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4.1 Semigroups and Monoids 

 

Define Algebraic System: 

 

• A non – empty set G together with one or more n – ary operations say ∗ 
 

(binary) is called an Algebraic System or Algebraic Structure or Algebra. 

 

• We denoted it by [𝐺, ∗]. 
 

• Note: +, −, ∙, ×, ∗, ∪, ∩ etc are some of binary operations. 

 

Properties of Binary Operations 

 

Let the binary operation be ∗ : 𝐺 × 𝐺 → 𝐺. 

Then we have the following properties: 

Closure Property: 

a ∗ b = 𝑥 𝜖 G, for all 𝑎, 𝑏 𝜀 𝐺. 
 

Commutativity Property: 

 

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎, for all 𝑎, 𝑏 𝜀 𝐺. 
 

Associativity: 

 

(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐), for all 𝑎, 𝑏, 𝑐 𝜀 𝐺. 
 

Identity Element: 

 

𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎, for all 𝑎 𝜀 𝐺. 

‘𝑒’ is called the identity element. 
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Inverse Element: 

 

If 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒 (identity), then 𝑏 is called the inverse of 𝑎 and it is 

denoted by b = 𝑎−1. 

Left Cancellation law: 

 

𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐 ⇒ 𝑏 = 𝑐 
 

Right Cancellation law: 

 

𝑏 ∗ 𝑎 = 𝑐 ∗ 𝑎 ⇒ 𝑏 = 𝑐 
 

If the binary operation defined on G is + and X, then we have the following table. 

 

For all a, b, c 𝜺 
 

G 

(G, +) (G,×) 

Commutativity a + b = b + a a× b = b × a 

Associativity (a + b) + c = a + (b + c) (a× b)× c =a × (b × c) 

Identity element a + 0 = 0 + a = a 

 

(0 → identity) 

a× 1 = 1 × a = a 

 

(1 →identity) 

Inverse element a + (-a) = 0 

 

(-a→ additive inverse) 

a× 
1 

= 1 × a = 1 
𝑎 𝑎 

 

 
(1 → multiplicative 
𝑎 

 

inverse) 
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NOTATIONS: 

 

• Z - the set of all integers. 

 

• Q - the set of all rational numbers. 

 

• R - the set of all real numbers. 

 

• C - the set of all complex numbers. 

 

• 𝑅+ - the set of all positive real numbers. 

 

• 𝑄+ - the set of all positive rational numbers. 

 

Semigroups and Monoids: 

 

Define semigroup 

 

If a non – empty set S together with the binary operation ∗ satisfying the following 

properties 

Closure Property: 

 

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 , for all 𝑎, 𝑏 𝜀 𝑆. 
 

Associativity: 

 

(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐), for all 𝑎, 𝑏, 𝑐 𝜀 𝑆. 
 

Then (𝑆,∗) is called a semigroup. 

 

Monoid: 

 

A semigroup (𝑆,∗) with an identity element with respect to ∗ is called Monoid. It is 

denoted by (𝑀,∗). 
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In other words, a non – empty set ‘M’ with respect to ∗ is said to be a monoid, if ∗ 
 

satisfies the following properties 

For 𝑎, 𝑏 ∈ 𝑀 

Closure Property: 

 

𝑎 ∗ 𝑏 = 𝑏 ∗  𝑎 , for all a, b 𝜀 M. 

 

Associativity: 

 

(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐), for all a, b, c 𝜀 M. 

 

Identity Element: 

 

𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎, for all a 𝜀 M. 

 

‘𝑒’ is called the identity element. binils.com
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4.2 Groups 

Define Group 

A non-empty set 𝐺 together with the binary operation ∗,i.e., (𝐺,∗) is called 

a group if ∗ satisfies the following conditions. 

(i) Closure Property: 𝑎 ∗ 𝑏 = 𝑥 𝜖 𝐺, for all 𝑎, 𝑏 𝜀 𝐺. 
 

(ii) Associativity: (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) for all 𝑎, 𝑏, 𝑐 𝜀 𝐺. 
 

(iii) Identity: There exists an element 𝑒 𝜀 𝐺 called the identity element such that 

 

𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎, for all a 𝜀 G. 

 

(iv) Inverse: There exists an element 𝑎−1𝜀 G called the inverse of ‘𝑎’ such that 

 
𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑎, for all a 𝜀 G. 

 
Define Abelian Group 

 

In a group (G, ∗), if a ∗ b = b ∗a, for all a, b 𝜀 G, then the group (G, ∗) is 

called an Abelian group. 

Example:(𝑍, +) is an Abelian group. 

 

Define an Order of a Group 

 

The number of elements in a group G is called the order of the group and 

is denoted by O(G). 

It is denoted by O(G) or |𝐺|. 
 

Define Finite and Infinite Group 

 

(i) If O(G) is finite, then G is said to be a finite group. 
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(ii) If O(G) is infinite, then G is said to be a infinite group. 

 

Theorems on Abelian Groups 

Theorem: 1 

If every element of a group G has its own inverse, then G is abelian. 

(OR) 

For any group G, if 𝒂𝟐 = 𝒆 with 𝒂 ≠ 𝒆, then G is abelian. 

Proof: 

Let (G, ∗) be a group. 

 

For a, b 𝜀 G, we have a ∗ b 𝜖 G 

Given 𝑎 = 𝑎−1 and 𝑏 = 𝑏−1 

(𝑎 ∗ 𝑏) = (𝑎 ∗ 𝑏)−1 

= 𝑏−1 ∗ 𝑎−1 = 𝑏 ∗ 𝑎(∵ 𝑎 = 𝑎−1 &𝑏 = 𝑏−1 ) 
 

⟹ 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 
 

∴ 𝐺 is abelian. 

 

Hence the proof. 

 

Theorem: 2 

 

Prove that a group (G, ∗) is abelian iff (𝒂 ∗ 𝒃)𝟐 = 𝒂𝟐 ∗ 𝒃𝟐 for all 𝒂 , 𝒃 𝝐 𝑮 

 
Proof: 
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Assume that 𝐺 is abelian. 

 

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎, a , b 𝜖 G → (1) 
 

Let 𝑎2 ∗ 𝑏2 = (𝑎 ∗ 𝑎) ∗ (𝑏 ∗ 𝑏) 

 
= 𝑎 ∗ [𝑎 ∗ (𝑏 ∗ 𝑏)] ∵ (∗ is Associative) 

 
= 𝑎 ∗ [(𝑎 ∗ 𝑏) ∗ 𝑏] ∵ (∗ is Associative) 

 

= 𝑎 ∗ [(𝑏 ∗ 𝑎) ∗ 𝑏] ∵ (𝐵𝑦 (1)) 

 
= (𝑎 ∗ 𝑏) ∗ (𝑎 ∗ 𝑏) ∵ (∗ is Associative) 

 

= (𝑎 ∗ 𝑏)2 

 
∴ (𝑎 ∗ 𝑏)2 = 𝑎2 ∗ 𝑏2 

 
Conversely assume that (𝑎 ∗ 𝑏)2 = 𝑎2 ∗ 𝑏2 

 
To prove G is abelian. 

 

⟹ (𝑎 ∗ 𝑏) ∗ (𝑎 ∗ 𝑏) = (𝑎 ∗ 𝑎) ∗ (𝑏 ∗ 𝑏) 
 

⟹ 𝑎 ∗ [𝑏 ∗ (𝑎 ∗ 𝑏)] = 𝑎 ∗ [𝑎 ∗ (𝑏 ∗ 𝑏)] ∵ (∗ is Associative) 

 

⟹ 𝑏 ∗ (𝑎 ∗ 𝑏) = 𝑎 ∗ (𝑏 ∗ 𝑏) (Left Cancellation law) 

 

⟹ (𝑏 ∗ 𝑎) ∗ 𝑏 = (𝑎 ∗ 𝑏) ∗ 𝑏 (Right Cancellation law) 

 

⟹ (𝑏 ∗ 𝑎) = (𝑎 ∗ 𝑏) 
 

∴ G is abelian. 
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Hence the proof. 
 

Theorem: 3 

 

If (G, ∗) is an abelian group, then for all a, b 𝜺 G then (𝒂 ∗ 𝒃)𝒏 = 𝒂𝒏 ∗ 𝒃𝒏 
 

Proof: 

 

Let (G, ∗) be an abelian group and a, b 𝜀G. Then for all n 𝜀 Z, 

 

(𝑎 ∗ 𝑏)𝑛 = 𝑎𝑛 ∗ 𝑏𝑛 

 
Case (i) Let 𝑛 = 0 

 
Then 𝑎0 = 𝑒, 𝑏0 = 𝑒, (𝑎 ∗ 𝑏)0 = 𝑒 

 
∴ (𝑎 ∗ 𝑏)0 = 𝑎0 ∗ 𝑏0 

 
Hence the result is true when n = 0 

 

Case (ii) let 𝑛 = 1 
 

Let n be a positive integer 

 

(𝑎 ∗ 𝑏)1 = 𝑎1 ∗ 𝑏1 
 

The result is true for 𝑛 = 1 
 

Assume that it is true for 𝑛 = 𝑘, so that 

 
(𝑎 ∗ 𝑏)𝑘 = 𝑎𝑘 ∗ 𝑏𝑘 → (1) 

 
To prove it is true for 𝑛 = 𝑘 + 1 

 
Now (𝑎 ∗ 𝑏)𝑘+1 = (𝑎 ∗ 𝑏)𝑘 ∗ (𝑎 ∗ 𝑏) 

 
= 𝑎𝑘 ∗ 𝑏𝑘 ∗ 𝑎 ∗ 𝑏 
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= 𝑎𝑘 ∗ (𝑏𝑘 ∗ 𝑎) ∗ 𝑏 
 

= 𝑎𝑘 ∗ (𝑎 ∗ 𝑏𝑘) ∗ 𝑏 
 

= (𝑎𝑘 ∗ 𝑎) ∗ (𝑏 ∗ 𝑏𝑘) 
 

= 𝑎𝑘+1 ∗ 𝑏𝑘+1 

 
𝐻ence the result is true for 𝑛 = 𝑘 + 1. 

Hence by induction, the result is true for positive integer values of n. 

Hence the proof. 

 

Problems on Groups: 

 

1. Show that set ℝ with the usual addition as a binary operation is an abelian 

group. 

Solution: Let 𝑎, 𝑏, 𝑐 ∈ ℝ 

 
(i) Closure property: Clearly 𝑎 + 𝑏 ∈ ℝ 

 
(ii) Associative property: 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 

 

(iii) Identity element: Since 0 ∈ ℝ , we have 

 

⇒ 𝑎 + 0 = 0 + 𝑎 = 𝑎 
 

(iv) Additive Inverse: For 𝑎 ∈ ℝ, we have − 𝑎 ∈ ℝ, such that 
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𝑎 + (−𝑎) = 0 = (−𝑎) + 𝑎 
 
 

∴ The inverse of 𝑎 is –a . 

 

(v) Commutative property: 𝑎 + 𝑏 = 𝑏 + 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ ℝ 

 
∴ (ℝ, +) is an abelian group. 

 

Since ℝ contains infinite number of elements, (ℝ, +) is an infinite abelian group 

 

2. Show that(ℝ − {𝟏},∗)is an abelian group, where ∗ is defned by 

 

𝒂 ∗ 𝒃 = 𝒂 + 𝒃 + 𝒂𝒃, for all 𝒂, 𝒃 ∈ ℝ. 

Solution: 

Here ℝ − {1} means the set or real numbers except 1. 

 

(i) Closure property: 

 
Clearly 𝑎 ∗ 𝑏 = 𝑎 + 𝑏 + 𝑎𝑏 ∈ (ℝ − {1}) [𝑎 ≠ −1, 𝑏 ≠ −1] 

 

(ii) Associative property: 

 
(𝑎 ∗ 𝑏) ∗ 𝑐 = (𝑎 + 𝑏 + 𝑎𝑏) ∗ 𝑐 

 

= 𝑎 + 𝑏 + 𝑎𝑏 + 𝑐 + (𝑎 + 𝑏 + 𝑎𝑏)𝑐 
 

= 𝑎 + 𝑏 + 𝑎𝑏 + 𝑐 + 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑏𝑐 …. (A) 
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𝑎 ∗ (𝑏 ∗ 𝑐) = 𝑎 ∗ (𝑏 + 𝑐 + 𝑏𝑐) 
 

= 𝑎 + 𝑏 + 𝑐 + 𝑏𝑐 + 𝑎(𝑏 + 𝑐 + 𝑏𝑐) 
 

= 𝑎 + 𝑏 + 𝑐 + 𝑏𝑐 + 𝑎𝑏 + 𝑎𝑐 + 𝑎𝑏𝑐 ….. (B) 

 

From (A) and (B), we get 

 
(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐), for all 𝑎, 𝑏 ∈ (ℝ − {1}) 

 

(iii) Identity element: 

 

Let ‘𝑒’ be the identity element. 

Then, 𝑎 ∗ 𝑒 = 𝑎 

⇒ 𝑎 + 𝑒 + 𝑎𝑒 = 𝑎 
 

⇒ 𝑒(1 + 𝑎) = 0 
 

⇒ 𝑒 = 0 
 

Here ‘0’ is the identity element and 0 ∈ (ℝ − {1}) 

 
(iv) Inverse: 

 

Let the inverse of 𝑎 be 𝑎−1 

 
Then, 𝑎 ∗ 𝑎−1 = 0 (identity) 
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⇒ 𝑎 + 𝑎−1 + 𝑎𝑎−1 = 0 

 
⇒ 𝑎−1(1 + 𝑎) = −𝑎 

 

⇒ 𝑎−1 = − 
𝑎

 
1+𝑎 

 
∈ (ℝ − {1}) 

 

∴ Inverse element is − 
𝑎

 
1+𝑎 

 

(v) Commutative: 

 

⇒ 𝑎 ∗ 𝑏 = 𝑎 + 𝑏 + 𝑎𝑏 
 

= 𝑏 + 𝑎 + 𝑏𝑎 
 

= 𝑏𝑏 ∗ 𝑎 
 

∴ 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎, for all 𝑎, 𝑏 ∈ (ℝ − {1}) 

 
∴ (ℝ − {1}) is an abelian group. 

 

3. Show that (ℚ+,∗) is an abelian group where ∗is defined by 

 

𝒂 ∗ 𝒃 = 
𝒂𝒃 

, 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒂, 𝒃 ∈ ℚ+ 
𝟐 

 

Solution: 

 

Let ℚ+be the set of all positive rational numbers. 

 
(i) Closure property: 
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Clearly 𝑎 ∗ 𝑏 = 
𝑎𝑏 

∈ ℚ+ 
2 

 

(ii) Associative property: 
 
 

(𝑎 ∗ 𝑏) ∗ 𝑐 = 
𝑎𝑏 

∗ 𝑐 = 
2 

𝑎𝑏𝑐 

2 

2 

 

= 
𝑎𝑏𝑐 

4 

 

. . . (1) 

 

 

𝑎 ∗ (𝑏 ∗ 𝑐) = 𝑎 ∗ 
𝑏𝑐 

= 
2 

 
𝑎𝑏𝑐 

2 

2 

 

= 
𝑎𝑏𝑐 

4 

 
. . . (2) 

 

From (1) and (2) we get, 

 

(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎, 𝑏 ∈ ℚ+ 

 
(iii) Identity element: 

 

Let ‘𝑒’ be the identity element. 

Then, 𝑎 ∗ 𝑒 = 𝑎 

⇒ 
𝑎𝑒 

= 𝑎 ⇒ 𝑒 = 2 
2 

 

Here ‘2’ is the identity element and 2 ∈ ℚ+ 

 
iv) Inverse: 

 

Let the inverse of 𝑎 be 𝑎−1 

 
Then, 𝑎 ∗ 𝑎−1 = 2 (identity) 
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𝑎𝑎−1 

⇒ = 2 
2 

 

⇒ 𝑎−1 = 
4

 
𝑎 

 

∴ Inverse element is 4 ∈ ℚ+ 
𝑎 

 

v) Commutative: 

 
Now 𝑎 ∗ 𝑏 = 

𝑎𝑏
 

2 
 

∴ 𝑏 ∗ 𝑎 = 
𝑏𝑎 

= 
𝑎𝑏

 
2 2 

 

∴ 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎, for all 𝑎, 𝑏 ∈ ℚ+ 

 
Hence (ℚ+,∗) is an abelian group. 

 

 

4. Let 𝑮 = { ]} Show that G is a group 
 

under the operation of matrix multiplication. 
 

 

 

 

 

 

[ = [ = [ ] 
 

 

∴ 𝐺 = {𝐼, 𝐴, 𝐵, 𝐶}. Since it is finite set we shall form Cayley table and verify the 

axioms of a Group. 

𝟏 𝟎 −𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 [ ] , [ ] , [ ] , [ 
𝟎 𝟏 𝟎 𝟏 𝟎 −𝟏 𝟎 −𝟏 
 

Solution:  

Let I = 
1

 0 ], A −1 
0

], B 1 
0 

], C = 
−1

 [ 0 
0 1 0 1 0 −1 0 −1 
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−1 

−1 

[ 

I is the identity element. 

 

𝐴 ∙ 𝐼 = 𝐼 ∙ 𝐴 = 𝐴, 𝐵 ∙ 𝐼 = 𝐼 ∙ 𝐵 = 𝐵, 𝐶 ∙ 𝐼 = 𝐼 ∙ 𝐶 = 𝐶 
 
 

] = 𝐼 
 

 

𝐴𝐵 = [
−1 0

 
1 

1 0 
0 −1 

−1 0 𝐶 
0 −1 

 

−1 0 −1 0 1 0 
𝐴𝐶 = [ 

0 1
] [ 

0 
] = [ ] = 𝐵 

 

 

𝐵2 
1 0 1 0 1 0 

= 𝐵 ∙ 𝐵 = [ ] ] = [ ] = 𝐼 
0 −1 0 −1 0 1 

 

2 −1 0 −1 0 1 0 
𝐶 = 𝐶 ∙ 𝐶 = [ 

0 
] [ ] = [ ] = 𝐼 

 

1 0 
𝐵𝐶 = [ 

−1 0 
] [ 

 
] = [ −1 0 

] = 𝐴 
0 −1 0 −1 0 1 

 

−1 0 −1 0 1 0 
𝐶𝐴 = [ 

0 
] [ ] = [ ] = 𝐵 

 

Similarly BA = C, CB = A 

 

Cayley table: 
 

 

∙ I A B C 

I I A B C 

−1 0 −1 

0 −1 0 1 

0 1 0 −1 

𝐴2 = 𝐴 ∙ 𝐴 = 
−1 0 

[
−1 0 

= [
1 0

 [ ] ] 
  0 1 0 1  0 1 

0 
] [ ] = [ ] = 

 

binils.com

binils - Anna University App on Play Store

                    Free PDF Study Materials
binils.com - Anna University, Polytechnic & Schools



 

MA8351 DISCRETE MATHEMATICS 

 

 

 

A A I C B 

B B C I A 

C C B A I 

 

 

 

(i) Closure property: 

 

The first line of the table contains only all the elements of G. So G is closed under 

matrix multiplication. 

(ii) Associative property: 

 

Since matrix multiplication is associative it is true for G also. So Associative is 

satisfied. 

(iii) Identity element: 

 

I is the identity element. 

 

(iv) Inverse: 

 

Inverse of A is A, B is B and C is C. 

 
So (𝐺, ∙) is a group under matrix multiplication. 
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5. Check whether 𝑯𝟏 = {𝟎, 𝟓, 𝟏𝟎} and 𝑯𝟐 = {𝟎, 𝟒, 𝟖, 𝟏𝟐} are subgroups of 

𝒁𝟏𝟓 with respect to +𝟏𝟓. 

Solution: 

The addition tables (mod 15) for the sets 𝐻1 and 𝐻2 is given below: 

For 𝐻1 

+15 0 5 10 

0 0 5 10 

5 5 10 0 

10 10 0 5 

For 𝐻2 

 

 

+15 0 4 8 12 

0 0 4 8 12 

4 4 8 12 1 

8 8 12 1 5 

12 12 1 5 9 
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Here all the entries in the addition table for 𝐻1 are the elements of 𝐻1. 

 
∴ 𝐻1 is a subgroup of 𝑍15. 

 
Also all the entries in the addition table for 𝐻2 are not the elements of 𝐻2. 

 
∴ 𝐻2 is not closed under addition. 

 
∴ 𝐻2 is not a subgroup of 𝑍15. 
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4.3 Subgroups 

 
Define Subgroups 

 
Let (G, ∗) be a group. Then (H, ∗) is said to be subgroup of (G, ∗) if 𝐻 ⊆ 𝐺 and 

(H, ∗) itself is a group under the operation ∗ 

i.e., (H, ∗) is said to be a subgroup of (G, ∗) if 

 
• 𝑒 𝜀 𝐻, where e is the identity in G. 

 

• For any 𝑎 𝜀 𝐻, 𝑎−1 𝜀 𝐻 

 
• For 𝑎, 𝑏 𝜀 𝐻 , 𝑎 ∗ 𝑏 𝜀 𝐻 

 
Define Trivial and Proper Subgroups 

 
• ({𝑒}, ∗) and (𝐺, ∗) are trivial subgroups of (𝐺, ∗). 

 
• All other subgroups of (𝑮, ∗) are called proper subgroups. 

 
Examples of Subgroups: 

 
• (Z, +) is a Subgroup of (Q, +) 

 
• (Q, +) is a Subgroup of (R, +) 

 
• (R, +) is a Subgroup of(C,+) 
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Example of Subgroups 

Find all the subgroups (𝑧12,+12) 

Solution: 

 

𝑧12 = {0, 1, 2, 3, 4, 5, 6, 7,8,9, 10, 11} 

 
• Let 𝑆1 = {0, 6} 

 
• 𝑆2 = {0, 4,8} 

 
• 𝑆3 = {0, 3, 6, 9} 

 
• 𝑆4 = {0, 2, 4, 6, 8} 

 
• 𝑆1, 𝑆2, 𝑆3, 𝑆4 are proper subgroups of (𝑧12, +12) 

 
• ({0}, +12) and (𝑧12, +12) 𝑎re its trivial subgroup 

 
Theorems on Subgroups: 

 
Theorem: 1 

 
State and prove the necessary and sufficient condition for a subset of a 

group to be subgroup. 

Statement: 

 
Let (G, ∗) be a group. H is a nonempty subset of G, then H is a subgroup of G 
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if and only if whenever 𝒂, 𝒃 ∈ 𝑯 ⇒ 𝒂 ∗ 𝒃−𝟏 ∈ 𝑯 for all 

 
𝒂, 𝒃 ∈𝑯 

 
(Definition: (G, ∗) be a group, H nonempty subset of G. H is a subgroup of G if 

H itself is a group under the same binary operation ∗) 

Proof: 

 
Necessary Part 

 
Let (G, ∗) be a group. H is a nonempty subset of G. 

Assume that H is a subgroup of G. 

By definition, (H, ∗) is a group. 

 

So 𝑎, 𝑏 ∈ 𝐻 ⇒ 𝑏−1 ∈ 𝐻 by inverse property 

 
⇒ 𝑎 ∗ 𝑏−1 ∈ 𝐻 by closure property 

 
Sufficient Part 

 
Let (G, ∗) be a group. H is a nonempty subset of G. 

Assume 𝑎, 𝑏 ∈ 𝐻 ⇒ 𝑎 ∗ 𝑏−1 ∈ 𝐻 → (1) 

Claim: H is a subgroup of 

G i.e., (H, ∗) is a group. 

H is nonempty so let 𝑎 ∈ 𝐻 
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(iii) Identity 

 
Now 𝑎, 𝑎 ∈ 𝐻 by (1) 

 
𝑎 ∗ 𝑎−1 ∈ 𝐻 

i.e., 𝑒 ∈ 𝐻 

Identity exists 

(iv)Inverse 

Let a ∈ 𝐻. Now by previous step 𝑒 ∈ 𝐻 

 
Now 𝑒, 𝑎 ∈ 𝐻 by (1) 

 

⇒ 𝑒 ∗ 𝑎−1 ∈ 𝐻 

 
⇒ 𝑒 ∈ 𝐻 

 

Hence Inverse exists. 

 
(i) Closure 

 
Let 𝑎, 𝑏 ∈ 𝐻 by previous step 𝑏−1 ∈ 𝐻 

 
Now 𝑎, 𝑏−1 ∈ 𝐻 by(1) 

 
⇒ 𝑎 ∗ (𝑏−1)−1 ∈ 𝐻 

 
⇒ 𝑎 ∗ 𝑏 ∈ 𝐻 
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Closure is verified. 

 
(ii) Associative 

 
𝑎, 𝑏, 𝑐 ∈ 𝐻 , 𝑯 ⊆ 𝑮 , 𝑎, 𝑏, 𝑐 ∈ 𝐺 

 
In G (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) 

 
∴ In H (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) 

Associative is verified. 

(H, ∗) be a group. 

 
Hence H is a subgroup of G. 

 

Hence the proof. 
 
 

Theorem: 2 

 
Prove that intersection of two subgroups of a group (G, ∗) is a subgroup of 

(G, ∗). Also, prove that union of subgroups need not be a group. 

Proof: 

 
Let (G, ∗) be a group. H and K are non – empty subgroups of (G, ∗). Both 

H and K satisfying the following necessary conditions 

Let 𝑎, 𝑏 ∈ 𝐻 ⇒ 𝑎 ∗ 𝑏−1 ∈ 𝐻 

 
Let 𝑎, 𝑏 ∈ 𝐾 ⇒ 𝑎 ∗ 𝑏−1 ∈ 𝐾 . . . (1) 
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Consider the subset 𝐻 ∩ 𝐾 of G 

 
(i) Since H is a subgroup of G, 𝑒 ∈ 𝐻 

 
Since K is a subgroup of G, 𝑒 ∈ 𝐾 

 
∴ 𝑒 ∈ 𝐻 ∩ 𝐾 

 
so, 𝐻 ∩ 𝐾 is a non – empty subset of G. 

 
(ii) Let a, b ∈ 𝐻 ∩ 𝐾 

By Sufficient condition for aSubgroup 

We need to prove 𝑎 ∗ 𝑏−1 ∈ 𝐻 ∩ 𝐾 

𝑎, 𝑏 ∈ 𝐻 and 𝑎, 𝑏 ∈ 𝐾 

 
By (1) 𝑎 ∗ 𝑏−1 ∈ 𝐻 ∩ 𝐾 

 
∴ 𝐻 ∩ 𝐾 is a subgroup of (G, ∗) 

Hence the proof. 

Now we are going to Prove that Union of two Subgroups of a group need 

not be a Subgroup. 

Let us prove the above fact by giving counter examples 

 
Consider G = set of integers under addition (𝑍, +) 

 
= {. . . , − 3, − 2, − 1, 0, 1, 2, 3, . . . } 
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• H = 2Z = {. . . , − 6, − 4, − 2, 0, 2, 4, 6, . . . } 

 
• K = 3Z = {. . . , − 9, − 6, − 3, 0, 3, 6, 9, . . . } 

 
H and K are subgroups of (𝑍, +) 

 
𝐻 ∪ 𝐾 ={. . . , − 9, − 6, − 4, − 3, − 2, 0 , 2, 3 , 4, 6, 9, . . . } 

 
𝐻 ∪ 𝐾 is not closed under addition. 

 

As 2,3 ∈ 𝐻 ∪ 𝐾 but 2 + 3 = 5 ∉ 𝐻 ⋃ 𝐾 

 
So 𝐻 ∪ 𝐾 is not a subgroup of (𝑍, +). 

 

Hence the proof. 

 

Cyclic Group: 

 

Define Cyclic Groups 

 
A group (G, ∗) is said to be cyclic if there exists an element 𝑎 𝜖 𝐺 such that every 

element of G can be written as some power of “a”. 

i.e., 𝑎𝑛𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛. 

 
G is said to be generated by “a” (or) “a” is a generator ofG. 

We write 𝐺= ≺𝑎≻ 
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Examples: 

 
The set of complex numbers {1, − 1, 𝑖, − 𝑖} under multiplication operation is a 

cyclic group. 

There are two generators – 𝑖 and 𝑖 as 𝑖1 = 1, 𝑖2 = − 1, 𝑖3 = −𝑖, 𝑖4 = 1 and also 

 
(−𝑖)1 = −𝑖, (−𝑖)2 = −1, (−𝑖)3 = 𝑖, (−𝑖)4 = 1 which covers all the elements of the 

group. 

Hence it is a Cyclic Group. 

However -1 is not a generator. 

Theorem: 1 

Every Subgroup of a Cyclic group is Cyclic. 

 
Proof: 

 

Let H be a cyclic group generated by an element 𝑎 𝜖 𝐺. 

 
∴ Every element in G can be expressed as a power of the element “a”. 

Let H be a subgroup of G. 

If 𝐻 = {𝑒}, then H is a subgroup of G and it is cyclic. 

 
∴ The result is trivial. 

 
Suppose 𝐻 ≠ {𝑒} then there exists an element 𝑥 𝜖 𝐻 with 𝑥 ≠ 𝑒. 
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∴ 𝑥 = 𝑎𝑘 for some integer k. 

 

Let m be the least positive integer such that 𝑎𝑚𝜖 𝐻. 

Let 𝑏 𝜖 𝐻 then 𝑏 = 𝑎𝑛 for some integer n. 

Let 𝑛 = 𝑚𝑞 + 𝑟 where 0 ≤ 𝑟 < 𝑚 

 
⇒ 𝑏 = 𝑎𝑛 

 

⇒ 𝑏 = 𝑎𝑚𝑞+𝑟 

 
⇒ 𝑏 = 𝑎𝑚𝑞 ∗ 𝑎𝑟 

 
⇒ 𝑏 = (𝑎𝑚)𝑞 ∗ 𝑎𝑟 

 
⇒ 𝑎𝑟 = 𝑏⁄(𝑎𝑚)𝑞 

 
⇒ 𝑎𝑟 = 𝑏 ∗ (𝑎𝑚)−𝑞 

 
Now 𝑏 𝜖 𝐻 , (𝑎𝑚)𝑞𝜖 𝐻 and H is closed in ∗. 

 
∴ we have 𝑏 ∗ (𝑎𝑚)−𝑞𝜖 𝐻 

 
This shows that there exists an integer “r” such that 𝑜 ≤ 𝑟 < 𝑚 with 𝑎𝑟𝜖𝐻. 

Since m is the least positive integer for which 𝑎𝑚𝜖 𝐻, 𝑎𝑟𝜖 𝐻 with 𝑜 ≤ 𝑟 < 𝑚 is 

not possible. 

∴ 𝑟 = 0 so 𝑏 = 𝑎𝑚𝑞 

binils.com

binils - Anna University App on Play Store

                    Free PDF Study Materials
binils.com - Anna University, Polytechnic & Schools



 

MA8351 DISCRETE MATHEMATICS 

 

 

⇒ 𝑏 = (𝑎𝑚)𝑞 

 
Every element 𝑏 𝜖 𝐻 is expressed as a power of 𝑎𝑚. 

i.e., H is generated by the element 𝑎𝑚𝜖 𝐻 

H is a cyclic group generated by 𝑎𝑚. 

 
Hence, every subgroup of a cyclic group is 

cyclic. 

Hence the proof. 
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4.4 Cosets 

 
Define Left Coset and Right Coset of H in G. 

 
Let (𝐻, ∗) be a subgroup of (𝐺, ∗). 

 
For any 𝑎 𝜖 𝐺, the left coset of H, denoted by 𝑎 ∗ 𝐻, is the set 

 
𝑎 ∗ 𝐻 = {𝑎 ∗ ℎ: ℎ 𝜖 𝐻} for all 𝑎 𝜖 𝐺 

 
For any 𝑎 𝜖 𝐺, the right coset of H, denoted by 𝐻 ∗ 𝑎, is the set 

 
𝐻 ∗ 𝑎 = {ℎ ∗ 𝑎: ℎ 𝜖 𝐻} for all 𝑎 𝜖 𝐺 

 
Theorem: 1 

 
Let (𝑯, ∗) be a subgroup of (𝑮, ∗). Then any two left Cosets (right Cosets) 

of H of a group (𝑮, ∗) are either identical or disjoint and the 

union of distinct left Cosets of H is G (or) The set of all distinct left Cosets 

of the subgroup H of the group (𝑮, ∗) forms a partition of G. 

Proof: 

 
Let 𝑎, 𝑏 𝜖 𝐺 

 
Consider the Cosets 𝑎 ∗ 𝐻 and 𝑏 ∗ 𝐻 

 
We shall prove that 𝑎 ∗ 𝐻 = 𝑏 ∗ 𝐻 (or) 𝑎 ∗ 𝐻 ⋂ 𝑏 ∗ 𝐻 = ∅ 
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1 

1 

1 2 1 

1 

Suppose 𝑎 ∗ 𝐻 ⋂ 𝑏 ∗ 𝐻 ≠ ∅ 

 
Let c 𝜖 𝑎 ∗ 𝐻 ⋂ 𝑏 ∗ 𝐻 = ∅ 

 
⇒ 𝑐 𝜖 𝑎 ∗ 𝐻 and 𝑐 𝜖 𝑏 ∗ 𝐻 

 
Let 𝑐 = 𝑎 ∗ ℎ1 and 𝑐 = 𝑏 ∗ ℎ2 for all ℎ1, ℎ2 𝜖 𝐻 

 
∴ 𝑎 ∗ ℎ1 = 𝑏 ∗ ℎ2 

 

Take ℎ 
−1 

on both sides 

 
⇒ (𝑎 ∗ ℎ1) ∗ ℎ1

−1 
= (𝑏 ∗ ℎ2) ∗ ℎ 

−1
 

 
⇒ 𝑎 ∗ (ℎ1 ∗ ℎ −1) = 𝑏 ∗ (ℎ ∗ ℎ −1) 

 
⇒ 𝑎 ∗ 𝑒 = 𝑏 ∗ ℎ3 where ℎ3 = ℎ2 ∗ ℎ 

−1
 

 
⇒ 𝑎 = 𝑏 ∗ ℎ3 

 
⇒ 𝑎 ∈ 𝑏 ∗ ℎ3 

⇒ 𝑎 ∗ 𝐻 ⊆ 𝑏 ∗ 𝐻 . . . (1) 

IIIrly 𝑏 ∗ 𝐻 ⊆ 𝑎 ∗ 𝐻 . . .(2) 

From (1) and (2) we have 𝑎 ∗ 𝐻 = 𝑏 ∗ 𝐻 

 
∴ Any two left cosets are either identical or distinct. 
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Each element of the left Coset 𝑎 ∗ 𝐻 is also an element of G. 

 

∴ Every left coset of 𝑎 ∗ 𝐻 is a subset of G. 

Hence ⋃𝑎 𝜖 𝐺 𝑎 ∗ 𝐻 ⊆ 𝐺 . . . (3) 

If 𝑎 𝜖 𝐺, 𝑎 𝜖𝑎 ∗ 𝐻 then 𝑎 𝜖 ⋃𝑎 𝜖 𝐺 𝑎 ∗ 𝐻 

 
𝐺 ⊆ ⋃𝑎 𝜖 𝐺 𝑎 ∗ 𝐻 . . . (4) 

 
∴The set of all distinct left cosets of H is a partition “n’ of the group G. 

 
Hence the proof. 

 
LAGRANGE’S THEOREM: 

 
The order of a subgroup of a finite group is a divisor of the order of the 

group. 

i.e., if H is a subgroup of a finite group (𝑮, ∗) then O(H) divides O(G). 

Proof: 

Let (𝐺, ∗) be a finite group of order n and H be a subgroup of G with order m. 

 
⇒ 𝑂(𝐻) = 𝑚 & 𝑂(𝐺) = 𝑛 

 
We will prove that 

𝑂(𝐻)
⁄𝑂(𝐺) 

Since H contains m distinct elements, every left cost of H contains exactly m 

elements. 
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(Write the theorem: 1) 

 
Let 𝑎1 ∗ 𝐻, 𝑎2 ∗ 𝐻, . . . , 𝑎𝑘 ∗ 𝐻 be the distinct left cosets of 

 

H. Let 𝐺 = 𝑎1 ∗ 𝐻 ⋃ 𝑎2 ∗ 𝐻 ⋃ . . . ⋃ 𝑎𝑘 ∗ 𝐻 

 
𝑂(𝐺) = 𝑂(𝑎1 ∗ 𝐻) + 𝑂(𝑎2 ∗ 𝐻)+. . . + 𝑂(𝑎𝑘 ∗ 𝐻) 

 
= 𝑂(𝐻) + 𝑂(𝐻) + . . . + 𝑂(𝐻) 

 
= 𝑚 + 𝑚 + . . . + 𝑚 (n times) 

 
⇒ 𝑛 = 𝑚𝑘 

 
⟹ 𝑛⁄𝑚 = 𝑘 

 
⟹ m divides n. 

 

This means that 
𝑂(𝐻)

⁄𝑂(𝐺). 

Hence the proof. 

 

Normal Subgroup 

 
A subgroup (𝐻,∗) of (𝐺,∗) is said to be normal subgroup of G, for 𝑥 ∈ 𝐺 and for 

 

ℎ ∈ 𝐻, if 𝑥 ∗ ℎ = ℎ ∗ 𝑥 (or) for all 𝑥 ∈ 𝐺, 𝑥𝐻 = 𝐻𝑥 
 

Note: 

 

Consider H as a subgroup of G, then the subgroup H is said to be normal, 
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for all 𝑥 ∈ 𝐺, 𝑥 ∗ ℎ ∗ 𝑥−1 = 𝐻(or) for all 𝑥 ∈ 𝐺, 𝑥 ∗ ℎ ∗ 𝑥−1 ∈ 𝐻 

 
Theorem: 1 

 

Every subgroup of an abelian group is normal. 

Proof: 

Let (𝐺,∗) be an abelian group and (𝐻,∗) be a subgroup of G. 

 

Let 𝑥 ∈ 𝐺 be any element. 

Then 𝑥𝐻 = {𝑥 ∗ ℎ /ℎ ∈ 𝐻} 

= {ℎ ∗ 𝑥 /ℎ ∈ 𝐻} (G is abelian) 

 

= 𝐻𝑥 
 

Since “𝑥” is arbitrary, 𝑥𝐻 = 𝐻𝑥 ∀ 𝑥 ∈ 𝐺 

 
Hence H is a normal subgroup of G. 

 

Hence the proof. 

 

Theorem: 2 

 

Prove that intersection of two normal subgroup of (𝑮,∗)is a normal subgroup 

of (𝑮,∗). 

Proof: 
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Let (𝐻,∗) and (𝐾,∗)are two normal subgroup. 

 

⇒ H and K are subgroups of G. 

 

⇒ 𝐻 ∩ 𝐾 is a subgroup of G. (Already proved) 

 
To prove (𝐻 ∩ 𝐾, ∗) is a normal subgroup of (𝐺,∗). 

 

Let ℎ ∈ 𝐻 ∩ 𝐾 be any element and 𝑥 ∈ 𝐺 be any element. 

Then 𝑥 ∈ 𝐺 andℎ ∈ 𝐻 and ℎ ∈ 𝐾 

Since 𝐻 and 𝐾 are normal, 𝑥 ∗ ℎ ∗ 𝑥−1 ∈ 𝐻 . . . (1) 

and 𝑥 ∗ ℎ ∗ 𝑥−1 ∈ 𝐾 . . . (2) 

From (1) and (2) we get, 

 

𝑥 ∗ ℎ ∗ 𝑥−1 ∈ 𝐻 ∩ 𝐾 

 
Hence 𝐻 ∩ 𝐾 is a normal subgroup of G. 

 

Hence the proof. 
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4.5 Homomorphism 

 
Let (𝐺, ∙) 𝑎𝑛𝑑 (𝐺′,∗) be any two groups. 

 
A mapping 𝑓: 𝐺 → 𝐺′ is said to be a homomorphism, if 𝑓(𝑎 ∙ 𝑏) = 𝑓(𝑎) ∗ 𝑓(𝑏) 

 
for any 𝑎, 𝑏 ∈ 𝐺 is called a group homomorphism. 

 

Example: (i) 

 
Let 𝑓: (𝑍, +) → (𝑍, +) given by 𝑓(𝑥) = 2𝑥 ∀ 𝑥 ∈ 𝑍 is a homomorphism. 

For, 𝑥, 𝑦 ∈ 𝑍, 𝑓(𝑥 + 𝑦) = 2(𝑥 + 𝑦) = 2𝑥 + 2𝑦 = 𝑓(𝑥) + 𝑓(𝑦) 

Example: (ii) 

Let 𝑓: (𝑅, +) → (𝑅+, ∙) given by 𝑓(𝑥) = 𝑒𝑥 ∀ 𝑥 ∈ 𝑅 is a homomorphism. 

For, 𝑥 ∈ 𝑅, 𝑓(𝑥 + 𝑦) = 𝑒𝑥+𝑦 = 𝑒𝑥 ∙ 𝑒𝑦 = 𝑓(𝑥) ∙ 𝑓(𝑦) 

Isomorphism: 

 
Let (𝐺, ∙) 𝑎𝑛𝑑 (𝐺′, ∗) be any two groups. A mapping 𝑓: 𝐺 → 𝐺′ is said to be 

isomorphism if 

(i) f is one – one 

 

(ii) f is onto 

 

(iii) f is homomorphism 
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Types of Homomorphism 

 

(i) If f is one – to – one then f is monomorphism. 

 

(ii) (ii) If f is onto then f is epimorphism. 

 

Theorem: 1 

 

Homomorphism preserves identities. 

Proof: 

Let 𝑎 ∈ 𝐺 

 
Let f be a homomorphism from (𝐺, ∗) 𝑎𝑛𝑑 (𝐺′, ∗) 

 
Clearly 𝑓(𝑎) ∈ 𝐺′ 

 
⇒ 𝑓(𝑎) ∗ 𝑒′ = 𝑓(𝑎) (𝑒′ − 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑖𝑛 𝐺′) 

 
= 𝑓(𝑎 ∗ 𝑒) (e – identity in G) 

 

= 𝑓(𝑎) ∗ 𝑓(𝑒) (f – homomorphism) 

 

⇒ 𝑒′ = 𝑓(𝑒) (Left cancellation law) 

Hence f preserves identities. 

Hence the proof. 

 

Theorem: 2 
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Homomorphism preserves inverse. 

Proof: 

Let 𝑎 ∈ 𝐺 
 

Since G is a group, 𝑎−1 ∈ 𝐺 

 
Since G is a group 𝑎 ∗ 𝑎−1 = 𝑎−1 ∗ 𝑎 = 𝑒 

 
Consider 𝑎 ∗ 𝑎−1 = 𝑒 

 
⇒ 𝑓( 𝑎 ∗ 𝑎−1) = 𝑓(𝑒) 

 
⇒ 𝑓( 𝑎) ∗ 𝑓(𝑎−1) = 𝑒′ ∵ 𝑒′ = 𝑓(𝑒), 𝑓 𝑖𝑠 ℎ𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚 

 
⇒ 𝑓(𝑎−1) is the inverse of 𝑓(𝑎) ∈ 𝐺′ 

 
Hence [𝑓(𝑎)]−1 = 𝑓(𝑎−1) 

 
Hence f preserves inverse. 

 

Hence the proof. 

 

Kernal of Homomorphism 

 

Let 𝑓: 𝐺 → 𝐺′ be a group homomorphism. The set of elements of G which are 

mapped into 𝑒′ (identity in 𝐺′) is called the kernel of f and it is denoted by ker(f) 

ker(𝑓) = {𝑥 ∈ 𝐺 /𝑓(𝑥) = 𝑒′} 
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Theorem: 1 

 

Kernel of a homomorphism of a group into another group is a normal subgroup. 

Proof: 

 
Let (𝐺,∗) and (𝐺′, ⊕) be two groups. 

 
𝑓: (𝐺,∗) → (𝐺′, ⊕) is a homomorphism. 

Define ker(𝑓) = {𝑥 ∈ 𝐺 /𝑓(𝑥) = 𝑒′} 

Claim: Ker f is a normal subgroup of G 

We know that homomorphism preserves identity. 

 
𝑖. 𝑒. , 𝑓(𝑒) = 𝑒′, so 𝑒 ∈ 𝑘𝑒𝑟𝑓 

 
⇒Ker f is non empty. 

 

(ii) 𝑎, 𝑏 ∈ ker 𝑓 ⇒ 𝑎 ∗ 𝑏−1 ∈ 𝑘𝑒𝑟𝑓 then ker f is a subgroup. 

 
𝑎 ∈ 𝑘𝑒𝑟𝑓 ⇒ 𝑓(𝑎) = 𝑒′ by definition of ker f 

 
𝑏 ∈ 𝑘𝑒𝑟𝑓 ⇒ 𝑓(𝑏) = 𝑒′ by definition of ker f 

 
Since homomorphism preserves inverse ⇒ [𝑓(𝑎)]−1 = 𝑓(𝑎−1) 

 
Now 𝑓(𝑎 ∗ 𝑏−1) = 𝑓(𝑎) ⊕ 𝑓(𝑏−1) 
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= 𝑓(𝑎) ⊕ [𝑓(𝑏)]−1 

 
= 𝑒′ ⊕ 𝑒′ 

 
= 𝑒′ 

 
⇒ 𝑎 ∗ 𝑏−1 ∈ 𝑘𝑒𝑟𝑓 

 
Hence kerf is a subgroup of G. 

 
(iii) Let 𝑎 ∈ 𝑘𝑒𝑟𝑓 ⇒ 𝑓(𝑎) = 𝑒′ by definition of kerf 

Homomorphism preserves inverses ⇒ [𝑓(𝑎)]−1 = 𝑓(𝑎−1) 

So 𝑓(𝑔−1 ∗ 𝑎 ∗ 𝑔) = 𝑓(𝑔−1) ⊕ 𝑓(𝑎) ⊕ 𝑓(𝑔) 

= [𝑓(𝑔)]−1 ⊕ 𝑒′ ⊕ 𝑓(𝑔) 

 
= [𝑓(𝑔)]−1 ⊕ 𝑓(𝑔) 

 
= 𝑒′ 

 
Hence by definition, 𝑔−1 ∗ 𝑎 ∗ 𝑔 ∈ 𝑘𝑒𝑟𝑓 

 
Hence kerf is a normal subgroup. 

 

Hence the proof. 

 

Theorem:2 
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Fundamental theorem of group homomorphism 

 

Every homomorphic image of a group G is isomorphic to some quotient group 

of G. 

(OR) 

 

Let 𝒇: 𝑮 → 𝑮′ be a onto homomorphism of groups with kernel K, then 𝑮 ≅ 𝑮′ 
𝑲 

 

Proof: 

 

Let f be the homomorphism 𝑓: 𝐺 → 𝐺′ 

 
Let 𝐺′ be the homomorphic image of a group G. 

Let K be the kernel of this homomorphism. 

Clearly K is a normal subgroup of G. 

 

Claim: 𝐺 ≅ 𝐺′ 
𝐾 

 

Define 𝝋: 
𝐺 

→ 𝐺′ by 𝜑(𝐾 ∗ 𝑎) = 𝑓(𝑎) for all 𝑎 ∈ 𝐺 
𝐾 

 

(i) 𝜑 is well defined. 

 

We have 𝐾 ∗ 𝑎 = 𝐾 ∗ 𝑏 
 

⇒ 𝑎 ∗ 𝑏−1 ∈ 𝐾 
 

⇒ 𝑓(𝑎  ∗ 𝑏−1) = 𝑒′ (𝑒′ is identity) 
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⇒ 𝑓(𝑎 ) ∗ 𝑓(𝑏−1) = 𝑒′ 
 

⇒ 𝑓(𝑎) ∗ [𝑓(𝑏)]−1 = 𝑒′ 
 

⇒ 𝑓(𝑎) ∗ [𝑓(𝑏)]−1 ∗ 𝑓(𝑏) = 𝑒′ ∗ 𝑓(𝑏) 
 

⇒ 𝑓(𝑎) = 𝑓(𝑏) 
 

⇒ 𝜑(𝐾 ∗ 𝑎) = 𝜑(𝐾 ∗ 𝑏) 
 

Hence 𝜑 is well defined. 

 

(ii) To prove 𝜑 is one – one. 

 

To prove 𝜑(𝐾 ∗ 𝑎) = 𝜑(𝐾 ∗ 𝑏) ⇒ 𝐾 ∗ 𝑎 = 𝐾 ∗ 𝑏 
 

We know that 𝜑(𝐾 ∗ 𝑎) = 𝜑(𝐾 ∗ 𝑏) 
 

⇒ 𝑓(𝑎) = 𝑓(𝑏) 
 

⇒ 𝑓(𝑎 ) ∗ 𝑓(𝑏−1) = 𝑓(𝑏 ) ∗ 𝑓(𝑏−1) 
 

= 𝑓(𝑏 ∗ 𝑏−1) 
 

= 𝑓(𝑒) 
 

⇒ 𝑓(𝑎 ) ∗ 𝑓(𝑏−1) = 𝑒′ 
 

⇒ 𝑓(𝑎 ∗ 𝑏−1) = 𝑒′ 
 

⇒ 𝑎 ∗ 𝑏−1 ∈ 𝐾 
 

⇒ 𝐾 ∗ 𝑎 ∗ 𝑏−1 = 𝐾 
 

⇒ 𝐾 ∗ 𝑎 = 𝐾 ∗ 𝑏 
 

Hence 𝜑 is one – one. 
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(iii) 𝜑 is onto. 

 

Let 𝑦 ∈ 𝐺′ 

 
Since f is onto, there exists 𝑎 ∈ 𝐺 such that 𝑓(𝑎) = 𝑦 

 
Hence 𝜑(𝐾 ∗ 𝑎) = 𝑓(𝑎) = 𝑦 

 

Hence 𝜑 is onto. 

 

(iv) 𝜑 is a homomorphism. 

 

Now 𝜑(𝐾 ∗ 𝑎 ∗ 𝐾 ∗ 𝑏) = 𝜑(𝐾 ∗ 𝑎 ∗ 𝑏) 
 

= 𝑓(𝑎 ∗ 𝑏) 
 

= 𝑓(𝑎) ∗ 𝑓(𝑏) 
 

= 𝜑(𝐾 ∗ 𝑎) ∗ (𝐾 ∗ 𝑏) 
 

Hence 𝜑 is a homomorphism. 

 

Since 𝜑 is one – one, onto, homomorphism 𝜑 is an isomorphism between 𝐺 and 𝐺′. 
𝐾 

 

Hence 𝐺 ≅ 𝐺′ 
𝐾 

 

Hence the proof. 
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