
UNIT-1  

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM 

 

 

 
 

Output 

 
 

Computer Program 

 
 

Input 

 
 

Algorithm 

 
 

Problem to be solved 

 

 

 

CS8451- DESIGN AND ANALYSIS OF ALGORITHMS 

UNIT-1 

INTRODUCTION 

Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving – 

Important Problem Types – Fundamentals of the Analysis of Algorithmic Efficiency 

–Asymptotic Notations and their properties. Analysis Framework – Empirical 

analysis – Mathematical analysis for Recursive and Non-recursive algorithms – 

Visualization 
 

1. NOTION OF AN ALGORITHM: 

 
An algorithm is a sequence of unambiguous instructions for solving a 

problem, i.e., for obtaining a required output for any legitimate input in a finite 

amount of time. 
 
 

 
FIGURE 1.1 The notion of the algorithm. 

 
It is a step by step procedure with the input to solve the problem in a finite 

amount of time to obtain the required output. 

 

The notion of the algorithm illustrates some important points: 

• The non-ambiguity requirement for each step of an algorithm cannot be 
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compromised. 
• The range of inputs for which an algorithm works has to be specified 

carefully. 
• The same algorithm can be represented in several different ways. 
• There may exist several algorithms for solving the same problem. 

• Algorithms for the same problem can be based on very different ideas and 

can solve the problem with dramatically different speeds. 

 
Characteristics of an algorithm: 

Input : Zero / more quantities are externally supplied. 

Output  : At least one quantity is produced. 

Definiteness: Each instruction is clear and unambiguous. 

Finiteness: If the instructions of an algorithm is traced then for all cases the 
algorithm must terminates after a finite number of steps. 

Efficiency: Every instruction must be very basic and runs in short time. 

 
 Steps for writing an algorithm: 

1. An algorithm is a procedure. It has two parts; the first part is head and the 

second part is body. 

2. The Head section consists of keyword Algorithm and Name of the algorithm 

with parameter list. E.g. Algorithm name1(p1, p2,…,p3) 

The head section also has the following: 

//Problem Description: 

//Input: 

//Output: 

3. In the body of an algorithm various programming constructs like if, for, 

while and some statements like assignments are used. 

4. The compound statements may be enclosed with { and} brackets. if, for, 

while can be closed by end if, end for, end while respectively. Proper 

indention is must for block. 
5. Comments are written using // at the beginning. 

6. The identifier should begin by a letter and not by digit. It contains alpha 

numeric letters after first letter. No need to mention data types. 
7. The left arrow “←” used as assignment operator. E.g.v←10 

8. Booleanoperators(TRUE,FALSE),Logicaloperators(AND,OR,NOT)andRe 

lational 
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operators (<,<=, >, >=,=, ≠, <>) are also used. 

9. Input and Output can be done using read and write. 

10. Array [], if then else condition, branch and loop can be also used in 

Algorithm. 

 
Example: 

The greatest common divisor(GCD) of two nonnegative integers m and n 

(not-both-zero), denoted gcd(m, n), is defined as the largest integer that divides 

both m and n evenly, i.e., with a remainder of zero. 

 

Euclid’s algorithm is based on applying repeatedly the equality gcd(m, n) = gcd(n, 

m modn), 

where m mod n is the remainder of the division of m by n, until m mod n is equal 

to 0. Since gcd(m, 

0) = m, the last value of m is also the greatest common divisor of the 

initial m and n. gcd(60, 24) can be computed as follows:gcd(60, 24) 

= gcd(24, 12) = gcd(12, 0) = 12. 

 

 

 
Euclid’s algorithm for computing gcd(m, n) in simple steps 

Step 1 If n = 0, return the value of m as the answer and stop; otherwise, proceed to 

Step 2. 

Step 2 Divide m by n and assign the value of the remainder to r. 

Step 3 Assign the value of n to m and the value of r to n. Go to Step1. 

 
 

Euclid’s algorithm for computing gcd(m, n) expressed inpseudocode 

ALGORITHM Euclid_gcd(m, n) 

//Computes gcd(m, n) by Euclid’s algorithm 

//Input: Two nonnegative, not-both-zero integers m and n 

//Output: Greatest common divisor of m and n 

while n ≠ 0 do 
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r ←m 

mod n 

m←n 

n←r 

return m 
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2. FUNDAMENTALS OF ALGORITHMIC PROBLEM SOLVING 

 

 
A sequence of steps involved in designing and analyzing an algorithm is shown in 

the figure below. 

FIGURE 1.2.1 Algorithm design and analysis process. 

(i) Understanding the Problem 

• This is the first step in designing of algorithm. 
• Read the problem’s description carefully to understand the problem 

statement completely. 
• Ask questions for clarifying the doubts about the problem. 
• Identify the problem types and use existing algorithm to find solution. 
• Input (instance) to the problem and range of the input get fixed. 

 

(ii) Decision making 

The Decision making is done on the following: 

a) Ascertaining the Capabilities of the Computational Device 

In random-access machine (RAM), instructions are executed one after 

another (The central assumption is that one operation at a time). Accordingly, 
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Algorithms+ Data Structures =Programs 

algorithms designed to be executed on such machines are called sequential 

algorithms. 

→In some newer computers, operations are executed concurrently, i.e., in 
parallel. Algorithms that take advantage of this capability are called parallel 
algorithms. 

→Choice of computational devices like Processor and memory is mainly based on 

space and time efficiency 

a)Choosing between Exact and Approximate Problem Solving: 

→The next principal decision is to choose between solving the problem exactly or 
solving it approximately. 

→An algorithm used to solve the problem exactly and produce correct result is 
called an exact algorithm. 

→If the problem is so complex and not able to get exact solution, then we have to 

choose an algorithm called an approximation algorithm. i.e., produces an 

→Approximate answer. E.g., extracting square roots, solving nonlinear equations, 

and evaluating definite integrals. 

a) Algorithm Design Techniques 

• An algorithm design technique (or “strategy” or “paradigm”) is a general 
approach to solving problems algorithmically that is applicable to a variety 
of problems from different areas of computing. 

• Though Algorithms and Data Structures are independent, but they are 

combined together to develop program. Hence the choice of proper data 

structure is required before designing the algorithm. 

• Implementation of algorithm is possible only with the help of Algorithms 
and Data Structures 

• Algorithmic strategy / technique / paradigm are a general approach by 

which many problems can be solved algorithmically. E.g., Brute Force, 

Divide and Conquer, Dynamic Programming, Greedy Technique and soon. 

 

(iii) Methods of Specifying an Algorithm 

There are three ways to specify an algorithm. 

They are: 

a. Natural language 
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Flowchart Pseudocode Natural Language 

ALGORITHM Sum(a,b) 

//Problem Description: This algorithm performs addition of two numbers 

//Input: Two integers a and b 

//Output: Addition of two integers 

c←a+b 

returnc 

b. Pseudocode 

c. Flowchart 

FIGURE 1.2.2 Algorithm Specifications 

Pseudocode and flowchart are the two options that are most widely used nowadays 

for specifying algorithms. 

a. Natural Language 

It is very simple and easy to specify an algorithm using natural language. But 

many times specification of algorithm by using natural language is not clear and 

thereby we get brief specification. 

Example: An algorithm to perform addition of two numbers. 

 

Such a specification creates difficulty while actually implementing it. Hence many 
programmers prefer to have specification of algorithm by means of Pseudocode. 

 

b) Pseudocode: 

• Pseudocode is a mixture of a natural language and programming language 
constructs. Pseudocode is usually more precise than natural language. 

• For Assignment operation left arrow “←”, for comments two slashes “//”,if 

condition, for, while loops are used. 
 

Step 1: Read the first number, say a. 

Step 2: Read the first number, say b. 

Step 3: Add the above two numbers and store the result in c. 

Step 4: Display the result from c. 
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This specification is more useful for implementation of any language. 

c) Flowchart 

• In the earlier days of computing, the dominant method for specifying 

algorithms was a flowchart, this representation technique has proved to be 

inconvenient. 

• Flowchart is a graphical representation of an algorithm. It is a method of 
expressing an algorithm by a collection of connected geometric shapes 

containing descriptions of the algorithm’s steps. 
 

 

 
FIGURE 1.2.3 Flowchart symbols and Example for two integer addition. 

 

(iv) Proving an Algorithm’s Correctness 

 

• Once an algorithm has been specified then its correctness must be proved. 

• An algorithm must yield a required result for every legitimate input in a 
finite amount of time. 

• For Example, the correctness of Euclid’s algorithm for computing the 
greatest common 
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divisor stems from the correctness of the equality gcd(m, n) = gcd(n, m mod 
n). 

• A common technique for proving correctness is to use mathematical 
induction because an algorithm’s iterations provide a natural sequence of 
steps needed for such proofs. 

• The notion of correctness for approximation algorithms is less 
straightforward than it is for exact algorithms. The error produced by the 

algorithm should not exceed a predefined limit. 
(v) Analyzing an Algorithm 

• For an algorithm the most important is efficiency. In fact, there are two 

kinds of algorithm efficiency. 

They are: 

• Time efficiency, indicating how fast the algorithm runs, and 
• Space efficiency, indicating how much extra memory it uses. 
• The efficiency of an algorithm is determined by measuring both time 

efficiency and space efficiency. 
• So factors to analyze an algorithm are: 

▪ Time efficiency of an algorithm 
▪ Space efficiency of an algorithm 

▪ Simplicity of an algorithm 

▪ Generality of an algorithm 

 

(vi) Coding an Algorithm 

• The coding / implementation of an algorithm is done by a suitable 
programming language like C, C++,JAVA. 

• The transition from an algorithm to a program can be done either incorrectly 

or very inefficiently. Implementing an algorithm correctly is necessary. The 

Algorithm power should not reduce by in efficient implementation. 

• Standard tricks like computing a loop’s invariant (an expression that does 

not change its value) outside the loop, collecting common subexpressions, 

replacing expensive operations by cheap ones, selection of programming 

language and so on should be known to the programmer. 

• Typically, such improvements can speed up a program only by a constant 
factor, whereas a better algorithm can make a difference in running time by 
orders of magnitude. But once an algorithm is selected, a 10–50% speedup 

may be worth an effort. 

• It is very essential to write an optimized code (efficient code) to reduce the 
burden of compiler. 
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3. IMPORTANT PROBLEM TYPES 

The most important problem types are: 

(i). Sorting. 
(ii). Searching 

(iii). String processing 

(iv). Graph problems 

(v). Combinatorial problems 

(vi). Geometric problems 

(vii). Numerical problems. 

(i) Sorting 

• The sorting problem is to rearrange the items of a given list in non- 

decreasing (ascending) order. 
• Sorting can be done on numbers, characters, strings or records. 
• To sort student records in alphabetical order of names or by student number 

or by student grade-point average. Such a specially chosen piece of 
information is called a key. 

• An algorithm is said to be in-place if it does not require extra memory, E.g., 

Quicksort. 

• A sorting algorithm is called stable if it preserves the relative order of any 
two equal elements in its input. 

 

(ii) Searching 

• The searching problem deals with finding a given value, called a search key, 

in a given set. 

• E.g., Ordinary Linear search and fast binary search. 

 

(iii) String processing 

• A string is a sequence of characters from an alphabet. 

• Strings comprise letters, numbers, and special characters; bit strings, which 
comprise zeros and ones; and gene sequences, which can be modeled by 
strings of characters from the four- character alphabet {A, C, G, T}. It is 

very useful in bio informatics. 

• Searching for a given word in a text is called string matching 

 

(iv) Graph problems 
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• A graph is a collection of points called vertices, some of which are 

connected by line segments called edges. 

• Some of the graph problems are graph traversal, shortest path algorithm, 
topological sort, traveling salesman problem and the graph-coloring 

problem and soon. 

 

(v) Combinational problems 

• These are problems that ask, explicitly or implicitly, to find a combinational 

object such as a permutation, a combination, or a subset that satisfies certain 

constraints. 

• A desired combinatorial object may also be required to have some 
additional property such s is a maximum value or a minimum cost. 

• In practical, the combinatorial problems are the most difficult problems in 
computing. 

• Thetravelingsalesmanproblemandthegraphcoloringproblemareexamplesof 
combinatorial problems. 

 

(vi) Geometric problems 

• Geometric algorithms deal with geometric objects such as points, lines, and 

polygons. 
• Geometric algorithms are used in computer graphics, robotics, and 

tomography. 
• The closest-pair problem and the convex-hull problem are comes under this 

category. 

 

(vii) Numerical problems 

• Numerical problems are problems that involve mathematical equations, 

systems of equations, computing definite integrals, evaluating functions, 

and soon. 

• The majority of such mathematical problems can be solved only 

approximately. 
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4. FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM EFFICIENCY 

 

The efficiency of an algorithm can be in terms of time and space. The 

algorithm efficiency can be analyzed by the following ways. 
a. Analysis Framework. 
b. Asymptotic Notations and its properties. 
c. Mathematical analysis for Recursive algorithms. 

d. Mathematical analysis for Non-recursive algorithms. 

 

1.1 Analysis Framework 

There are two kinds of efficiencies to analyze the efficiency of any algorithm. 

They are: 

• Time efficiency, indicating how fast the algorithm runs, and 

• Space efficiency, indicating how much extra memory it uses. 

 

The algorithm analysis framework consists of the following: 

• Measuring an Input’s Size 
• Units for Measuring Running Time 
• Orders of Growth 
• Worst-Case, Best-Case, and Average-Case Efficiencies 

 

(i) Measuring an Input’s Size 

• An algorithm’s efficiency is defined as a function of some parameter n 

indicating the algorithm’s input size. In most cases, selecting such a 

parameter is quite straightforward. For example, it will be the size of the list 

for problems of sorting, searching. 

• For the problem of evaluating a polynomial p(x) = anx
n+ . . . + a0 of degree 

n, the size of the parameter will be the polynomial’s degree or the number 

of its coefficients, which is larger by 1 than its degree. 
• In computing the product of two n × n matrices, the choice of a parameter 

indicating an input size does matter. 

• Consider a spell-checking algorithm. If the algorithm examines individual 
characters of its input, then the size is measured by the number of characters. 

• In measuring input size for algorithms solving problems such as checking 

primality of a positive integer n. the input is just one number. 

• The input size by the number b of bits in the n’s binary representation is 

b=(log2n)+1. 
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(ii) Units for Measuring Running Time 

Some standard unit of time measurement such as a second, or millisecond, 

and so on can be used to measure the running time of a program after implementing 

the algorithm Drawbacks, 

• Dependence on the speed of a particular computer. 
• Dependence on the quality of a program implementing the 

algorithm. 
• The compiler used in generating the machine code. 

The difficulty of clocking the actual running time of the program. So, we need metric 

to measure an algorithm’s efficiency that does not depend on these extraneous 

factors.One possible approach is to count the number of times each of the 

algorithm’s operations is executed. This approach is excessively difficult. 

The most important operation (+, -, *, /) of the algorithm, called the basic 

operation. Computing the number of times, the basic operation is executed is 

easy. The total running time is basic operations count. 

 
(iii) ORDERS OF GROWTH 

• A difference in running times on small inputs is not what really 

distinguishes efficient algorithms from in efficient ones. 

• For example, the greatest common divisor of two small numbers, it is not 

immediately clear how much more efficient Euclid’s algorithm is compared 
to the other algorithms, the difference in algorithm efficiencies becomes 

clear for larger numbers only. 
• For large values of n, 
• it is the function’s order of growth that counts just like theTable1.1, 

which contains values of a few functions particularly important for analysis 
of algorithms. 

 

TABLE 1.1 Values (approximate) of several functions important for analysis of 

algorithms 

 

N 
√ 

log2n n n log2n n2 n3 2n n! 

1 1 0 1 0 1 1 2 1 

2 1.4 1 2 2 4 4 4 2 

4 2 2 4 8 16 64 16 24 

8 2.8 3 8 2.4•101 64 5.1•10 
2 

2.6•102 4.0•104 

10 3.2 3.3 10 3.3•101 102 103 103 3.6•106 

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store



UNIT-1  

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM 

 

 

 

16 4 4 16 6.4•101 2.6•10 
2 

4.1•10 
3 

6.5•104 2.1•101 
3 

102 10 6.6 10 
2 

6.6•102 104 106 1.3•103 
0 

9.3•101 
57 

103 31 10 10 
3 

1.0•104 106 109  
Very big 

computati 
on 

104 102 13 10 
4 

1.3•105 108 1012 

105 3.2•10 
2 

17 10 
5 

1.7•106 1010 1015 

106 103 20 10 
6 

2.0•107 1012 1018 

 

(iii) Worst-Case, Best-Case, and Average-Case 

Efficiencies Consider Sequential Search 

algorithm some search key K ALGORITHM 

Sequential Search (A[0..n 1],K) 

//Searches for a given value in a given array by sequential search 

//Input: An array A[0..n - 1] and a search key K 

//Output: The index of the first element in A that matches K or -1 if there 

are no 

// matching elements 

i ←0 

while i < n and A[i] ≠ K do 

i ←i + 1 

if i < n 

return i 

else 

return- 1 

Clearly, the running time of this algorithm can be quite different for the same list 

size n. 

 

In the worst case, there is no matching of elements or the first matching 

element can found at last on the list. In the best case, there is matching of elements 

at first on the list. 
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Worst-case efficiency 

• The worst-case efficiency of an algorithm is its efficiency for the worst 

case input of size n. 
• The algorithm runs the longest among all possible inputs of that size. 
• For the input of size n, the running time is Cworst(n) =n. 

Best case efficiency 

• The best-case efficiency of an algorithm is its efficiency for the best case 

input of size n. 
• The algorithm runs the fastest among all possible inputs of that size n. 
• In sequential search, if we search a first element in list of size n. (i.e. first 

element equal to a search key), then the running time is Cbest(n) =1 

 
Average case efficiency 

• The Average case efficiency lies between best case and worst case. 
• To analyze the algorithm’s average case efficiency, we must make some 

assumptions about possible inputs of size n. 
• The standard assumptions are that 

o The probability of a successful search is equal to p (0 ≤ p ≤ 1)and 
o The probability of the first match occurring in the ith position of the 

 

 

list is the same for every i. Yet another type of efficiency is called amortized 

efficiency. It applies not to a single run of an algorithm but rather to a sequence of 
operations performed on the same data structure. 
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5. ASYMPTOTIC NOTATIONS AND ITS PROPERTIES 

 

Asymptotic notation is a notation, which is used to take meaningful statement 

about the efficiency of a program. 

The efficiency analysis framework concentrates on the order of growth of an 

algorithm’s basic operation count as the principal indicator of the algorithm’s 

efficiency. 

To compare and rank such orders of growth, computer scientists use three 

notations, they are: 

• O - Big oh notation 
• Ω - Big omega notation 

• Θ - Big theta notation 

Lett(n)andg(n)canbeanynonnegativefunctionsdefinedonthesetofnaturalnumbers. 
The algorithm’s running time t(n) usually indicated by its basic operation count 
C(n), and g(n), some simple function to compare with the count. 

 

Example 1: 

 

 

 

 

where g(n) = n2. 

(I) O - Big oh notation 

A function t(n) is said to be in O(g(n)), denoted (n) ∈ (g(n)), if t (n) is bounded above 

by some constant multiple of g(n) for all large n, i.e., if there exist some positive 

constant c and some nonnegative integer n0 such that 

(n) ≤ g(n) for n ≤ n0. 

Where t(n) and g(n) are nonnegative functions defined on the set of natural 

numbers. 

O = Asymptotic upper bound = Useful for worst case analysis = Loose bound 
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FIGURE 1.5 Big-oh notation: (n) ∈ (g(n)). 
 

(i) Ω - Big omega notation 

A function t(n) is said to be in Ω(g(n)), denoted t(n) ∈ Ω(g(n)), if t(n) is 

bounded below by some positive constant multiple of g(n) for all large n, i.e., if 
there exist some positive constant c and some nonnegative integer n0 such that 

t (n) ≥ cg(n) for all n ≥ n0. 

Where t(n) and g(n) are nonnegative functions defined on the set of natural numbers. 

Ω = Asymptotic lower bound = Useful for best case analysis = Loose bound 
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FIGURE 1.6 Big-omega notation: t (n) ∈ Ω (g(n)). 

 
Example4: Prove the assertions n3+10n2+4n+2 ∈ Ω(n2). 

Proof: n3+10n2+4n+2 ≥ n2 (for all n ≥ 0) 

i.e., by definition t(n) ≥ cg(n), where c=1 and n0=0 

 

(ii) Θ - Big theta notation 

A function t(n) is said to be in Θ(g(n)), denoted t(n) ∈Θ(g(n)), if t(n) is 

bounded both above and below by some positive constant multiples of g(n) for all 
large n, i.e., if there exist some positive constants c1 and c2 and some nonnegative 

integer n0 such that 

c2g(n) ≤ t (n) ≤ c1g(n) for all n ≥ n0. 

Where t(n) and g(n) are non-negative functions defined on the set of natural 

numbers. 
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Θ = Asymptotic tight bound = Useful for average case analysis 

FIGURE 1.7 Big-theta notation: t (n) ∈ Θ(g(n)). 
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7. MATHEMATICAL ANALYSIS FOR RECURSIVE 

ALGORITHMS: 

 

General Plan for Analyzing the Time Efficiency of 

Recursive Algorithms 
1. Decide on a parameter (or parameters) indicating an input’s size. 
2. Identify the algorithm’s basic operation. 

3. Check whether the number of times the basic operation is executed can vary 

on different inputs of the same size; if it can, the worst-case, average-case, 

and best-case efficiencies must be investigated separately. 

4. Set up a recurrence relation, with an appropriate initial condition, for the 

number of times the basic operation is executed. 
5. Solve the recurrence or, at least, ascertain the order of growth of its solution. 

 

EXAMPLE 1: Compute the factorial function F(n) = n! for an arbitrary non 

negative integer n. Since n!= 1•. ...... • (n − 1) • n = (n − 1)! • n, for n ≥ 1 and 

0!= 1 by definition, we can compute F(n) = F(n − 1) • n with the following 

recursive algorithm.(ND 2015) ALGORITHMF(n) 

//Computes n! recursively 

//Input: A nonnegative integer n 

//Output: The value of n! 

if n = 0 return 1 

else return F(n − 1) * n 

Algorithm analysis 

• For simplicity, we consider n itself as an indicator of this algorithm’s input 

size. i.e.1. 

• The basic operation of the algorithm is multiplication; whose number of 

executions we denote M(n). Since the function F(n) is computed according 

to the formula F(n) = F(n −1)•n for n >0. 
• The number of multiplications M(n) needed to compute it must satisfy the 

equality 
 

 

M (n − 1) multiplications are spent to compute F(n − 1), and one more 

multiplication is needed to multiply the result by n 
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Recurrence relations 

 
The last equation defines the sequence M(n) that we need to find. This 

equation defines M(n) not explicitly, i.e., as a function of n, but implicitly as a 

function of its value at another point, namely n − 1. Such equations are called 

recurrence relations or recurrences. 

Solve the recurrence relation (n) = (n − 1) + 1, i.e., to find an explicit formula 
forM(n) in terms of n only. 

To determine a solution uniquely, we need an initial condition that tells us 

the value with which the sequence starts. We can obtain this value by inspecting 

the condition that makes the algorithm stop its recursive calls: 

if n = 0 return 1. 

This tells us two things. First, since the calls stop when n = 0, the smallest 

value of n for which this algorithm is executed and hence M(n) defined is 0. 

Second, by inspecting the pseudocode’s exiting line, we can see that when n = 0, 

the algorithm performs no multiplications. 

Thus, the recurrence relation and initial condition for the algorithm’s number of 

multiplications 
M(n): 

M(n) = M(n − 1) + 1 

for n >0, M(0)=0 for 

n =0. 

 

Method of backward substitutions 

M(n) = M(n − 1)+1 substitute M(n − 1) = M(n − 2) +1 

= [M(n − 2) + 1]+ 1 

= M(n − 2)+2 substitute M(n − 2) = M(n − 3) +1 

= [M(n − 3) + 1]+ 2 

= M(n − 3) + 3 

… 

= M(n − i) + i 

… 

= M(n − n) + n 

= n. 
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ThereforeM(n)=n 

 

EXAMPLE 2: consider educational workhorse of recursive algorithms: theTower 

of Hanoi puzzle. We have n disks of different sizes that can slide onto any of three 

pegs. Consider A (source), B (auxiliary), and C (Destination). Initially, all the 

disks are on the first peg in order of size, the largest on the bottom and the smallest 
 

FIGURE 1.7 Recursive solution to the Tower of Hanoi puzzle. 

on top. The goal is to move all the disks to the third peg, using the second one as 

an auxiliary. 
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Algorithm analysis 

The number of moves M(n) depends on n only, and we get the following 

recurrence equation for it: 

M(n) = M(n − 1) + 1+ M(n − 1) for n >1. 

With the obvious initial condition M(1) = 1, we have the following recurrence 
relation for the number of moves M(n): 

M(n) = 2M (n − 1) + 1 

for n >1, M (1) = 1. 

We solve this recurrence by the same method of backward substitutions: 

M(n) = 2M(n − 1)+1 sub. M(n − 1) = 2M(n − 2) +1 

= 2[2M (n − 2) + 1] + 1 

= 22M (n − 2) + 2+1 sub. M (n − 2) = 2M (n − 3) +1 

= 22[2M (n − 3) + 1]+ 2 + 1 

= 23M (n − 3) + 22 + 2+1 sub. M (n − 3) = 2M (n − 4) +1 

= 24M (n − 4) + 23 + 22 + 2 + 1 

… 

= 2iM (n − i) + 2i−1 + 2i−2 + . . . + 2 + 1= 2iM (n − i) + 2i− 1. 

… 

Since the initial condition is specified for n = 1, which is achieved 

for i = n − 1, M(n) = 2n−1M (n − (n − 1)) + 2n−1 – 1 = 2n−1M (1) + 2n−1 

− 1= 2n−1 + 2n−1 − 1= 2n− 1. 

Thus, we have an exponential time algorithm 
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EXAMPLE 3: An investigation of a recursive version of the algorithm which 
finds the number of binary digits in the binary representation of a positive 

decimal integer. 

 

ALGORITHM BinRec(n) 

//Input: A positive decimal integer n 

//Output: The number of binary digits in n’s binary representation 

if n = 1 return 1 

else return BinRec(𝗁n/2])+1 

 

Algorithm analysis 

The number of additions made in computing BinRec(𝗁n/2]) is A(𝗁n/2]), plus one 

more addition is made by the algorithm to increase the returned value by 1. This 

leads to the recurrence A(n)=A(𝗁n/2])+1forn >1 

Then, the initial condition is A(1) =0. 

The standard approach to solving such a recurrence is to solve it 

only for n = 2kA(2k) = A(2k−1) + 1 for k >0, 

A(20) = 0. 

 

backward substitutions 

A(2k) = A(2k−1)+1 substitute A(2k−1) = A(2k−2) +1 

= [A(2k−2) + 1]+ 1= A(2k−2)+2 substitute A(2k−2) = A(2k−3) +1 

= [A(2k−3) + 1]+ 2 = A(2k−3)+3 . . . 

. . . 

= A(2k−i) + i 

. . . 

= A(2k−k) + k. 

Thus, we end up with A(2k) = A(1) + k = k, or, after returning to the original 

variable n = 2k and hence k = log2 n, 

A(n) = log2 n ϵ Θ (log2 n). 
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8. MATHEMATICAL ANALYSIS FOR NON-RECURSIVE ALGORITHMS 

 

1.1 General Plan for Analyzing the Time Efficiency of Non 

recursive Algorithms: 

1. Decide on a parameter (or parameters) indicating an input’s size. 
2. Identify the algorithm’s basic operation (in the inner most oop). 

3. Check whether the number of times the basic operation is executed 

depends only on the size of an input. If it also depends on some additional 

property, the worst-case, average-case, and, if necessary, best-case 

efficiencies have to be investigated separately. 

4. Set up a sum expressing the number of times the algorithm’s basic operation 

is executed. 

5. Using standard formulas and rules of sum manipulation either find a closed 

form formula for the count or at the least, establish its order of growth. 

 
EXAMPLE 1: Consider the problem of finding the value of the largest element 

in a list of n numbers. Assume that the list is implemented as an array for 
simplicity. 

ALGORITHM Max Element(A[0..n − 1]) 

//Determines the value of the largest element in a given array 

//Input: An array A[0..n − 1] of real numbers 

//Output: The value of the largest element in A 

Max val ←A[0] 

for i ←1 to n − 1 do 

if A[i]>maxval 

maxval←A[i] 

return maxval 

 

Algorithm analysis 

• The measure of an input’s size here is the number of elements in the array, 
i.e., n. 

• There are two operations in the for loop’s body: 
o The comparison A[i]> maxval and 
o The assignment max val←A[i]. 

 
• The comparison operation is considered as the algorithm’s basic operation, 

because the comparison is executed on each repetition of the loop and not 
the assignment. 

• The number of comparisons will be the same for all arrays of size n; 
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therefore, there is no need to distinguish among the worst, average, and best 
cases here. 

• Let C(n) denotes the number of times this comparison is executed. The 

algorithm makes one comparison on each execution of the loop, which is 

repeated for each value of the loop’s variable i within the bounds 1 and n − 

1, inclusive. Therefore, the sum for C(n) is calculated as follows: 
− 

() = ∑ 

= 

i.e., Sum up 1 in repeated n-1 times 
− 

() = ∑ = − ∈ () 

= 

 
EXAMPLE 2: Consider the element uniqueness problem: check whether all the 

Elements in a given array of n elements are distinct. 

ALGORITHM Unique Elements (A[0..n − 1]) 

//Determines whether all the elements in a given array are distinct 

//Input: An array A[0..n − 1] 

//Output: Returns “true” if all the elements in A are distinct and “false” 

otherwise 

for i ←0 to n − 2 do 

for j ←i + 1 to n − 1 do 

if A[i]= A [j ] return false 

return true 

 

Algorithm 

Analysis 

• The natural measure of the input’s size here is again n (the number of 

elements in the array). 
• Sincetheinnermostloopcontainsasingleoperation(thecomparisonoftwoeleme 

nts), we should consider it as the algorithm’s basic operation. 
• The number of element comparisons depends not only on n but also on 

whether there are equal elements in the array and, if there are, which array 
positions they occupy. We will limit our investigation to the worst case only. 

• One comparison is made for each repetition of the innermost loop, i.e., for 
each value of the loop variable j between its limits i + 1 and n − 1; this is 

repeated for each value of the outer loop, i.e., for each value of the loop 
variable i between its limits 0 and n −2. 
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EXAMPLE 3: Consider matrix multiplication. Given two n × n matrices A and 

B, find the time efficiency of the definition-based algorithm for computing their 

product C = AB. By definition, C 

an n × n matrix whose elements are computed as the scalar (dot) products of the 

rows of matrix A and the columns of matrix B: 

where C[i, j ]= A[i, 0]B[0, j]+ . . . + A[i, k]B[k, j]+ . . . + A[i, n − 1]B[n − 1, j] for 

every pair of indices 0 ≤ i, j ≤ n − 1. 

 

ALGORITHM MatrixMultiplication(A[0..n − 1, 0..n − 1], B[0..n − 1, 0..n − 1]) 

//Multiplies two square matrices of order n by the definition-based 

algorithm 

//Input: Two n × n matrices A and B 

//Output: Matrix C = AB 

for i ←0 to n − 1 do 

for j ←0 to n − 1 do 

C[i, j ]←0.0 

for k←0 to n − 1 do 

C[i, j ]←C[i, j ]+ A[i, k] ∗ B[k, j] 

return C 

Algorithm analysis 

• An input’s size is matrix order n. 

• There are two arithmetical operations (multiplication and addition) in the 
innermost loop. But we consider multiplication as the basic operation. 

• Let us set up a sum for the total number of multiplications M(n) executed 
by the algorithm. Since this count depends only on the size of the input 
matrices, we do not have to investigate the worst-case, average-case, and 

best-case efficiencies separately. 

• There is just one multiplication executed on each repetition of the 
algorithm’s innermost loop, which is governed by the variable k ranging 

from the lower bound 0 to the upper bound n −1. 
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• Therefore, the number of multiplications made for every pair of specific 
 

values of variables i and j is 

The total number of multiplications M(n) is expressed by the following triple 

sum: 

Now, we can compute this sum by using formula (S1) and rule (R1) 

 
 

. 

The running time of the algorithm on a particular machine m, we can do 

it by the product If we consider, time spent on the additions too, then 

the total time on the machine is 

Example: 4 

The following algorithm finds the number of binary digits in the binary 

representation of a positive decimal integer. 

ALGORITHM Binary(n) 

//Input: A positive decimal integer n 

//Output: The number of binary digits in n’s binary 

representation count ←1 

while n > 1 do 

count 

←count + 

1 n←𝗁n/2] 

return count 
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Algorithm Analysis: 
• An input’s size is n. 
• The loop variable takes on only a few values between its lower and upper 

limits. 
• Since the value of n is about halved on each repetition of the loop, the 

answer should be about log2 n. 
• The exact formula for the number of times. 
• The comparison n > 1 will be executed is actually 𝗁log2 n] +1. 
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