > 0 \ [\because a_i \neq 0 \text{ for some } i]$

$$\therefore \langle x, x \rangle > 0 \text{ if } x \neq 0$$

$$= |a_1|^2 + |a_2|^2 + \dots + |a_n|^2 > 0$$

$$\therefore (x, x) > 0 \text{ if } x \neq 0$$

$$I_2$$
: $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$

$$x + z = (a_1, a_2, ..., a_n) + (c_1, c_2, ..., c_n) = (a_1 + c_1, a_2 + c_2, ..., a_n + c_n)$$

$$(x + z, y) = (a_1 + c_1)\bar{b}_1 + (a_2 + c_2)\bar{b}_2 + ... + (a_n + c_n)\bar{b}_2 = a \qquad \bar{b}_1 + a_2\bar{b}_2 + a_2\bar{b}_$$

$$\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$$

$$I_3: \langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

We have $x = (a_1, a_2, ..., a_n)$.

$$I_{4}: \langle x, y \rangle = \langle y, x \rangle \langle x, y \rangle = a_{1} \overline{b}_{1} + a_{2} \overline{b}_{2} + \dots + a_{n} \overline{b}_{n}^{*} \langle x, y \rangle$$

$$= \overline{a_{1}} \overline{b}_{1} + \overline{a}_{2} \overline{b}_{2} + \dots + \overline{a}_{n} \overline{b}_{n}^{*} \langle x, y \rangle$$

$$= \overline{a_{1}} \overline{b}_{1} + \overline{b}_{2} \overline{a}_{2} + \dots + \overline{b}_{n} \overline{a}_{n} = (y, x) \cdot \overline{a_{n}^{*}} \langle x, y \rangle$$

$$= \overline{a_{1}} \overline{a}_{1} + \overline{b}_{2} \overline{a}_{2} + \dots + \overline{b}_{n} \overline{a}_{n} = (y, x) \cdot \overline{a_{n}^{*}} \langle x, y \rangle$$

2. Consider the vector space \mathbb{R}^n . Prove that \mathbb{R}^n is an inner product space

with inner product
$$\langle x, y \rangle = a_1b_1 + a_2b_2 + \cdots + a_nb_n$$

where
$$x = (a_1, a_2, ..., a_n)$$
 and $y = (b_1, b_2, ..., b_n)$.

Sol: Let $x, y, z \in V$ and $\alpha \in F$.

Let
$$x = (a_1, a_2, ..., a_n)$$
; $y = (b_1, b_2, ..., b_n)$ and $z = (c_1, c_2, ..., c_n)$

Given
$$\langle x, y \rangle = a_1b_1 + a_2b_2 + \cdots + a_nb_n$$

$$I_1: (x, x) > 0 \text{ if } x \neq 0$$

$$\langle x, x \rangle = a_1 a_1 + a_2 a_2 + \dots + a_n a_n$$

= $a_1^2 + a_2^2 + \dots + a_n^2 > 0$ [: $a \neq 0$ for some i]

$$\therefore (x, x) > 0 \text{ if } x \neq 0$$

$$I_{2}: (x + z, y) = \langle x, y \rangle + \langle z, y \rangle x + z = (a_{1}, a_{2}, ..., a_{n}) + (c_{1}, c_{2}, ..., c_{n})$$

$$= (a_{1} + c_{1}, a_{2} + c_{2}, ..., a_{n} + c_{n})(x + z, y)$$

$$= (a_{1} + c_{1})b_{1} + (a_{2} + c_{2})b_{2} + ... + (a_{n} + c_{n})b_{n}$$

$$= a_{1}b_{1} + a_{2}b_{2} + ... + a_{n}b_{n} + c_{1}b_{1} + c_{2}b_{2} + ... + c_{n}b_{n}$$

$$= \langle x, y \rangle + \langle z, y \rangle (x + z, y) = \langle x, y \rangle + \langle z, y \rangle I_{3}: \langle ax, y \rangle = \alpha(x, y)$$

We have $x = (a_1, a_2, ..., a_n)$.

$$\alpha x = {aa_1b_1 + aa_2b_2 + \dots + aa_nb_1 \atop = a(a_1b_1 + a_2b_2 + \dots + a_nb_n)} = a\langle x, y \rangle$$

$$\therefore \langle \alpha x, y \rangle = a \langle x, y \rangle$$

$$I_4:\overline{\langle xy\rangle}=\langle y,x\rangle$$

$$\langle x, y \rangle = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

$$\overline{\langle x \rangle}_{1 \quad 1} = \overline{a_1 b_1 + a_2 b_2 + \dots + a_n b_n}$$

$$= a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

$$= b_1 a_1 + b_2 a_2 + \dots + b_n a_n$$

$$= \langle y, x \rangle$$

$$\overline{\cdot \langle x \rangle} = \langle y, x \rangle$$

Hence R^n is an inner product space.

3. Prove that
$$R^2$$
 is an inmer product space with an inner product defined by $\langle x, y \rangle = a_1b_1 - a_2b_1 - a_1b_2 + 2a_2b_2$ where $x = (a_1, a_2)$; $y = (b_1, b_2)$. Sol; Let $x, y, z \in R^2$ and $\alpha \in F$
Lat $x = (a_1, a_2)$; $y = (b_1, b_2)$ and $z = (c_1, c_2)$
Given $\langle x, y \rangle = a_1b_1 - a_2b_1 - a_1b_2 + 2a_2b_2$
 I_1 ; $\langle x, x \rangle > 0$ if $x \neq 0$
 $\langle x, x \rangle = a_1a_1 - a_2a_1 - a_1a_2 + 2a_2a_2 = a_1^2 - 2a_1a_2 + 2a_2^2$
 $= a_1^2 - 2a_1a_2 + a_2^2 + a_2^2$
 $= (a_1 - a_2)^2 + a_2^2 > 0$ [: $a_1 \neq 0$ or $a_2 \neq 0$]
 $\therefore \langle x, x \rangle > 0$ if $x \neq 0$
 I_2 ; $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle x + z = (a_1, a_2) + (c_1, c_2)$
 $= (a_1 + c_1)a_1 - (a_2 + c_2)\langle x + Z, y \rangle$
 $= (a_1 + c_1)b_1 - (a_2 + c_2)b_1 - (a_1 + c_1)b_2 + 2(a_2 + c_2)b_2$
 $= a_1b_1 + c_1b_1 - a_2b_1 - c_2b_1 - a_1b_2 - c_1b_2 + 2a_2b_2 + 2c_2b_2$
 $= a_1b_1 - a_2b_1 - a_1b_2 + 2a_2b_2 + c_1b_1 - c_2b_1 - c_1b_2 + 2c_2b_2$
 $= \langle x, y \rangle + \langle z, y \rangle \therefore \langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$
We have $x = (a_1, a_2)$
 $\therefore \alpha x = (\alpha a_1, \alpha a_2)$
 $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
We have $x = (a_1, a_2)$
 $\Rightarrow \alpha \langle a_1, a_2 \rangle$
 \Rightarrow

4. Let V be the set of all real functions defined on the clo interval [0,1]. The inner product on V is defined by $\langle f,g\rangle=\int_{-1}^1 f(t)g(t)$ Prove that V(R) is an inner product space.

Sol:

Let $f, g, h \in V$ and $\alpha \in F$.

Hence R^2 is an inner product space with the given inner product.

Given
$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt$$

$$I_{1}: \langle f, f \rangle > 0 \text{ if } f \neq 0$$

$$\langle f, f \rangle = \int_{-1}^{1} f(t)f(t)dt$$

$$= \int_{-1}^{1} [f(t)]^{2}dt > 0$$

$$\therefore \langle f, f \rangle > 0 \text{ if } f \neq 0$$

$$I_{2}: \langle f + h, g \rangle = \langle f, g \rangle + \langle h, g \rangle$$

$$\langle f + h, g \rangle = \int_{-1}^{1} [f(t) + h(t)]g(t)dt$$

$$= \int_{-1}^{1} f(t)g(t) dt + \int_{-1}^{1} h(t)g(t)dt$$

$$= \langle f, g \rangle + \langle h, g \rangle$$

$$\therefore \langle f + h, g \rangle = \langle f, g \rangle + \langle h, g \rangle$$

$$I_{3}: \langle \alpha f, g \rangle = \alpha \langle f, g \rangle$$

$$\langle \alpha f, g \rangle = \int_{-1}^{1} (\alpha f)(t)g(t)dt$$

$$= \alpha \int_{-1}^{1} f(t)g(t)dt$$

$$= \alpha \langle f, g \rangle$$

$$\therefore \langle (\alpha f, g) = \alpha \langle f, g \rangle$$

$$I_{4}: \langle f, \bar{g} \rangle = \langle g, f \rangle$$

$$\langle f, g \rangle = \int_{1}^{1} f(t)g(t)dt$$

$$= \int_{-1}^{1} f(t)g(t)dt$$

$$= \int_{1}^{1} f(t)g(t)dt$$

$$= \int_{1}^{1} f(t)g(t)dt$$

$$= \int_{1}^{1} g(t)f(t)dt$$

$$= \langle g, f \rangle$$

$$\therefore (\bar{f}, \bar{g}) = \langle g, f \rangle$$

Therefore V(R) is an inner product space.

5. Let H be the vector space of all continuous complex value functions on

[0, 1]. Show that
$$V$$
 is a complex inner product space with is product $\langle f, g \rangle = \frac{1}{3\pi} \int_0^1 f(t)g(t)dt$.

Sol:

Let $f, g, h \in V$ and $a \in F$.

Given
$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^1 f(t)g(t)dt$$

$$l_1: \langle f, f \rangle > 0 \text{ if } f \neq 0$$

$$\langle f, f \rangle > 0 \text{ for } f \neq 0$$

$$\langle f, f \rangle = \frac{1}{2\pi} \int_0^1 f(t)f(t)dt$$

$$= \frac{1}{2\pi} \int_0^1 |f(t)|^2 dt > 0$$

$$\therefore (f, f) > 0 \text{ if } f \neq 0$$

$$I: (f+h,g) = \langle f,g\rangle + \langle h,g\rangle \langle f+h,g\rangle = \frac{1}{2\pi} \int_{0}^{1} (f+h)(t)g(t)dt$$

$$= \frac{1}{2\pi} \int_{0}^{1} - [f(t) + h(t)]g(t)dt$$

$$= \frac{1}{2\pi} \int_{0}^{1} f(t)g(t)dt + \frac{1}{2\pi} \int_{0}^{1} h(t)g(t)dt = \langle f,g\rangle + \langle h,g\rangle$$

$$\therefore \langle f+h,g\rangle = \langle f,g\rangle + \langle h,g\rangle I_{3}: \langle \alpha f,g\rangle = \alpha \langle f,g\rangle \langle \alpha f,g\rangle$$

$$= \frac{1}{2\pi} \int_{0}^{1} (\alpha f)(t)g(t)dt = \alpha \frac{1}{2\pi} \int_{0}^{1} f(t)g(t)dt = \alpha \langle f,g\rangle$$

$$\therefore \langle \alpha f,g\rangle = \alpha \langle f,g\rangle I_{4}: fg = (g f) f(f,g)$$

$$= \frac{1}{2\pi} \int_{0}^{1} f(t)g(t)dt(f,g) = \frac{1}{2\pi} \int_{0}^{1} f(t)g(t)dt$$

Therefore V(C) is an inner product space.

3.1.2. NORM OF A VECTOR

Definition

Let *V* be an inner product space and let $x \in V$ then norm or length of *x* is ||x|| and is defined by $||x|| = \sqrt{\langle x, x \rangle}$

9. Find the norm of the following vectors in $V_3(R)$ with, inner product:

$$(a)(1, 1, 1), (b)(1, 2, 3), (c)(3, -4, 0), (d)(4x + 5y)$$
 where $x = (1, -1, 0)$ and $y = (1, 2, 3)$

Sol:

Let
$$x=(a_1,a_2,a_3)$$
; $y=(b_1,b_2,b_3) \in V_3$ (R)

The standard inner product space is

$$\langle x, y \rangle = \langle x, y \rangle = a_1b_1 + a_2b_2 + a_3b_3$$

 $\therefore (x, x) = a_1^2 + a_2^2 + a_3^3$

(a) Let
$$x = (1,1,1)$$

$$\|x\|^{2} = \langle x, x \rangle$$

$$= 1^{2} + 1^{2} + 1^{2}$$

$$= 3$$

$$\Rightarrow \|x\| = \sqrt{3}$$
(b) Let $x = (1,2,3)$

$$\|x\|^{2} = \langle x, x \rangle$$

$$= 1^{2} + 2^{2} + 3^{2}$$

$$= 14$$

$$\Rightarrow \|x\| = \sqrt{14}$$
(c) Let $x = (3,-4,0)$

$$\|x\|^{2} = 3^{2} + (-4)^{2} + 0^{2}$$

$$= 9 + 16$$

$$= 25$$

$$\Rightarrow \|x\| = 5$$
(d) Let $u = 4x + 5y$

$$= 4(1,-1,0) + 5(1,2,3)$$

(d) Let
$$u = 4x + 5y$$

$$= 4(1, -1,0) + 5(1,2,3)$$

$$= (4, -4,0) + (5,10,15)$$

$$= (9,6,15)$$

$$\parallel u \parallel^2 = \langle u, u \rangle$$

$$= 9^2 + 6^2 + 15^2$$

$$= 342$$

$$\Rightarrow \parallel u \parallel = \sqrt{342}$$

10. Find the norm of the following vectors in Euclidean space R^3 with standard inner product $\binom{0}{a}u=\binom{0}{2}$, $\binom{1}{4}$, $\binom{b}{b}v=(\frac{1}{2},\frac{2}{3},-\frac{1}{4})$

Sol:

(a) Let
$$u = (2,1,-1)$$

 $\| u \|^2 = 2^2 + 1^2 + (-1)^2$
 $= 6$
 $\| u \| = \sqrt{6}$
(b) Let $v = (\frac{1}{2}, \frac{2}{3}, -\frac{1}{4})$
 $\| v \|^2 = 6^2 + 8^2 + (-3)^2$

$$=109$$

$$\parallel v \parallel = \sqrt{109}$$

11. Find the norm of the following vectors in
$$F^3$$
 with standard inner product: $x = (1 + i, 2, i), y = (3i, 2 + 3i, 4)$. Find (a) $||x||, (b) ||y||, (c) ||x + y||, (d)\langle x, y\rangle$

Sol: Let $x, y, z \in F^3$

Let $x = (a_1, a_2, a_3); y = (b_1, b_2, b_3)$
 $\langle x, y \rangle = a_1 b_1^{-1} + a_2^{-1} b_2 + a_3^{-1} b_3^{-1}$
 $\langle x, x \rangle = |a_1|^2 + |a_2|^2 + |a_3|^2$
(a) $||x||^2 = \langle x, x \rangle$

Then
$$= |1 + i|^2 + |2|^2 + |i|^2$$

$$= 1^2 + 1^2 + 2^2 + 1^2$$

$$= 7$$

$$||x|| = \sqrt{7}$$
(b) $||y||^2 = \langle y, y \rangle$

$$= |3i|^2 + |2 + 3i|^2 + |4|^2$$

$$= 3^2 + 2^2 + 3^2 + 4^2$$

$$= 9 + 4 + 9 + 16$$

$$= 38$$

$$||y|| = \sqrt{38}$$

$$||x|| = \sqrt{38}$$

$$||y|| = \sqrt{38}$$

$$(c)x + y = (1 + i, 2, i) + (3i, 2 + 3i, 4)$$

$$= (1 + 4i, 4 + 3i, 4 + i)$$

$$||x + y||^{2} = |1 + 4i|^{2} + |4 + 3i|^{2} + |4 + i|^{2}$$

$$= 1^{2} + 4^{2} + 4^{2} + 3^{2} + 4^{2} + 1^{2}$$

$$= 59$$

$$||x + y|| = \sqrt{59}$$

$$(d) \langle x, y \rangle = \langle (1 + i, 2, i), (3i, 2 + 3i, 4) \rangle$$

$$= (1 + i)(3) + 2(2 + 3i) + i4$$

$$= (1 + i)(-3i) + 2(2 - 3i) + 4i$$

12. Let V be an vector space of polynomials with the inner product given by

=-3i+3+4-6i+4i

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt$$
. Let $f(t) = t + 2$ and $g(t) = t^2 - 2t - 3$ find (i)

= 7 - 5i

 $\langle f, g \rangle$ (ii) $\parallel f \parallel$.

Sol:

Let
$$\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt$$

(i)
$$= \int_{0}^{1} (t+2)(t^{2}-2t-3)dt$$

$$= \int_{0}^{1} (t^{3}-2t^{2}-3t+2t^{2}-4t-6)dt$$

$$= \int_{0}^{1} (t^{3}-7t-6)dt$$

$$= \left[\frac{t^{4}}{4} - \frac{7t^{2}}{2} - 6t\right]_{0}^{1}$$

$$= \frac{1}{4} - \frac{7}{2} - 6$$

$$= -\frac{37}{4}$$

$$= \int_{0}^{1} [f(t)]^{2} dt$$

$$= \int_{0}^{1} (t+2)^{2} dt$$

$$= \int_{0}^{1} (t^{2} + 4t + 4) dt$$

$$= \left[\frac{t^{3}}{3} + \frac{4t^{2}}{2} + 4t\right]_{0}^{1}$$

$$= \frac{1}{3} + 2 + 4$$

$$= \frac{19}{3}$$

$$\parallel f \parallel = \frac{\sqrt{19}}{\sqrt{3}}$$

13. For any non-zero vector, $x \in V$. prove that $y = \frac{x}{\|x\|}$ is a vector such that

||y|| = 1.

Sol: Consider

$$\langle y, y \rangle = \langle \frac{x}{\parallel x \parallel}, \frac{x}{\parallel x \parallel} \rangle$$

$$= \frac{1}{\parallel x \parallel} \cdot \frac{1}{\parallel x \parallel} \langle x, x \rangle$$

$$\langle y, y \rangle = \frac{1}{\parallel x \parallel^2} \parallel x \parallel^2$$

$$\parallel y \parallel^2 = 1$$

$$\parallel y \parallel = 1$$

Theorem 3.1: In an inner product space V,

(i) $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0

(ii)
$$\|\alpha x\| = |\alpha|||x||$$

Proof:

(i) $\|x\| = \sqrt{\langle x, x \rangle}$ $\|x\|^2 = \langle x, x \rangle \ge 0$ $\|x\|^2 \ge 0$ $\|x\| \ge 0$

Also $(x, x) \ge 0$ if and only if x = 0

Therefore $||x||^2 = 0$ if and only if x = 0

(ii)

$$\| \alpha x \|^2 = \langle \alpha x, \alpha x \rangle$$

$$= \alpha \langle x, \alpha x \rangle$$

$$= \alpha \bar{\alpha} \langle x, x \rangle$$

$$= |\alpha|^2 \| x \|^2$$

$$\| \alpha x \| = |\alpha| \| x \|$$

Theorem 3.2: [Schwarz's inequality]

For any two vectors x and y in an inner product space V,

$$|\langle x,y\rangle|\leq \parallel x\parallel\parallel y\parallel$$

Proof:

If
$$x = 0$$
, then $||x|| = 0$.
 $\therefore ||x|| ||y|| = 0$... (1)
Also $\langle x, y \rangle = \langle 0, y \rangle = 0$
 $\therefore |\langle x, y \rangle| = 0$... (2).

From (1) and (2)

$$|\langle x, y \rangle| = ||x|| ||y||$$

So the result is true.

Let $x \neq 0$. Then ||x|| > 0

Therefore $\frac{1}{\|x\|}$ is a positive number

Consider the vector

$$w = y - \frac{\langle y, x \rangle}{\|x\|^{2}} x$$

$$\langle w, w \rangle = \langle y - \frac{\langle y, x \rangle}{\|x\|^{2}} x, y - \frac{\langle y, x \rangle}{\|x\|^{2}} x \rangle$$

$$= \langle y, y \rangle - \langle y [\frac{\langle y, x \rangle}{\|x\|^{2}}; \rangle - \langle \frac{\langle y, x \rangle}{\|x\|^{2}} x, y \rangle + \langle \frac{\langle y, x \rangle}{\|x\|^{2}} x, \frac{\langle y, x \rangle}{\|x\|^{2}} x \rangle$$

$$= \|y\|^{2} - \frac{\ln \operatorname{ner Product}}{\|x\|^{2}} \langle y, x \rangle - \frac{\langle y, x \rangle}{\|x\|^{2}} \langle x, y \rangle + \frac{\langle y, x \rangle \langle y, x \rangle}{\|x\|^{4}} \langle x, x \rangle$$

$$= \|y\|^{2} - \frac{\langle x, y \rangle \langle \langle x, y \rangle}{\|x\|^{2}} + \frac{\overline{\langle x \rangle} \langle x, y \rangle \|x\|^{2}}{\|x\|^{4}}$$

$$= \|y\|^{2} - \frac{|\langle x, y \rangle|^{2}}{\|x\|^{2}} - \frac{|\langle x, y \rangle|^{2}}{\|x\|^{2}} + \frac{|\langle x, y \rangle|^{2}}{\|x\|^{2}} [\because zz^{-} = |z|^{2}]$$

$$(w, w) = \|y\|^{2} - \frac{|\langle x, y \rangle|^{2}}{\|x\|^{2}} \ge 0$$

$$\|x\|^{2} \|y\|^{2} - |\langle x, y \rangle|^{2} \ge 0$$

 $|| x ||^{2} || y ||^{2} \ge |\langle x, y \rangle|^{2} |\langle x, y \rangle|^{2} \le || x ||^{2} || y ||^{2}$ $: |\langle x, y \rangle| \le || x || || y ||$

Theorem 3.3: [Triangle inequality]

For any two vectors x and y in an inner product space V,

$$||x + y|| \le ||x|| + ||y||$$
.

Proof:

Using the norm of vectors we have

$$| x + y ||^{2} = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= || x ||^{2} + \langle x, y \rangle + || y ||^{2}$$

$$= || x ||^{2} + 2 \operatorname{Re} \langle x, y \rangle + || y ||^{2} [\because z + z^{-} = 2 \operatorname{Re} (z)]$$

$$\leq || x ||^{2} + 2 || \langle x, y \rangle | + || y ||^{2} [\because \operatorname{Re} (z) \leq |z|]$$

$$\leq || x ||^{2} + 2 || x || || y || + || y ||^{2} [\operatorname{By Shwarz's inequivality}]$$

$$\leq (|| x || + || y ||)^{2}$$

$$|| x + y ||^{2} \leq (|| x || + || y ||)^{2}$$

$$|| x + y ||^{2} \leq || x || + || y ||.$$

Theorem 3.4: [Parallelogram law]

For any two vectors x and y in an inner product space V, $\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2)$. What does this equation state about parallelograms in R^2 ?

Proof:

$$\| x + y \|^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= \| x \|^2 + \langle x, y \rangle + \bar{x}, y + \| y \|^2$$

$$= \| x \|^2 + 2\operatorname{Re}\langle x, y \rangle + \| y \|^2 \dots (1)$$

and

$$\| x - y \|^2 = \langle x - y, x - y \rangle$$

$$= \langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle$$

$$= \| x \|^2 - [\langle x, y \rangle + \langle x, y \rangle] + \| y \|^2$$

$$= \| x \|^2 - 2\operatorname{Re}\langle x, y \rangle + \| y \|^2 \dots (2)$$

$$(1) + (2) \Rightarrow ||x + y||^2 + ||x - y||^2 = 2(||x||^2 + 2 ||y||^2) \dots (3)$$

Let 0ABC be a parallelogram with sides of length 0A = ||x|| and 0C = ||y|| in R^2 . Therefore the length of the hypotenuses of 0ABC are AC = ||x + y|| and 0B = ||x - y||

$$(3) \Rightarrow 0B^2 + AC^2 = 0A^2 + AB^2 + BC^2 + CA^2 [\because |0A| = |BC|, |AB| = |C0|]$$

Therefore sum of the squares of the two diagonals is equal to the sum of squares of four sides.

binils.com

3.3.1 PROBLEMS UNDER LEAST SQUARES TO FIT A STRAIGFII LINE

To find the least square fit of y = ct + d for the n datas

 $(t_1, y_1), (t_2, y_2), \dots, (t_n, y_n)$, the appropriate model is

To compute x_0 , the normal equations are

$$(A^*A)x_0 = A^*y.$$

By least square find a linear function and error for the following data

Sol: Let y = ct + d be the best fit.

Here
$$t_1 = 1, t_2 = 2, t_3 = 3$$

$$y_1 = 0, y_2 = 1, y_3 = 3$$

$$A = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}; x_0 = \begin{bmatrix} c \\ c \end{bmatrix}; y = \begin{bmatrix} y_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$$

$$t_3 \quad 1 \quad 3 \quad 1 \quad y_3 \quad 3$$

$$A^* = (A^{-})^T \\ = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A^*A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 14 & 6 \\ 6 & 3 \end{bmatrix}$$

$$A^*y = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 11 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 11 \\ 4 \end{bmatrix}$$

Normal equals are

$$(A*A)x_0 = A*y$$
 $\begin{bmatrix} 14 & 6 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} 11 \\ 4 \end{bmatrix}$
 $14c + 6d = 11 \dots (1)$
 $6c + 3d = 4 \dots (2)$

Solve (1) and (2)

$$(1) \times 3 \Rightarrow 42c + 18d = 33$$

$$(2) \times 7 \Rightarrow 42c + 21d = 28$$

Subtracting

$$-3d = 5$$
$$\therefore d = \frac{-5}{3}$$

Substituting $d = \frac{-5}{3}$ in (2),

$$6c + 3\left(\frac{-5}{3}\right) = 4$$

$$6c = 9$$

$$c = 3$$

$$c = 2$$

$$\therefore y = \frac{3}{2}t - \frac{5}{3} \text{ least square fit.}$$

The error is computed using the formula

$$E = \|Ax_0 - y\|^2$$

where

.

$$\begin{array}{ccc}
1 & 1 & \begin{bmatrix} 3 \\ \frac{2}{2} \end{bmatrix} & 0 \\
A = \begin{bmatrix} 2 & 1 \end{bmatrix}; x_0 = \begin{bmatrix} 5 \\ \frac{3}{2} \end{bmatrix}; y = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \\
\begin{bmatrix} -\frac{1}{3} \end{bmatrix}
\end{array}$$

$$Ax_0 - y = \begin{bmatrix} 1 & 1 & \frac{3}{2} & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$3 \quad 1 \quad -\frac{5}{3} \quad 3$$

$$\begin{bmatrix} -\frac{1}{6} \\ -\frac{1}{6} \end{bmatrix} = \begin{bmatrix} -\frac{1}{6} \\ \frac{4}{3} \\ 17 \\ 17 \\ 3 \end{bmatrix} = \begin{bmatrix} -\frac{1}{4} \\ \frac{1}{3} \\ -\frac{1}{4} \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{6} \end{bmatrix}$$

$$\varepsilon = ||Ax_0 - y||^2$$

$$= (Ax_0 - y, Ax_0 - y)$$

$$= (-\frac{1}{6})^2 + (-\frac{1}{3})^2 + (-\frac{1}{6})^2$$

$$= 0.0278 + 0.1111 + 0.0278$$

$$= 0.1667$$

Find the least square line and error for the following datas (1,2),

(2,3),(3,5) and (4,7).

Sol: Let y = ct + d be the best fit.

Here
$$t_1 = 1$$
, $t_2 = 2$, $t_3 = 3$, $t_4 = 4$
 $y_1 = 2$, $y_2 = 3$, $y_3 = 5$, $y_4 = 7$

$$y_1 = 2, y_2 = 3, y_3 = 5, y_4 = 7$$

$$A = \begin{bmatrix} t_{1} & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ & \end{bmatrix} = \begin{bmatrix} & & \\ & & \\ & & \\ & & t_{4} & 1 \end{bmatrix}; x_{0} = \begin{bmatrix} c \\ d \end{bmatrix}; y = \begin{bmatrix} y_{1} & 2 \\ y_{2} \\ y_{3} \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} A^{*} = (\bar{A})^{T}$$

$$= \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} A^* A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix}$$

The normal equals are

$$\begin{array}{c} (A*A)x_0 = A*B \\ \hline \begin{bmatrix} 30 & 10 \\ 10 & 4 & d \end{bmatrix} \begin{bmatrix} c \\ d & 17 \end{bmatrix} \\ 10 & 4 & d & 17 \end{bmatrix} \\ 30c + 10d = 51 \dots (1) \\ 10c + 4d = 17 \dots (2) \end{array}$$

Solve (1) and (2)

$$(1) \Rightarrow 30c + 10d = 51$$

$$(2) \times 3 \Rightarrow$$

$$30c + 12d = 51$$

$$-d = 0$$

$$\therefore d = 0$$

Subtracting -d = 0

Substituting d = 0 in (2), 10c + 0 = 17

$$10c = 17$$

 $c = 1.7$

 $\therefore y = 1.7t$ least square fit.

The error is computed using the formula

$$E = ||Ax_0 - y||^2$$

where

where
$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & 1.7 & \frac{y_1}{y_2} & \frac{2}{3} \\ \frac{3}{4} & \frac{1}{4} & \frac{$$

3.3.2. PROBLEMS UNDER LEAST SQUARES TO FIT A QUADRATIC FUNCTION

To find the least square fit of $y = ct^2 + dt + e$ for the

$$(t_1, y_1), (t_2, y_2), \dots, (t_n, y_n)$$
, the appropriate model is

$$A = \begin{bmatrix} t^{2} & t & 1 & & y_{1} \\ 1 & 1 & & & \\ \vdots & \vdots & \ddots & & \\ ht^{2} & t & 1 & & e & \\ & & & & & ht_{n} \end{bmatrix}$$

To compute x_0 , the normal equations are

$$(A^*A)x_0 = A^*y.$$

Using the least squares fit a quadratic following data (-3, 9), (-2, 6), (0, 2)and (1, 1). Also find the error.

Sol: Let $y = ct^2 + dt + e$ be the best fit.

Here
$$t_1 = -3$$
, $t_2 = -2$, $t_3 = 0$, $t_4 = 1$ $A = \begin{bmatrix} t_1^2 & t_1 & 1 \\ t_1^2 & t_2 & 1 \\ t_3^2 & t_3 & 1 \\ [t_4^2 & t_4 & 1] & 1 & 1 \end{bmatrix}$; $x_0 = \begin{bmatrix} t_1^2 & t_1 & 1 \\ t_2^2 & t_2 & 1 \\ t_3^2 & t_3 & 1 \\ [t_4^2 & t_4 & 1] & 1 & 1 \end{bmatrix}$; $x_0 = \begin{bmatrix} t_1^2 & t_1 & 1 \\ t_2^2 & t_3 & 1 \\ [t_4^2 & t_4 & 1] & 1 & 1 \end{bmatrix}$

$$\begin{array}{c}
c & y_1 & 9 \\
[d] ; y = \begin{bmatrix} y_2 & 6 \\ y_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \\
y_4 & 1
\end{array}$$

$$A^* = (A^{-})^T$$

$$9 \quad 4 \quad 0 \quad 1 \\
= \begin{bmatrix} -3 & -2 & 0 & 1 \\
1 & 1 & 1 & 1 \\
\end{bmatrix}$$

$$A*A = \begin{bmatrix} 9 & 4 & 0 & 1 & 9 & -3 & 1 \\ -3 & -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & -2 & 1 \\ 4 & -2 & 1 \end{bmatrix}$$

$$1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$A*y = \begin{bmatrix} -34 & 14 & 9 & 4 & 0 & 1 \\ -34 & 14 & -4 \end{bmatrix} = \begin{bmatrix} -3 & -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

$$14 & -4 & 4 & 1 & 1 & 1 & 1 \\ 15 & 18 & 18 & 18 & 18 \end{bmatrix}$$

Normal equals are

$$(A^*A)x_0 = A^*y$$

$$98 -34 14 c 125$$

$$[-34 14 -4] [d] = [-40]$$

$$14 -4 4 e 18$$

$$98c - 34d + 14e = 125 ... (1)$$

$$-34c + 14d - 4e = -40 ... (2)$$

$$14c - 4d + 4e = 18 ... (2)$$

Solve (1), (2) and (3), we get

$$c = \frac{1}{3}, d = -\frac{4}{3}, e = 2$$

 $y = \frac{1}{3}t^2 - \frac{4}{3}t + 2$ least square fit.

The error is computed using the formula

$$E = \|Ax_0 - y\|^2$$

where

$$A = \begin{bmatrix} 9 & -3 & 1 \\ 4 & -2 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}; x_0 = \begin{bmatrix} 1 \\ 3 \\ -\frac{3}{3} \end{bmatrix}; y = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

$$Ax_0 - y = \begin{bmatrix} 9 & -3 & 1 & 3 \\ 4 & -2 & 1 & 3 \\ 0 & 0 & 1 & 3 \end{bmatrix} -4 - \begin{bmatrix} 1 \\ 2 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 6 \\ 2 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 6 \\ 2 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$E = ||Ax_0 - y||^2$$

$$= 0$$

binils.com

Using the least squares fit a quadratic function following data

$$(-2, 4), (-1, 3), (0, 1), (1, -1)$$
 and $(2, -3)$.

Sol: Let $y = ct^2 + dt + e$ be the best fit.

Here
$$t_1 = -2$$
, $t_2 = -1$, $t_3 = 0$, $t_4 = 1$, $t_5 = 2$

$$y_1 = 4, y_2 = 3, y_3 = 1, y_4 = -1, y_5 = -3$$

$$\begin{bmatrix} t^2 & t_1 & 1 \\ t_2 & t_2 & 1 \\ t_2^2 & t_3 & 1 \\ t_4^2 & t_4 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}; x_0 = \begin{bmatrix} d \\ d \end{bmatrix}; y = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} t_5^2 & t_5 & 1 \end{bmatrix}$$

$$A^* = (A)^T$$

$$4 \quad 1 \quad 0 \quad 1 \quad 4$$

$$= [-2 \quad -1 \quad 0 \quad 1 \quad 2]$$

$$1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$4 \quad -2 \quad 1$$

$$4 \quad 1 \quad 0 \quad 1 \quad 4 \quad 1 \quad -1 \quad 1$$

$$A^*A = [-2 \quad -1 \quad 0 \quad 1 \quad 2] \quad 0 \quad 0 \quad 1$$

$$1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$[4 \quad 2 \quad 1]$$

Normal equals are $\begin{bmatrix} 6 \\ = [-18] \\ \mathbf{S}^{4} \\ \mathbf{COM} \end{bmatrix}$

$$(A*A)x_0 = A*y$$

 34 0 10 c 6
 $[0 10 0][d] = [-18]$
 $10 0 5 e 4$
 $34c + 10e = 6 ... (1)$
 $10d = -18 ... (2)$
 $10c + 5e = 4 ... (3)$

$$(2) \Rightarrow d = -1.8$$

Solving (1) and (3), we get

$$c = -0.14, e = 1.08,$$

 $y = -0.14t^2 - 1.8t + 1.08$ least square fit.