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  INTRODUCTION  
 

Fluid flow is influenced by several parameters like, the geometry, fluid properties and fluid 

velocity. In the previous chapters analytical methods used in fluid flow studies were discussed. 

In the study of flow of real fluids analytical methods alone are found insufficient. Experimental 

methods and results have contributed heavily for the development of fluid mechanics. The 

solution of realistic problems usually involves both anlytical and experimental studies. 

Experiments are used to validate analytical results as well as generalize and extend their 

applications. Depending either solely on analytical methods or experiments for the design of 

systems is found to lead to inadequate performance and high cost. 

Experimental work is rather costly and time consuming, particularly when more than 

three parameters are involved. Hence it is necessary to plan the experiments so that most 

information is obtained from fewest experiments. Dimensional analysis is found to be a very 

useful tool in achieving this objective. The mathematical method of dimensional analysis comes 

to our help in this situation. The number of parameters can be reduced generally to three by 

grouping relevant variables to form dimensionless parameters. In addition these groups 

facilitate the presentation of the results of the experiments effectively and also to generalize 

the results so that these can be applied to similar situations. 

Flow through pipes can be considered as an example. Viscosity, density, flow velocity 

and diameter are found to influence the flow. If the effect of each of these parameters on flow 

is separately studied the number of experiments will be large. Also these results cannot be 

generalized and its usefulness will be limited. When the number of these variables are combined 

to form a dimensionless group like (u D /) few experiments will be sufficient to obtain useful 

information. This parameter can be varied by varying one of the variables which will be the 

easier one to vary, for example velocity u. The results will be applicable for various combinations 

of these parameters and so the results can be generalized and extended to new situations. The 

results will be applicable also for different fluids and different diameters provided the value of 

the group remains the same. Example 4.1 illustrates the advantage dimensional analysis in 

experiment planning. The use of the results of dimensional analysis is the basis for similitude 

and modal studies. The topic is discussed in the next chapter. 
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Example The drag force F on a stationary sphere in flow is found to depend on diameter D, 

velocity u, fluid density  and viscosity . Assuming that to study the influence of a parameter 10 

experimental points are necessary, estimate the total experimental points needed to obtain 

complete information. Indicate how the number of experiments can be reduced. 

To obtain a curve F vs u, for fixed values of   and D, experiments needed = 10. 

To study the effect of  these 10 experiments should be repeated 10 times with 10 values of  the 

total now being 102. 

The 102 experiments have to repeated 10 times each for different values of . 

Total experiments for u,  and  = 103. 

To study the effect of variation of diameter all the experiments have to be repeated 10 times each. 

Hence total experiments required = 104. 

These parameters can be combined to obtain two dimensionless parameters, 

     F  
=  f  

FG  uDIJ 
u2 D2 H  K 

(The method to obtain such grouping is the main aim of this chapter) 

Now only 10 experiments are needed to obtain a comprehensive information about the effect of 

these five parameters. 

Experiments can be conducted for obtaining this information by varying the parameter (uD/) 

and determining the values for F/u2D2. Note : It will be almost impossible to find fluids with 10 

different densities and 10 different viscosities. 

 
 

  METHODS OF DETERMINATION OF DIMENSIONLESS GROUPS  
 

1. Intuitive method: This method relies on basic understanding of the phenomenon and then 

identifying competing quantities like types of forces or lengths etc. and obtaining ratios of 

similar quantities. 

Some examples are: Viscous force vs inertia force, viscous force vs gravity force or 

roughness dimension vs diameter. This is a difficult exercise and considerable experience is 

required in this case. 

2. Rayleigh method: A functional power relation is assumed between the parameters 

and then the values of indices are solved for to obtain the grouping. For example in the problem 

in example 1 one can write 

(1, 2) = Fa bDcdUe
 

The values of a, b, c, d, and e are obtained by comparing the dimensions on both sides 

the dimensions on the L.H.S. being zero as  terms are dimensionless. This is also tedious and 

considerable expertise is needed to form these groups as the number of unknowns will be more 

than the number of available equations. This method is also called ‘‘indicial” method. 

3. Buckingham Pi theorem method: The application of this theorem provides a fairly 

easy method to identify dimensionless parameters (numbers). However identification of the 

influencing parameters is the job of an expert rather than that of a novice. This method is 

illustrated extensively throughout this chapter. 
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  THE PRINCIPLE OF DIMENSIONAL HOMOGENEITY  
 

The principle is basic for the correctness of any equation. It states ‘‘If an equation truly expresses 

a proper relationship between variables in a physical phenomenon, then each of the additive 

terms will have the same dimensions or these should be dimensionally homogeneous.’’ 

For example, if an equation of the following form expresses a relationship between 

variables in a process, then each of the additive term should have the same dimensions. In the 

expression, A + B = C/D, A, B and (C/D) each should have the same dimension. This principle 

is used in dimensional analysis to form dimensionless groups. Equations which are 

dimensionally homogeneous can be used without restrictions about the units adopted. Another 

application of this principle is the checking of the equations derived. 

Note : Some empirical equations used in fluid mechanics may appear to be non homogeneous. In 

such cases, the numeric constants are dimensional. The value of the constants in such equations will 

vary with the system of units used. 

 
 

  BUCKINGHAM PI THEOREM  
 

The statement of the theorem is as follows : If a relation among n parameters exists in the 

form 

f(q1, q2, ......... qn) = 0 

then the n parameters can be grouped into n – m independent dimensionless ratios or  

parameters, expressed in the form 

g(1, 2 ........ n–m
) = 0 (4.3.1) 

or 
1 = g1 (2, 3 ........... n–m) 

where m is the number of dimensions required to specify the dimensions of all the parameters, 

q1, q2,     qn. It is also possible to form new dimensionless  parameters as a discrete function 

of the (n – m) parameters. For example if there are four dimensionless parameters 1, 2, 3 
and 4 it is possible to obtain 5, 6 etc. as 

5 = 
   1  

34 
or   6 = 

0.5 
1 

 

2
2/ 3   

The limitation of this exercise is that the exact functional relationship in equation 4.3.1 

cannot be obtained from the analysis. The functional relationship is generally arrived at through 

the use of experimental results. 

Determination of   Groups 

Irrespective of the method used the following steps will systematise the procedure. 

Step 1. List all the parameters that influence the   phenomenon   concerned. This 

has to be very carefully done. If some parameters are left out,  terms may be formed but 

experiments then will indicate these as inadequate to describe the phenomenon. If unsure the 

parameter can be added. Later experiments will show that the  term with the doubtful 

 
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parameters as useful or otherwise. Hence a careful choice of the parameters will help in solving 

the problem with least effort. Usually three type of parameters may be identified in fluid flow 

namely fluid properties, geometry and flow parameters like velocity and pressure. 

Step 2. Select a set of primary dimensions, (mass, length and time), (force, length 

and time), (mass, length, time and temperature) are some of the sets used popularly. 

Step 3. List the dimensions of all parameters in terms of the chosen set of primary 

dimensions. Table 8.3.1. Lists the dimensions of various parameters involved. 

Table Units and Dimensions of Variables 
 

 
Variable 

 
Unit (SI) 

Dimension 

MLT  system FLT  system 

Mass kg M FT2/L 

Length m L L 

Time s T T 

Force N ML/T2
 F 

Temperature deg C or K   

Area m2 L2 L2 

Volume m3 L3 L3 

Volume flow rate m3/s L3/T L3/T 

Mass flow rate kg/s M/T FT/L 

Velocity m/s L/T L/T 

Angular velocity Rad/s 1/T 1/T 

Force N ML/T2
 F 

Pressure, stress, N/m2
 M/LT2

 F/L2
 

Bulk modulus    

Moment Nm ML2/T2
 FL 

Work, Energy J, Nm ML2/T2
 FL 

Power W, J/s ML2/T3
 FL/T 

Density kg/m3
 M/L3

 FT2/L4
 

Dynamic viscosity kg/ms, Ns/m2
 M/LT FT/L2

 

Kinematic viscosity m2/s L2/T L2/T 

Surface tension N/m M/T2
 F/L 

Specific heat 

Thermal conductivity 

J/kg K 

W/mK 

L2/T2  

ML/T3  

L2/T2 

F/T 

Convective heat    

transfer coefficient W/m2 K M/T3  F/LT 

Expansion coefficient (m/m)/K 1/T 1/T 
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1 2 3 

Step 4. Select from the list of parameters a set of repeating parameters equal to 

the number of primary dimensions. Some guidelines are necessary for the choice. (i) the chosen 

set should contain all the dimensions (ii) two parameters with same dimensions should not be 

chosen. say L, L2, L3, (iii) the dependent parameter to be determined should not be chosen. 

Step 5. Set up a dimensional equation with the repeating set and one of the 

remaining parameters, in turn to obtain n – m such equations, to determine  terms 

numbering n – m. The form of the equation is, 

1 = qm+1 . q a . q b . q c .......... qm
d

 

As the LHS term is dimensionless, an equation for each dimension in terms of a, b, c, d 

can be obtained. The solution of these set of equations will give the values of a, b, c and d. Thus 

the  term will be defined. 

Step 6. Check whether  terms obtained are dimensionless. This step is essential 

before proceeding with experiments to determine the functional relationship between the  

terms. 
 

Example .2 The pressure drop P per unit length in flow through a smooth circular pipe is found 

to depend on (i) the flow velocity, u (ii) diameter of the pipe, D (iii) density of the fluid , and (iv) the 

dynamic viscosity . 

(a) Using  theorem method, evaluate the dimensionless parameters for the flow. 

(b) Using Rayleigh method (power index) evaluate the dimensionless parameters. 

Choosing the set mass, time and length as primary dimensions, the dimensions of the parameters 

are tabulated. 
 

S.No. Parameter Unit used Dimension 

1 Pressure drop/m, P (N/m2/m (N = kgm/s2) M/L2T 2 

2 Diameter, D m L 

3 Velocity, u m/s L/T 

4 Density,  kg/m3
 M/L3

 

5 Dynamic viscosity,  kg/ms M/LT 

There are five parameters and three dimensions. Hence two  terms can be obtained. As 

P is the dependent variable D,  and  are chosen as repeating variables. 

Let 1 = P Dabuc, Substituting dimensions, 

M a M b Lc 

M0L0T0 = 
L2T 2 

L   
L3b T c 

Using the principle of dimensional homogeneity, and in turn comparing indices of mass, length 

and time. 

1 + b = 0  b = – 1,   – 2 + a – 3b + c = 0    a + c = – 1 

– 2 – c = 0  c = – 2,   Hence a = 1. 

Substituting the value of indices we obtain 

binils.com

binils - Anna University App on Play Store

                    Free PDF Study Materials
binils.com - Anna University, Polytechnic & Schools



109 

 

 

 

 1 = PD/u2; 

This represents the ratio of pressure force and inertia force. 

Check the dimension : 

M 

L2T 2 
L 

L3 

M 

T 2 

L2 = M0L0T 0 

Let 2 =  Da buc, substituting dimensions and considering the indices of M, L and T, 

M a Mb Lc 

M0L0T0 = 
LT 

L
 

 
 

L3b T c 

1 + b = 0 or   b = – 1,   – 1 + a – 3b + c = 0,   a + c = – 2, – 1 – c = 0,   c = – 1   a = – 1 

Substituting the value of indices, 

 2 = /uD 

 
check, 

 

M  T 

LT L 

L3  1 

M L 
= M0L0T 0 

This term may be recognised as inverse of Reynolds number. So 2 can be modified as 2 = uD/ 

also 2 = (uD/v). The significance of this  term is that it is the ratio of inertia force to viscous force. 

In case D, u and  had been choosen as the repeating, variables, 1 = PD2/u  and 2 = Du/. The 

parameter 1/2 will give the dimensionless term. P D/u2. In this case 1 represents the ratio 

pressure force/viscous force. This flow phenomenon is influenced by the three forces namely pressure 

force, viscous force and inertia force. 

Rayleigh method: (Also called method of Indices). The following functional relationship is formed 

first. There can be two p terms as there are five variables and three dimensions. 

DPaDbrcmdue = (p1 p2), Substituting dimensions, 

Ma 

L2a T2a 
Lb M

c 

L3c 

Md 

LdT d 

Le 

= L0 M0 T0
 

Te 

Considering indices of M, L and T, three equations are obtained as below 

a + c + d = 0, – 2a + b – 3c – d + e = 0, – 2a + d – e = 0 

There are five unknowns and three equations. Hence some assumptions are necessary based on 

the nature of the phenomenon. As DP, the dependent variable can be considered to appear only 

once. We can assume a = 1. Similarly, studying the forces, m appears only in the viscous force. So 

we can assume d = 1. Solving a = 1, d = 1, b = 0, c = – 2, e = – 3, (p1 p2) = DPm/r2 u3. Multiply and 

divide by D, then p1 = DPD/ru2 and p2 = m/ruD. Same as was obtained by p theorem method. This 

method requires more expertise and understanding of the basics of the phenomenon. 

 
Example .3 The pressure drop P in flow of incompressible fluid through rough pipes is found to 

depend on the length l, average velocity u, fluid density, , dynamic viscosity , diameter D and 

average roughness height e. Determine the dimensionless groups to correlate the flow parameters. 
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The variables with units and dimensions are listed below. 
 

S.No. Variable Unit Dimension 

1 P N/m2
 M/LT2

 

2 l L L 

3 u m/s L/T 

4  kg/m3
 M/L3

 

5  kg/ms M/LT 

6 D L L 

7 e L L 

There are seven parameters and three dimensions. So four  terms can be identified. Selecting u, 

D and  as repeating variables, (as these sets are separate equations, no problem will arise in 

using indices a, b and c in all cases). 

Let 1 = P uaDbc, 2 = L uaDb c, 3 =  ua Db c, 4 = e uaDbc
 

Consider  , M0L0T0 = 
  M    La

 
Lb Mc 

 
 

1 LT 2 T a 

 
 

L3c 

Equating the indices of M, L and T, 

1 + c = 0, c = – 1, – 1 + a + b – 3c = 0, – 2 – a = 0, a = – 2, b = 0. 

Substituting the value of indices we get 

 1 = P/u2 

 
 0  0   0 La 

Lb Mc 

Consider 2, M L T = L 
Ta 

 
 

L3c 

Equating indices of M, L and T, c = 0, 1 + a + b – 3c = 0, a = 0,    b = – 1,      2 = L/D 

 
Consider 3 M0L0T0 =

 M   La

 

LT Ta
 

Lb Mc 

L3c 

Comparing the indices of m, L and T, 

gives 1 + c = 0 or c = – 1, – 1 + a + b – 3c = 0, – 1 – a = 0 or a = – 1,      b = – 1 

 3 = /Du or     uD/ 

Consider  , M0L0T0 = L 
L

a

 
Lb Mc 

  

4 Ta L3c 

This gives,   c = 0,   1 + a + b – 3c = 0, – a = 0, b = – 1  4 = e/D 

These  terms may be checked for dimensionless nature. 

The relationship can be expressed as 
 P 

= f 
rj L 

,
 e 

, 
uD yj 

u2 l D  D   Q 
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 IMPORTANT DIMENSIONLESS PARAMETERS  

 
Some of the important dimensionless groups used in fluid mechanics are listed in Table 4.4.1. 

indicating significance and area of application of each. 

Table Important Dimensionless Parameters 
 

Name Description Significance Applications 

Reynolds 

Number, Re 

uD/ or uD/v Inertia force/ 

Viscous force 

All types of fluid 

dynamics problems 

Froude Number 

Fr 

 

u/(gl)0.5 or 

u2/gl 

Inertia force/ 

Gravity force 

Flow with free 

surface (open 

channel and ships) 

Euler Number 

Eu 

 
P/u2

 

Pressure force/ 

Inertia force 

Flow driven by 

pressure 

Cauchy Number 

Ca 

 

u2/Ev (Ev– 

bulk modulous) 

Inertia force/ 

Compressibility 

force 

compressible flow 

Mach Number 

M 

u/c, c–Velocity 

of sound 

Inertia force/ 

Compressibility 

force 

Compressible flow 

Strouhal 

Number 

St 

l/u, 

–Frequency of 

oscillation 

Local inertia 

Force/ 

Convective 

inertia force 

Unsteady flow with 

frequency of 

oscillation 

Weber Number 

We 

 
u2l/,  = 

Surface tension 

Inertia force/ 

Surface tension 

force 

Problems influenced 

by surface tension 

free surface flow 

Lift coefficient 

CL 

L/(1/2 Au2) 

L = lift force 

Lift force/ 

Dynamic force 

Aerodynamics 

 

  CORRELATION OF EXPERIMENTAL DATA  
 

Dimensional analysis can only lead to the identification of relevant dimensionless groups. The 

exact functional relations between them can be established only by experiments. The degree of 

difficulty involved in experimentation will depend on the number of  terms. 
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Problems with One Pi Term 

In this case a direct functional relationship will be obtained but a constant c has to be 

determined by experiments. The relationship will be of the form 1 = c. This is illustrated in 

example 8.4. 
 

Example .4 The drag force acting on a spherical particle of diameter D falling slowly through a 

viscous fluid at velocity u is found to be influenced by the diameter D, velocity of fall u, and the 

viscosity . Using the method of dimensional analysis obtain a relationship between the variables. 

The parameters are listed below using M, L, T dimension set. 
 

S.No. Parameter Symbol Unit Dimension 

1 Drag Force F N or kgm/s2
 ML/T2

 

2 Diameter D m L 

3 Velocity u m/s L/T 

4 Viscosity  kg/ms M/LT 

There are four parameters and three dimensions. Hence only one  term will result. 

1 = F Da ub c, Substituting dimensions, 

 
M0L0T0 = 

ML 
L

a Lb 

T 2 T b 

M c 

LcT c 

 
, Equating indices of M, L and T 

0 = 1 + c, c = – 1, 1 + a + b – c = 0, 2 + b + c = 0, b = – 1, c = – 1 

1 = F/uD    F/uD = constant = c 

or F = cuD or drag force varies directly with velocity, diameter and viscosity. A single test will 

provide the value of the constant. However, to obtain a reliable value for c, the experiments may 

have to be repeated changing the values of the parameters. 

In this case an approximate solution was obtained theoretically for c as 3. Hence drag force F in 

free fall is given by F = 3uD. This can be established by experiments. 

This relation is known as Stokes law valid for small values of Reynolds Number (Re << 1). This 

can be used to study the settling of dust in still air. Inclusion of additional variable, namely 

density will lead to another  term. 

 

Problems with Two Pi Terms 

In example 4.2 two  terms were identified. If the dimensional analysis is valid then a 

single universal relationship can be obtained. Experiments should be conducted by varying 

one of the group say 
1 and from the measurement the values of the other group 2 is calculated. 

A suitable graph (or a computer program) can lead to the functional relationship between the 

 terms. Linear semilog or log/log plots may have to be used to obtain such a relationship. The 

valid range should be between the two extreme values used in the experiment. Extrapolation 

may lead to erroneous conclusions. This is illusration by example 4.5. 
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Example .5 In order to determine the pressure drop in pipe flow per m length an experiment was 

conducted using flow of water at 20°C through a 20 mm smooth pipe of length 5 m. The variation of 

pressure drop observed with variation of velocity is tabulated below.The density of water = 1000 kg/ 

m3. Viscosity = 1.006 × 10–3 kg/ms. 
 

Velocity, m/s 0.3 0.6 0.9 1.5 2.0 3 5 

Pressure drop, N 404 1361 2766 6763 11189 22748 55614 

Determine the functional relationship between the dimensionless parameters (D P/u2) and (uD/ 

). 

Using the data the two  parameters together with log values are calculated and tabulated below. 
 

u 0.3 0.6 0.9 1.5 2.0 3 5 

DP/u2
 0.01798 0.01512 0.01366 0.01202 0.01119 0.01011 0.00890 

uD/ 5964 11928 17894 29821 39761 59642 99400 

logRe 3.78 4.08 4.25 4.48 4.6 4.78 4.997 

log(DP/u) – 1.745 – 1.821 – 1.865 – 1.92 – 1.951 – 1.995 – 2.051 

A plot of the data is shown in Fig. Ex. 4.5 (a). The correlation appears to be good. Scatter may 

indicate either experimental error or omission of an influencing parameter. As the direct plot is a 

curve., fitting an equation can not be done from the graph. A log log plot results in a straight line, 

as shown in the Fig. 8.5 (b). To fit an equation the following procedure is used. 

The slope is obtained by taking the last values: 

= {– 2.051 – (– 1.745)}/(4.997 – 3.78) = – 0.2508 

When extrapolating we can write, the slope using the same – 2.051 – (x)/(5 – 0) = – 0.2508 

This gives x = – 0.797. 

This corresponds to the value of 0.16. Hence we can write, 

  DP F  PuD I −0.2508 

u2    
= 0.16 GH  

JK 

= 0.16 × Re–0.2508
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2 

Problems with Three Dimensionless Parameters 

In this case experiments should be conducted for different constant values of 3, varying 

1 and calculating the corresponding values of 2. Such a set of experiments will result in 

curves of the form shown in Fig. 4.5.3. 

These curves can also be converted to show the variation of 1 with 3 at constant values 

of 2 by taking sections at various values of 2. By suitable mathematical techniques correlation 

of the form below can be obtained. 

 = c1
n1 2 

n2
 

When there are more than three  terms, two of these should be combined and 

the numbers reduced to three. The procedure as described above can then be used to obtain 

the functional relationship. 
 

2 

 
 

 
3 = C1 (Constant) 

 
3 = C2 

3 = C3 

  3 = C4  

1 

 
 
 
 

  SOLVED PROBLEMS   
 

Problem .1 The pressure drop P in flow through pipes per unit length is found 

to depend on the average velocity , diameter D, density of the fluid , and viscosity . Using 

FLTset of dimensions evaluate the dimensionless parameters correlating this phenomenon. 

The dimensions of the influencing parameters are tabulated below choosing FLT set. 
 

S.No. Variables Unit Dimensions 

1 Pressure drop per unit length, P/l (N/m2)/m F/L3
 

2 Diameter, D m L 

3 Velocity, u m/s L/T 

4 Density,  kg/m3
 FT2/L4

 

5 Viscosity,  Ns/m2
 FT/L2
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As there are five variables and three dimensions, two  terms can be obtained. 

Using D, u and  as repeating parameters, 

 a b c  0   0   0 F 
L

a  Lb F c T 2c 

Let 1 = Pd u  or   F L T = 
L

3 
 

 

T b L4c 

Comparing the indices of M, L and T solving for a, b and c, 

1 + c = 0, – 3 + a + b – 4c = 0, – b + 2c = 0 

 c = – 1, b = – 2, a = 1 

Substituting the value of indices 

 1 = DP/u2 

 
Let, 2 = Da ub

 

 
c,   or   F0 L0

 

 
T0 = 

F 
L

a Lb 

L2 T b 

Fc T 2c 

L4 c 

Comparing the value of indices for M, L and T 

 1 + c = 0, – 2 + a + b – 4c = 0, 1 – b + 2c = 0 

Solving, a = – 1, b = – 1, c = – 1 substituting the values of a, b, c, d 

 2  =  /uD or    uD/ 
 DP ruD y 

 
u2 = f jl    

jQ 
The result is the same as in example 4.2. The dimension set choosen should not affect 

the final correlation. 

Problem.2 The drag force on a smooth sphere is found to be affected by the velocity of 

flow, u, the dimaeter D of the sphere and the fluid properties density  and viscosity . Using 

dimensional analysis obtain the dimensionless groups to correlate the parameters. 

The dimensions of the influencing variables are listed below, using M, L, T set. 
 

S.No. Variables Unit Dimensions 

1 Drag force, F N, (kgm/s2) ML/T2
 

2 Diameter, D m L 

3 Velocity, u m/s L/T 

4 Density,  kg/m3
 M/L3

 

5 Viscosity,  kg/ms M/LT 

There are five variables and three dimensions. So two  terms can be obtained. 

Choosing D, u and  as repeating variables, 

 
Let 1 

= F Da ub c,   or M0L0T0 = 
ML 

La 
L

b

 

T 2 T b 

M c 

L3c 
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Comparing the values of indices for M, L and T 

1 + c = 1,    c = – 1, 1 + a + b – 3c = 0, – 2 – b = 0 

 b = – 2, a = – 2 

Substituting the values of a, b, c 

 1 = F/u2 D2
 

 
Let 2 

= Daub c     or   M0L0T0 =
 M 

La 
L

b

 

LT T b 

M c 

L3c 

Comparing the values of indices of M, L and T 

 1 + c = 0, – 1 + a + b – 3c = 0, – 1 – b = 0  c = – 1, b = – 1, a = – 1 

Susbtituting the values of a, b, c. 

 2 =  /uD or uD/ 

 
  F  

= f  
r
j uD yj ;    Check for dimensions of   and  . 

u2 D2 l  Q 
ML L3 T 2 1 

 

 

 

 0   0   0 

1 2 

 
 

M  L 
L 

LT 

 

 

 

 0 0   0 

1 = 
T 

2 
M L2 L

2   = M L T or   2 = 
L

3 T
 

M   
= M L T 

 
force. 

Note: the significance of the  term. F/u2D2 → F/u Du → F/mu → Drag force/inertia 

 
Problem 3. The thrust force, F generated by a propeller is found to depend on the 

folllowing parameters: diameter D, forward velocity u, density , viscosity  and rotational 

speed N. Determine the dimensionless parameters to correlate the phenomenon. 

The influencing parameters with dimensions are listed below using MLT set. 
 

S.No. Parameters Unit Dimensions 

1 Thrust force, F N ML/T2
 

2 Diameter, D m L 

3 Forward velocity, u m/s L/T 

4 Density,  kg/m3
 M/L3

 

5 Viscosity,  kg/ms M/LT 

6 Rotational speed, N 1/s 1/T 

There are 6 variables and three dimensions. So three  terms can be obtained. 

Choosing D, u and  as repeating variables, 

 
Let 1 

= F uaDbc,   or M0L0T0 = 
ML L

a

 

T 2  T a 
L

b M c 

L3c 
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Comparing indices of M, L and T 

 1 + c = 0, 1 + a + b – 3c = 0, – 2 – a = 0 

 a = – 2, b = – 2, c = – 1 

Substituting the values of a, b, and c 

 1 = F/u2D2 , (Thrust force/Inertia force) 

Let  =  uaDbc   or   M0L0T0 =
 M   L

a

 
L

b M c 

 

2 

 

Comparing the indices M, L and T 

LT T a L3c 

 1 + c = 0, – 1 + a + b – 3c = 0, – 1 – a = 0 

 a = – 1, b = – 1, c = – 1 

Substituting the values of a, b and c 

 2  =  /uD or    uD/    (Inertia force/Viscous force) 

 
Let 3 

= N ua Db c,   or   M0L0T0 =
 1 L

a

 

T T a 
L

b M c 

L3c 

Comparing the indices of M, L and T 

c = 0, a + b – 3c = 0, – 1 – a = 0,    a = – 1, b = 1 

Susbtituting the values of a, b and c 

 3 = ND/u   (Rotational speed/Forward speed) 

ruD  ND y 
 F/u2D2  = f jl     

,   
u  jQ 

Problem 4. At higher speeds where compressibility effects are to be taken into account 

the performance of a propeller in terms of force exerted is influenced by the diameter, forward 

speed, rotational speed, density, viscosity and bulk modulus of the fluid. Evaluate the 

dimensionless parameters for the system. 

The influencing parameters and dimensions are tabulated below, using M, L, T set. 
 

S.No. Parameters Unit Dimensions 

1 Force, F N/m2
 M/LT2

 

2 Diameter, D m L 

3 Forward velocity, u m/s L/T 

4 Rotational speed, N l/s 1/T 

5 Density,  kg/m3
 M/L3

 

6 Viscosity,  kg/ms M/LT 

7 Bulk Modulus, E (m3/m3)N/m2
 M/LT2
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There are seven variables and three dimensions, So four  terms are possible. 

Selecting D, u and  as repeating parameters, 

Let 1 = F aubdc,   or   M0L0T0 = 
M

 
LT 2 

M a Lb 

L3 a Tb  
Lc

 

The general procedure is to compare the indices of M, L and T on both sides and from 

equations. 

1 + a = 0, – 1 – 3a + b + c = 0, – 2 – b = 0 

 c = 0, b = – 2, a = – 1 

 1 = F/u2 → (force exerted/inertia force)/m2
 

Let 2 = NaubDc,   or   M0L0T0 =
 1

 
T 

M a Lb 

L3a T b 
Lc

 

 a = 0, – 3a + b + c = 0, – 1 – b = 0 

 a = 0, b = – 1, c = 1. 

2 = ND/u (or rotational speed/forward speed) 

 
Let  = a ubDc,   or M0L0T0 =

 M M 
a 

L
b 

Lc
 

3 LT 
 

L3 a Tb 

 1 + a = 0, – 1 – 3a + b + c = 0, – 1 – b = 0 

 a = – 1, b = – 2, c = – 1, 

 3 = uD or   uD/   (Reynolds number) 

 
Let  = EaubDc, or   M0L0T0 = 

  M    M 
a

 Lb   

Lc
 

 

4 LT 2 L3a   T b 

 1 + a = 0, – 1 – 3a + b + c = 0, – 2 – b = 0 

 a = – 1, b = – 2, c = 0 

4 = E/u2 (Compressibility force/inertia force) 
  F r ND    uD     E y 

 
u2  

= f  jl u   
, 

 
, 

u2 
jQ 

Problem 5. Using dimensional analysis, obtain a correlation for the frictional torque 

due to rotation of a disc in a viscous fluid. The parameters influencing the torque can be identified 

as the diameter, rotational speed, viscosity and density of the fluid. 

The influencing parameters with dimensions are listed below, using M, L, T set. 
 

S.No. Parameters Unit Dimensions 

1 Torque,  Nm ML2/T2
 

2 Diameter, D m L 

3 Rotational speed, N l/s 1/T 

4 Density,  kg/m3
 M/L3

 

5 Viscosity,  kg/ms M/LT 
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There are five variables and three dimensions. So two  parameters can be 

identified. 

Considering D, N and  as repeating variables. 
 

1 =  D N  or   M L T = 

 

 

 
 

Let  =  DaNbc     or   M0L0T0 =
 M 

La 
  1   M 

c

 
 

2 LT Tb  L3c 

 1 + c = 0, – 1 + a – 3c = 0, – 1 – b = 0    c = – 1, b = – 1, a = – 2 

 2 =  /D2  N,    (Another form of Reynolds number, as DN → u) 
    r      y 

 2  5 
= f j 2 j Check for the dimensions of  and  

N D lD  N Q 1  2 

Note: Rotational speed can also be expressed as angular velocity, . In that case N will be 

replaced by  as the dimension of both these variables is 1/T. 

Problem 6. A rectangular plate of height, a and width, b is held perpendicular to the 

flow of a fluid. The drag force on the plate is influenced by the dimensions a and b, the velocity 

u, and the fluid properties, density  and viscosity  Obtain a correlation for the drag force in 

terms of dimensionless parameters. 

The parameters with dimensions are listed adopting M, L, T set of dimensions. 
 

S.No. Parameters Unit Dimensions 

1 Drag force, F N ML/T2
 

2 Width, b m L 

3 Height, a m L 

4 Velocity, u m/s L/T 

5 density,  kg/m3
 M/L3

 

6 Viscosity,  kg/ms M/LT 

There are 6 parameters and three dimensions. Hence three  terms can be 

obtained. Selecting b, u and  as repeating variables. 

 
Let 1 

= F baubc     or M0L0T0 = 
ML 

La 
L

b

 

T 2 T b 

M c 

L3c 

 1 + c = 0, 1 + a + b – 3c = 0, – 2 – b = 0 

 c = – 1, b = – 2, a = – 2 

 1 = F/u2b2 

Let 

 

a    b c 0 0   0 
ML2 

T 2 
La 1 

T b 

M c 

L3c 

 1 + c = 0, 2 + a – 3c = 0, – 2 – b = 0  c = – 1, b = – 2, a = – 5, 

 1  =  /N2D5 
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Let 2 

= a baubc     or M0L0T0 = LLa 
L

b

 

Tb 

M c 

L3c 

c = 0, 1 + a + b – 3c = 0, – b = 0, 

 a = – 1  2 = a/b 

 
Let 3 

= baubc    or M0L0T0 = 
 M  

La 
L

b

 

LT T b 

M c 

L3c 

 1 + c = 0, – 1 + a + b – 3c = 0, – 1 – b = 0. 

 b = – 1, c = – 1, b = – 1 

 3 =  /ub    or 3 =  ub/ 

 
    F  

= f  
rja 

, 
 ub yj 

u2b2 lb  Q 
3 is Reynolds number based on length b. 1 is (drag force/unit area)/inertia force. 

Problem 7. In film lubricated journal bearings, the frictional torque is found to depend 

on the speed of rotation, viscosity of the oil, the load on the projected area and the diameter. 

Evaluate dimensionless parameters for application to such bearings in general. 

The variables with dimensions are listed below, adopting MLT set. 
 

S.No. Variable Unit Dimensions 

1 Frictional Torque,  Nm ML2/T2
 

2 Speed, N 1/s 1/L 

3 Load per unit area, P N/m2
 M/LT 2 

4 Diameter, D m L 

5 Viscosity,  kg/ms M/LT 

There are five parameters and three dimensions. Hence two  parameters can 

be found. Considering N, D and  as repeating variables, 

 a b c  0   0   0 ML2 1 
L

b    M c 

Let 1 =  N D  or   M L T =   
T 2    T a

 
 

 

LcT c 

 1 + c = 0, 2 + b – c = 0, – 2 – a – c = 0    c = – 1, a = – 1, b = – 3 

 1 = /ND3 Also  = /uD (–Torque) 

Let 2 = PNaDbc     or   M0L0T0 = 
M 1

 

LT 2 T a 
L

b  M c 

LcT c 

 1 + c = 0, – 1 + b – c = 0, – 2, – a – c = 0 

 c = – 1, a = – 1, b = 0 
    = P/N,     

     
= f 

r P y 
2 

ND3 
jl N 

jQ 
Note : P/N is also Reynolds number, try to verify. 
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Problem 8. Obtain a relation using dimensional analysis, for the resistance to uniform 

motion of a partially submerged body (like a ship) in a viscous compressible fluid. 

The resistance can be considered to be influenced by skin friction forces, buoyant forces 

and compressibility of the fluid. 

The variables identified as affecting the situation are listed below using MLT set. 
 

S.No. Variable Unit Dimensions 

1 Resistance to motion, R N/m2
 M/LT2

 

2 Forward velocity, u m/s L/T 

3 Length of the body, l m L 

4 Density of the fluid,  kg/ms M/L3
 

5 Viscosity, of the fluid,  kg/ms M/LT 

6 Gravity, g m/s2
 L/T2

 

7 Bulk modulus, Ev N/m2
 M/LT2

 

There are seven parameters and three dimensions. So four , terms are possible. 

Considering velocity, density and length as repeating variables. 

 
Let 1 

= Ruablc     or   M0L0T0 = 
  M    L

a

 

LT 2  T a 

M b 

L3b 
Lc

 

 1 + b = 0, – 1 + a – 3b + c = 0, – 2 – a = 0 

 a = – 2, b = – 1 and c = 0 

 1 = R/u2, Euler number. 

 
Let  =  ua b lc     or   M0L0T0 =

 M   L
a

 Mb  

Lc
 

2 LT T a L3b 

 1 + b = 0, – 1 + a – 3b + c = 0, – 2 – a = 0 

 a = – 1, b = – 1 and   c = – 1 

 2 = /ul. 

 
Let 3 

= guablc     or M0L0T0 =
 L   L

a

 

T 2  T a 

Mb 

L3b 
Lc

 

 b = 0, 1 + a – 3b + c = 0, – 2 – a = 0 

 a = – 2, b = 0 and c = 1 

 3 = gl/u2 → can also be expressed as u/(gL)0.5 (Froude number.) 

 
Let  = E uablc     or   M0L0T0 = 

  M    L
a

 M b   

Lc
 

 

4 v LT 2 T a L3b 

 1 + b = 0, – 1 + a – 3b + c = 0, – 2 – a = 0 

 a = – 2, b = – 1 and c = 0 

 4  = Ev/u2
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1 v T La 

  R   
= f  

r
j     

, 
 gl 

, 
 Ev y

j  or
 

u2 lul    u2    u2 Q 
Euler number = f (Reynolds number, Froude number and Mach number) 

In the case of incompressible flow, this will reduce to 
R rul u y 

u2 
= f jl  

, 
( gl)

0.5 jQ = f(Re, Fr) 

Problem 9. The velocity of propagation of pressure wave, c through a fluid is assumed 
to depend on the fluid density  and bulk modulus of the fluid E

v. Using dimensional analysis 

obtain an expression for c in terms of  and Ev. 

This is a case were there will be a direct relationship between the variables or 

one  term. 

Note: The definition of the bulk modulus is dp/(dv/v), the dimension being that of pressure, 

M/LT2, Writing c = f(, Ev) 

Let,  = c aE b     or M0L0T0 = 
L M

 
Mb 

Lb T 2b 

 a + b = 0, 1 – 3a – b = 0, – 1 – 2b = 0,    b = – 0.5, a = 0.5 

 1 = c(/Ev)0.5,    or c = const × (Ev/)0.5
 

Problem 10. Obtain a correlation for the coefficient of discharge through a small 

orifice, using the method of dimensional analysis. 

The following list of parameters can be identified as affecting the coefficient of discharge 
 

S.No. Parameters Unit Dimensions 

1 Diameter, D m L 

2 Head, H m L 

3 Gravity, g m/s2
 L/T2

 

4 Density of the fluid,  kg/m3
 M/L3

 

5 Roughness height, k m L 

6 Surface tension,  N/m M/T2
 

7 Viscosity,  kg/ms2
 M/LT 

There are seven variables and three dimensions. So four  terms can be 

identified. Considering , g and H as repeating variables 

 
Let 1 

= D agbHc     or M0L0T0 = L 
M 

a

 

L3a 

Lb 

T 2b 
Lc

 

 a = 0, 1 – 3a + b + c = 0, – 2b = 0, 

 c = – 1       1 = D/H    or H/D 

a 
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l 
),     j 

 
Let 2 

= kagbHc     or M0L0T0 = L 
M 

a

 

L3a 

Lb 

T 2b 
Lc

 

 a = 0, 1 – 3a + b + c = 0, – 2b = 0, 

 a = 0, b = 0, c = – 1    2 = k/H 

 
Let 3 

= agbHc or   M0L0T0 = 
M

 
T 2 

M a 

L3a 

Lb 

T 2b 
Lc

 

 a + 1 = 0, – 3a + b + c = 0, – 2 – 2b = 0, 

 a = – 1, b = – 1, c = – 2 

 3 = gH2 

 
Let  = agbHc     or M0L0T0 =

 M M 
a    

L
b 

L 
4 LT L3a T 2b c 

 a + 1 = 0, – 1 – 3a + b + c = 0, – 1 – 2b = 0, 

 a = – 1, b = – 1/2, c = – 1.5. 

 4 = /(H   gH ).   As Cd is dimensionless 

r D k  y 
Cd = f jH

 , 
H 

, (/ gH 
(H    gH ) jQ 

Check the dimensions of these  terms. 

Problem 11. The volume flow rate of a gas through a sharp edged orifice is found to be 

influenced by the pressure drop, orifice diameter and density and kinematic viscosity of the gas. 

Using the method of dimensional analysis obtain an expression for the flow rate. 

The variables and dimensions are listed below, adopting MLT system 
 

S.No. Variable Unit Dimensions 

1 Volume flow rate, Q m3/s L3/T 

2 Pressure drop, P N/m2
 M/LT2

 

3 Diameter, D m L 

4 Density,  kg/m3
 M/L3

 

5 Kinematic viscosity, v m2/s L2/T 

There are five parameters and three dimensions. So two  terms can be 

obtained. Choosing P, D and  as repeating variables, 

 
Let 1 

= Q PaDbc     or   M0L0T0 = 
L

3

 

T 

M a 

LaT 2a 
L

b Mc 

L3c 

 a + c = 0, 3 – a + b – 3c = 0, – 1 – 2a = 0,  a = – (1/2), c = 1/2, b = – 2 

 1  = (Q/D2) (/P)1/2 
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 a b c 

 
0   0   0 L2 M a 

L
b M c 

Let 2 = vP D  or   M L T = 
T

 
LaT 2a 

 
 

L3c 

 a + c = 0, 2 – a + b – 3c = 0, – 1 – 2a = 0, 

 a = – (1/2), c = (1/2), b = – 1 
 Q  j     7 1/ 2

 

 
r v  j     7 1/ 2 y 

    =  (v/D)  (/P)1/2      or 2 j j = f j j j j 
2 D H P j jl D H P j jQ 

Note : 2 can be also identified as Reynolds number. Try to verify. 

Problem.12 In flow through a sudden contraction in a circular duct the head loss h is 

found to depend on the inlet velocity u, diameters D and d and the fluid properties 

adnendsivtiyscosity    and  gravitational  acceleration,  g.  Determine  dimensionless  parameters  to 

correlate experimental results. 

The influencing variables with dimensions are tabulated below with MLT set. 
 

S.No. Variable Unit Dimensions 

1 Loss of head, h m L 

2 Inlet diameter, D m L 

3 Outlet diameter, d m L 

4 Velocity, u m/s L/T 

5 Density,  kg/m3
 M/L3

 

6 Viscosity,  kg/ms M/LT 

7 Gravitational acceleration, g m/s2
 L/T2

 

There are seven variables and three dimensions. Hence four  parameters can 

be found. Considering D,  and u as repeating variables, 

 
Let 1 

= h Da b uc     or M0L0T0 = LLa 
M 

b   
L

c

 

L3b T c 

 b = 0, 1 + a – 3b + c = 0, c = 0    a = – 1      1 = h/D 

 
Let 2 

= d Da b uc     or   M0L0T0 = LLa 
M

b  
L

c

 

L3b T c 

 b = 0, c = 0, 1 + a – 3b + c = 0, a = – 1  2 = d/D 

 
Let  =  Da b uc     or M0L0T0 =

 M 
La 

M
b  

L
c

 

3 LT 
 

L3b T c 

 b + 1 = 0, – 1 + a – 3b + c = 0, – 1 – c = 0, 

 b = – 1, c = – 1, a = – 1 

 3 = /Du    or   Du/ 

 
Let  = g Da b uc     or   M0L0T0 = 

  L 
La 

M 
b   

L
c

 
 

4 T 2 L3b T c 
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 b = 0, 1 + a – 3b + c = 0, – 2 – c = 0 

 c = – 2, a = 1      4 = gD/u2 

 
h 

= f 
rj d 

, 
Du 

,
 gD yj 

D lD  u2 Q 
Note : gD/u2 is the ratio of Potential energy to Kinetic energy. 

Problem 13. The volume flow rate, Q over a V-notch depends on fluid properties namely 

density , kinematic viscosity v, and surface tension . It is also influenced by the angle of the 

notch, head of fluid over the vertex, and acceleration due to gravity. Determine the dimensionless 

parameters which can correlate the variables. 

As , the notch angle is a dimensionless parameter, the other parameters are listed 

below with dimensions, adopting MLT set. 
 

S.No. Variable Unit Dimension 

1 Density,  kg/m3
 M/L3

 

2 kinematic vicosity, v m2/s L2/T 

3 Surface tension,  N/m M/T2
 

4 Head of fluid, h m L 

5 Gravitational acceleration, g m/s2
 L/T2

 

6 Flow rate, Q m3/s L3/T 

There are six parameters and three dimensions. So three  terms can be 

identified. Considering , g and h as repeating variables. 

 a    b    c  0   0   0 L3 M a Lb 
c
 

Let 1 = Q  g h or   M L T = 
T

 
L3a T 2b   

L 

 a = 0, 3 – 3a + b + c = 0, – 1 – 2b = 0 

 b = – 0.5, c = 2.5    1 = Q/g1/2 h5/2 

 a    b    c  0   0   0 L2 M a Lb 
c
 

Let 2 = v g h or   M L T = 
T

 
L3a T 2b   

L 

 a = 0, 2 – 3a + b + c = 0, – 1 – 2b = 0 

 b = – 0.5, c = (– 1.5)    2 = v/g1/2 h3/2 

Let 3 
=  a gb hc     or   M0L0T0 = 

M
 

T 2 

M a 

L3a 

Lb 

T 2b 
Lc

 

 1 + a = 0, – 3a + b + c = 0, – 2 – 2b = 0    a = – 1, b = – 1, c = – 2 r v       y 
    = gh2         Q = g1/2 h5/2 f j 1/ 2 3 / 2 

, 2 , j 
3 l g h  gh Q 

Note : In case surface tension is not considered, 3 will not exist. 2 can be identified as Reynolds 

number. 
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Problem 14. The capillary rise h is found to be influenced by the tube diameter D, 

density , gravitational acceleration g and surface tension . Determine the dimensionless 

parameters for the correlation of experimental results. 

The variables are listed below adopting MLT set of dimensions. 
 

S.No. Variable Unit Dimension 

1 Diameter, D m L 

2 Density,  kg/m3
 M/L3

 

3 Gravitational acceleration, g m/s2
 L/T2

 

4 Surface tension,  N/m M/T2
 

5 Capillary rise, h m L 

There are five parameters and three dimensions and so two  parameters can 

be identified. Considering D,  and g as repeating variables, 

 
Let 1 

= h Da b gc     or M0L0T0 = LLa 
M 

b

 

L3b 

Lc 

T 2c 

 b = 0, 1 + a – 3b + c = 0, – 2c = 0 

 a = – 1, b = 0, c = 0    1 = h/D 

 
Let 2 

=  Dab gc     or   M0L0T0 =
 M

 
T 2 

L
a Mb 

L3b 

Lc 

T 2c 

 1 + b = 0, a – 3b + c = 0, – 2 – 2c = 0  b = – 1, c = – 1, and a = – 2 

 2 = /D2 g, g can also be considered as specific weight  

h r      y 

D 
= f  jl D

2 
 
jQ , 

Note : 2 can be identified as 1/Weber number. 

Problems 15. Show that the power P, developed by a hydraulic turbine can be correlated 

by the dimensionless parameters P/ N3D5 and N2D2/gh, where  is the density of water and N is 

the rotational speed, D is the runner diameter, h is the head and g is acceleration due to gravity. 

The parameters with dimensions are tabulated below using MLT set. 
 

S.No. Variable Unit Dimension 

1 Power, P W ML2/T 3 

2 Density,  kg/m3
 M/L3

 

3 Speed, N 1/s 1/T 

4 Diameter, D m L 

5 Head, h m L 

6 Gravitational acceleration, g m/s2
 L/T2
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There are six parameters and three dimensions. So three  terms can be found. 

Choosing , D and N as repeating variables, 
 

a b c 
 

0   0   0 ML2 M a  
L

b    1 

Let 1 = P  D N or M L T = 
T 

3 
 

 

L3a T c 

 1 + a = 0, 2 – 3a + b = 0, – 3 – c = 0    a = – 1, c = – 3, b = – 5 

 1 = P/N3 D5     (Power  coefficient) 

Let 2 
= h a Db Nc     or M0L0T0 = L 

M 
a

 

L3a 
L

b   1  

T c 

 a = 0, 1 – 3a + b = 0, c = 0,  b = – 1      2 = h/D. 

 
Let  = g a Db Nc     or   M0L0T0 = 

  L M 
a

 
L

b   1  
 

3 T 2   L3a T c 

 a = 0, 1 – 3a + b = 0, – 2 – c = 0 

 c = – 2, b = – 1    3 = g/DN2 

2 × 3  = gh/D2N2  (Head coefficient) 

 
P 

= f 
rj gh  yj 

N 3 D5 l D2 N 2 Q 
In this expression the first term is called power coefficient and the second one is called 

head coefficient. These are used in model testing of turbo machines. 

Problem 16. The power developed by hydraulic machines is found to depend on the 

head h, flow rate Q, density , speed N, runner diameter D, and acceleration due to gravity, g. 

Obtain suitable dimensionless parameters to correlate experimental results. 

The parameters with dimensions are listed below, adopting MLT set of dimensions. 
 

S.No. Variable Unit Dimension 

1 Power, P W ML2/T 3 

2 Head, h m L 

3 Flow rate, Q m3/s L3/T 

4 Density,  kg/m3
 M/L3

 

5 Speed, N 1/s 1/T 

6 Diameter, D m L 

7 Acceleration due to gravity, g m/s2
 L/T2

 

There are seven variables and three dimensions and hence four  terms can be 

formed. Taking , D and g as repeating variables. 

 a b   c  0   0   0 ML2 M a 

L
b  Lc 

Let 1 = P  D g or M L T = 
T 3

 
L3a 

 
 

T 2c 
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P 

4 

 1 + a = 0, 2 – 3a + b + c = 0, – 3 – 2c = 0 

 a = – 1, c = – 3/2  b = – 7/2 

 1 = P/D7/2 g3/2 

Let 2 
= h a Db gc     or M0L0T0 = L 

M 
a

 

L3a 
L

b Lc 

T 2c 

 a = 0, 1 – 3a + b + c = 0, – 2c = 0 

 a = 0, b = – 1, c = 0    2 = h/D 
 

a b   c 
 

0   0   0 L3 M a 
L

b  Lc 

Let 3 = Q  D g or   M L T = 
T

 
L3a 

 
 

T 2c 

 a = 0, 3 – 3a + b + c = 0, – 1 – 2c = 0 

 a = 0, c = – 1/2, b = – 5/2 

 3 = Q/g1/2 D5/2 

Let 4 = N a Db gc     or   M0L0T0 =
 1

 
T 

M a 

L
b 

L3a 

Lc 

T 2c 

 a = 0, – 3a + b + c = 0, – 1 – 2c = 0    a = 0, c = – 1/2, b = 1/2 

 4 = ND1/2/g1/2 

The coefficients popularly used in model testing are given below. These can be obtained 

from the above four  terms. 

1. Head  coefficient 
gh

 
N 2 D2 

=  
2 

4
2 

hg 
= 

DN 2 D 
=

 

gh 

N 2 D2 

 
2. Flow coefficient 

Q 
=

 

ND3 

3 =
 

4 

Qg 1/ 2 

g1/ 2 D5/ 2 ND1/ 2 
=  

Q 

N D3 

  P   1  Pg3/ 2   
=
 P  

3. Power coefficient  
N 3  D5   

= 
 3   = 

D7/ 2 g3/ 2 N 3 D3/ 2   
 N 3 D5 

4. Specific speed based on Q, for pumps, Nsp 

 

 
( gh)3/4  

(flow coeff )1/ 2
 

(head coeff)3/ 4   
=

 

Q1/ 2 

N 1/ 2 D3/ 2 

N 3/ 2 D3 /2 

=
 

( gh)3/ 4  
 

 

 
( gh)3/ 4

 

 

used) 

(dimensional specific speed N Q /h3/4 is commonly used as mostly water is the fluid 

 
5. Specific speed based on power, for Turbines 

  N P  (power coefficient)1/2 
= 

P1/2 (ND)5/2   N   P  
N

st 
= 

1/ 2 ( gh)5 / 4   
= 

J 
(head coefficient)5/ 4 

 N  

1/ 2 N 3/ 2 D5/ 2 ( gh)5 / 4 = 
1/ 2 ( gh)5 / 4 

7 
jHDimensional Specific speed  

h5 / 4    
is commonly used as water is used in most cases

Jj 

These are the popularly used dimensionally numbers in hydraulic turbo machinery. 

N Q N Q 
= 
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Problem 17. In forced convection in pipes heat transfer coefficient h is found to depend 

on thermal conductivity, viscosity, density, specific heat, flow velocity and the diameter. Obtain 

dimensionless parameters to correlate experimental results. 

The variables with dimensions are listed below using MLT  set of dimensions, where  

is temperature. 
 

S.No. Variable Unit Dimension 

1 Convection coefficient, h W/m2K M/T3  

2 Diameter D m L 

3 Thermal conductivity, k W/mK ML/T3  

4 Density,  kg/m3
 M/L3

 

5 Viscosity,  kg/ms M/LT 

6 Specific heat, c Nm/kgK L2/T2  

7 Flow velocity, u m/s L/T 

Three  terms are possible as there are seven variables and four dimensions. 
Choosing k, ,  and D as repeating variables. 

 
Let  = h ka b c Dd    or M0L0T0 0= 

M
 M a  La M b     M c   

Ld
 

1 T 3 T 3a    a LbT b L3c 

 1 + a + b + c = 0, a – b – 3c + d = 0, – 3 – 3a – b = 0, – 1 – a = 0 

 a = – 1, b = 0, c = 0, d = 1 

 1 = hD/k  (Nusselt number) 

 
Let 2 

= u ka b c Dd     or   M0L0T0 0 =
 L

 
T 

M a La 

T 3a  a 

Mb 

LbT b 

Mc 

L3c 
Ld

 

 a + b + c = 0, 1 + a – b – 3c + d = 0, – 1 – 3a – b = 0, – a = 0, 

 a = 0, b = – 1, c = 1, d = 1 

 2 = uD/ (Reynolds number) 
 

a    b    c d 
 

0   0   0    0 L2 M a La Mb   M c 
d

 

Let 3 = ck   D or   M L T  = 
T 2 T 3a    a LbT b L3c   

L 

 a + b + c = 0, 2 + a – b – 3c + d = 0, – 2 – 3a – b = 0, – 1 – a = 0, 

 a = – 1, b = 1, c = 0, d = 0 

    = c/k    (Prandtl  number), 
hD 

= f  
r
juD 

, 
c yj 

3 k l  k Q 
These are popular dimensionless numbers in convective heat transfer. 

Problem 18. The temperature difference  at a location x at time  in a slab of thickness L 
originally at a temperature difference  

0 with outside is found to depend on the thermal 

diffusivity , thermal conductivity k and convection coefficient h. Using dimensional analysis 

determine the dimensionless parameters to correlate the situation. 
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0 

The influencing parameters with dimensions are listed below, choosing MLT  set. 
 

S.No. Parameter Unit Dimension 

1 Slab thickness, L m L 

2 Location distance, x m L 

3 Initial temperature difference, 0 deg K 0 

4 Temperature difference at time ,  deg K  

5 Time,  s T 

6 Thermal diffusivity,  m2/s L2/T 

7 Thermal conductivity, k W/mK ML/T 3 

8 Convection coefficient, h W/m2 K M/T3 

There are eight variables and four dimensions. Hence four  terms can be 

identified. Choosing 0, L,  and k as repeating variables, 

 a    b    c   d  0   0   0 0 a   b 
L2c

 Md Ld 

Let 1 =  0 L  k or   M L T  =   L 
 

 

T c T 3d d 

 d = 0, b + 2c + d = 0, – c – 3d = 0, 1 + a – d = 0, 

 d = 0, c = 0, b = 0, a = – 1 

 1 = /0 

 
Let 2 = x  a Lb c kd    or M0L0T00 = LaLb

 

L2c 

T c 

Md Ld 

T 3d d 

 a – d = 0, d = 0, 1 + b + 2c + d = 0, – c – 3d = 0, 

 a = 0, b = – 1, c = 0, d = 0 

 2 = x/L 

M 

Let 3 = h 0
a Lb c kd     or M0L0T00 = 

T 3 
 

 1 + d = 0, b + 2c + d = 0,   – 3 – c – 3d = 0, – 1 + a – d = 0, 

 a = 0, b = 1, c = 0, d = – 1 

 3 = hL/k   (Biot number) 

 
a Lb L2c 

T c 

Md Ld 

T 3d d 

 
Let 4 =  0

a Lb c kd     or   M0L0T00 = T a Lb
 

L2c 

T c 

Md Ld 

T 3d d 

 d = 0, b + 2c + d = 0, 1 – c – 3d = 0, a – d = 0, 

 a = 0, b = – 2, c = 1, d = 0 

 4 =  /L2 (Fourier  number) 
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 
   

= f 
rj

 x 
, 

hL 
, 

  yj 
0 l L k L2 Q 

 

 
only. 

There are the popular dimensionless numbers is conduction heat transfer. 

This problem shows that the method is not limited to fluid flow or convection 

 
Problem 19. Convective heat transfer coefficient in free convection over a surface is 

found to be influenced by the density, viscosity, thermal conductivity, coefficient of cubical 

expansion, temperature difference, gravitational acceleration, specific heat, the height of surface 

and the flow velocity. Using dimensional analysis, determine the dimensionless parameters 

that will correlate the phenomenon. 

The variables with dimensions in the MLT  set is tabulated below. 
 

S.No. Variable Unit Dimension 

1 Height, x m L 

2 Temperature difference, T deg K  

3 Coefficient of cubical expansion,  (m3/m3)/deg K 1/ 

4 Acceleration due to gravity, g m/s2
 L/T2

 

5 Density,  kg/m3
 M/L3

 

6 Viscosity,  kg/ms M/LT 

7 Specific heat, c J/kgK L2/T2 

8 Thermal conductivity, k W/mK ML/T3 

9 Convective heat transfer coefficient, h W/m2K M/T3 

There are nine variables and four dimensions. Hence five  terms can be 

identified. , , x and k are chosen as repeating variables. 

 
Let 1 

= T a bxckd     or M0L0T00 =  
M 

a

 

L3a 

Mb 

LbT b 
L

c M d Ld 

T 3d d 

 a + b + d = 0, – 3a – b + c + d = 0, b – 3d = 0, 1 – d = 0, 

 a = 2, b = – 3, c = 2, d = 1 

 1 = T2 x2 k/3
 

 
Let  =  a bxckd     or   M0L0T00 = 

1 M 
a

 M b    

L
c
 M d Ld 

 
 

2  L3a LbT b T 3d d 

 a + b + d = 0, – 3a – b + c + d = 0, – b – 3d = 0, – 1 – d = 0, 

 a = – 2, b = 3, c = – 2, d = – 1 

 2  =   3/2x2k 

Let  = g a bxckd     or M0L0T00 = 
  L M 

a

 Mb   

L
c M d Ld 

 

3 T 2 L3a LbT b T 3d d 
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 a + b + d = 0, 1 – 3a – b + c + d = 0, – 2 – b – 3d = 0, d = 0, 

 a = 2, b = – 2, c = 3, d = 0 

 3  = g 2  x3/2 

 a   b c d  0   0   0 0 L2 M a Mb   

L
c
 M d Ld 

Let 4 = c   x k or   M L T  = 
T 2  L3a LbT b 

 
 

T 3d d 

 a + b + d = 0, 2 – 3a – b + c + d = 0, – 2 – b – 3d = 0, – 1 – d = 0, 

 a = 0, b = 1, c = 0, d = – 1 

 4 = c /k (Prandtl  number) 
 

a   b c d 
 

0   0   0 0 M  M 
a
 Mb  

L
c
 

M d Ld 

Let 5 = h   x k or   M L T  = 
T 

3
 L

3 a
 LbT b 

 
 

T 3dd 

 1 + a + b + d = 0, – 3a – b + c + d = 0, – 3 – b – 3d = 0, – 1 – d = 0, 

 a = 0, b = 0, c = 1, d = – 1 

 5 = hx/k  (Nusselt number) 

As the  terms are too many 1, 2 and 3 are combined as 1 × 2 × 3 to form the group 

known as Grashof number. 

 
T2 x2 k 


 3 

 
g2 x3 

= 
Tgx32 

= 
Tgx3 

6 = 

 hx 

 3 

rc 

 
    

2 x2k 2 2 v2 
Tg2 x3 y 

 
k 

= f j
l k 

, 
 2 jQ 

Note : When there are more than three  parameters the set should be reduced to three by 

judicial combination. 

 
 

  OBJECTIVE QUESTIONS   
 

O Q. 8.1. Fill in the blanks: 

1. The dimension for force in the MLT set is . 

2. The dimension for mass in the FLT set is . 

3. If there are n variables and m dimensions, -theorem states that dimensionless 

parameters can be obtained. 

4. The dimension for thermal conductivity in the MLT  system is and in FLT  

system is . 

5. For an expression to be dimensionally homogeneous, each additive term in the equations should 

have . 

6. One of the methods to check the correctness of an equation is to check for for 

each of the additive terms. 

7. The limitation of dimensional analysis is that the has to be determined by 

experiments. 

8. The approximate number of experiments to evaluate the influence of 5 parameters separately is 

   assuming that 10 experiments are needed for each variable. 
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 Similitude and 

Model Testing 
 
 
 

  5.0 INTRODUCTION  
 

Fluid flow analysis is involved in the design of aircrafts, ships, submarines, turbines, pumps, 

harbours and tall buildings and structures. Fluid flow is influenced by several factors and 

because of this the analysis is more complex. For many practical situations exact soluations 

are not available. The estimates may vary by as much as  20%. Because of this it is not 

possible to rely solely on design calculations and performance predictions. Experimental 

validation of the design is thus found necessary. Consider the case of a hydraulic turbine 

of 50 MW size. It will be a very costly failure if the design performance and the actual 

performance differ. If we can predict its performance before manufacturing the unit it will be 

very useful. Model testing comes to our aid in this situation. Constructing and testing small 

versions of the unit is called model testing. Similarity of features enable the prediction 

of the performance of the full size unit from the test results of the smaller unit. The application 

of dimensional analysis is helpful in planning of the experiments as well as prediction of the 

performance of the larger unit from the test results of the model. 

 
 

  5.1 MODEL AND PROTOTYPE   
 

In the engineering point of view model can be defined as the representation of physical system 

that may be used to predict the behavior of the system in the desired aspect. The system 

whose behavior is to be predicted by the model is called the prototype. The discussion 

in this chapter is about physical models that resemble the prototype but are generally smaller 

in size. These may also operate with different fluids, at different pressures, velocities etc. As 

models are generally smaller than the prototype, these are cheaper to build and test. Model 

testing is also used for evaluating proposed modifications to existing systems. The effect of the 

changes on the performance of the system can be predicted by model testing before attempting 

the modifications. Models should be carefully designed for reliable prediction of the prototype 

performance. 
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Dimensional analysis provides a good basis for laying down the conditions for similarity. The 

PI theorem shows that the performance of any system (prototype) can be described by a 

functional relationship of the form given in equation 9.2.1. 

1p = f (2p , 3p........np
) ...(5.2.1) 

The PI terms include all the parameters influencing the system and are generally ratios 

of forces, lengths, energy etc. If a model is to be similar to the prototype and also function 

similarly as the prototype, then the PI terms for the model should also have the same value as 

that of the prototype or the same functional relationship as the prototype. (eqn. 9.2.1) 

lm = f (2m, 3m........nm) ...(5.2.2) 

For such a condition to be satisfied, the model should be constructed and operated such 

that simultaneously 

lm = lp, 2m = 2p,. ....... nm = np 

Equation 9.2.3 provides the model design conditions. It is also called similarity 

requirements or modelling laws. 

5.2.1 Geometric Similarity 

Some of the PI terms involve the ratio of length parameters. All the similar linear 

dimension of the model and prototype should have the same ratio. This is called geometric 

similarity. The ratio is generally denoted by the scale or scale factor. One tenth scale model 

means that the similar linear dimensions of the model is 1/10 th of that of the prototype. For 

complete similarity all the linear dimensions of the model should bear the same ratio to those 

of the prototype. There are some situations where it is difficult to obtain such similarity. 

Roughness is one such case. In cases like ship, harbour or dams distorted models only are 

possible. In these cases the depth scale is different from length scale. Interpretation of the 

results of the tests on distorted models should be very carefully done. Geometric scale cannot 

be chosen without reference to other parameters. For example the choice of the scale when 

applied to the Reynolds number may dictate a very high velocity which may be difficult to 

achieve at a reasonable cost. 

5.2.2 Dynamic Similarity 

Similitude requires that  terms like Reynolds number, Froude number, Weber number 

etc. be equal for the model and prototype. These numbers are ratios of inertia, viscous gravity 

and surface tension forces. This condition implies that the ratio of forces on fluid elements at 

corresponding points (homologous) in the model and prototype should be the same. This 

requirement is called dynamic similarity. This is a basic requirement in model design. If model 

and prototype are dynamically similar then the performance of the prototype can be predicted 

from the measurements on the model. In some cases it may be difficult to hold simultaneously 

equality of two dimensionless numbers. In such situations, the parameter having a larger 

influence on the performance may have to be chosen. This happens for example in the case of 

model tasting of ships. Both Reynolds number and Froude number should be simultaneously 

5.2  CONDITIONS FOR SIMILARITY BETWEEN MODELS AND 

PROTOTYPE 
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held equal between the model and prototype. This is not possible as this would require either 

fluids with a very large difference in their viscosities or the use of very large velocities with the 

model. This is illustrated in problem 9.14. 

5.2.3 Kinematic Similarity 

When both geometric and dynamic similarities exist, then velocity ratios and acceleration 

ratios will be the same throughout the flow field. This will mean that the streamline patterns 

will be the same in both cases of model and prototype. This is called kinematic similarly. To 

achieve complete similarity between model and prototype all the three similarities 

- geometric, dynamic and kinematic should be maintained. 

 
 

  5.3 TYPES OF MODEL STUDIES   
 

Model testing can be broadly classified on the basis of the general nature of flow into four 

types. These are 

(1) Flow through closed conduits 

(2) Flow around immersed bodies 

(3) Flow with free surface and 

(4) Flow through turbomachinery 

5.3.1 Flow through Closed Conduits 

Flow through pipes, valves, fittings and measuring devices are dealt under this category. 

The conduits are generally circular, but there may be changes along the flow direction. As the 

wall shear is an important force, Reynolds number is the most important parameter. The 

pressure drop along the flow is more often the required parameter to be evaluated. 

Compressibility effect is negligible at low mach numbers. (M<0.3). 

From dimensional analysis the pressure drop can be established as 
F uL         D I 

P/ u2  = f jH   , 
L 

, 
L 
JK ...(5.3.1) 

The geometric scale is given by the ratio, scale = Lm/Lp. 

This requires 
Dm 

Dp 

= 
m 

 p 

= 
Lm 

Lp 
= . 

Reynolds number similarity leads to the condition for velocity ratio as 

umm Lm 
= 

up p Lp 
 

um 
= 

 m   p Lp  
 

 m  p 
 

up  p m   Lm 

If the fluid used for the model and prototype are the same, then 
um =

 Lp   
or u   = u /  

up Lm 
m p 

As  is less than one, the velocity to be used with the model has to be higher compared to the 
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l 
 

prototype. Otherwise a different fluid with higher viscosity should be chosen to satisfy the 

requirements. 

The pressure drop in the prototype is calculated as in equation (9.3.3) 

 p  j up 7 2
 

From equality of, P  u2, PP = 
m 

jH um 
jj Pm 

As Pm is measured, using the model, the pressure drop in the prototype can be predicted. 

When Reynolds numbers are large the inertia forces are predominant and viscous forces 

will be small in comparison. In such cases, the Reynolds number similarity becomes 

unimportant. However, the model should be tested at various Reynolds numbers to determine 

the range at which its effect on pressure drop becomes negligible. After this is established the 

model test results can be applied without regard to Reynolds number similarity, in this range. 

Another condition is the onset of cavitation at some locations in the flow, particularly in 

testing components where at some points the local velocity may become high and pressure 

may drop to a level where cavitation may set in. Unless cavitation effects are the aim of the 

study, such condition should be avoided. In case cavitation effects are to be studied, then 

similarity of cavitation number should be established. i.e. (pr – pv)/(u2/2). Where pr is the 

reference pressure and pv is the vapour pressure at that temperature. 

5.3.2 Flow Around Immersed Bodies 

Aircraft, Submarine, cars and trucks and recently buildings are examples for this type 

of study. In the sports area golf and tennis balls are examples for this type of study. Models are 

usually tested in wind tunnels. As viscous forces over the surface and inertia forces on fluid 

elements are involved in this case also, Reynolds number of the model and prototype should be 

equal. Gravity and surface tension forces are not involved in this case and hence Froude and 

Weber numbers need not be considered. Drag coefficient, defined by [Drag force /(1/2) u2 l2)] 

is the desired quantity to be predicted. Generally the following relationship holds in this case. 

C   = 
  D  

= f  
rj l1 , 

 
, 

ul j
y  (5.3.4) 

D (1 / 2)u2l2 l l l  Q 
where l is a characteristic length of the system and l1 represents the other length parameter 

affecting the flow and  is the roughness of the surface. 

When the flow speed increases beyond Mach number 0.3 compressibility effect on 

similarity should be considered. Using the similitude, measured values of drag on model is 

used to estimate the drag on the prototype. 

  p  j  up   lp 7 2
 

Dp = Dm 

m 
jH um m 

j 

From Reynolds number similitude 
 

u = 
 m 

 p lp 
u = 

vm   
lp 

u (5.3.6) 

m  p m lm 
p
 vp   lm 

p
 

 

 j 

binils.com

binils - Anna University App on Play Store

                    Free PDF Study Materials
binils.com - Anna University, Polytechnic & Schools



137 

 

 

When same fluid is used for both prototype and model 

um = (lp/lm) up 

The model velocity should be higher by the geometric scale. 

 

...(5.3.7) 

If the prototype is to operate at 100 kmph and if the scale is 1:10, then the model should 

operate at 1000 kmph, which will mean a high Mach number. The model will be influenced by 

compressibility effect due to the operation at high Mach numbers. The prototype however will 

be operating at low Mach numbers where compressibility effect is negligible. Hence the 

performance prediction will be in error. 

This may be overcome by using different fluids say water in place of air. Using equation 

9.3.6, as kinematic viscosity of air is about 10 times that of water, the velocity will now be at a 

reasonable level. Another method is to pressurise the air in the wind tunnel, thus increasing 

the density, and reducing the required velocity of the model. 

Where expense is of no consideration due to the requirement of utmost reliability as in 

space applications and development of new aircraft, full scale models are also used. 

In some cases at higher ranges, the Reynolds number is found to have little influence on 

drag. Strict Reynolds similarity need not be used in such situations. The variation of drag due 

to variation in Reynolds number for cylinder and sphere is shown as plotted in Fig. 9.3.1. It 

may be seen that above Re = 104 the curve is flat. If the operation of the prototype will be at 

such a range, then Reynolds number equality will not be insisted for model testing. 
 

10 
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Figure 5.3.1 Variation of drag with Reynolds number for flow over cylinder 

Another situation arises in testing of models of high speed aircraft. In this case the use 

of Mach number similitude requires equal velocities while the Reynolds number similarity 

requires increased velocity for the model as per geometric scale. In such cases distorted model 

is used to predict prototype performance. 

5.3.3 Flow with Free Surface 

Flow in canals, rivers as well as flow around ships come under this category. In these 

cases gravity and inertia forces are found to be governing the situation and hence Froude 

number becomes the main similarity parameter. 

CD 
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glm glp 

lm 

lp 

In some cases Weber number as well as Reynolds number may also influence the design 

of the model. 

Considering Froude number, the velocity of the model is calculated as below. 

  um  
=   

up 

 
= u 

 um = up 
p 

In case Reynolds number similarity has to be also considered, substituting this value of 

velocity ratio, the ratio of kinematic viscosities is given as 

vm 

= (scale)3/2
 

p 

As these situations involve use of water in both model and prototype, it is impossible to 

satisfy the condition of equations 9.3.9 and 9.3.10 simultaneously. In such a case distorted 

model may have to be selected. 

If surface tension also influences the flow, it is still more difficult to choose a fully similar 

model. 

In many practical applications in this type of situation the influence of Weber and 

Reynolds number is rather small. Hence generally models are designed on the basis of Froude 

number similarity. 

A special situation arises in the case of ships. The total drag on the ship as it moves is 

made up of two components: (1) The viscous shearing stress along the hull, (2) Pressure induced 

drag due to wave motion and influenced by the shape of the hull. 

As it is not possible to build and operate a model satisfying simultaneously the Reynolds 

number similarity and Froude number similarity ingenious methods have to be adopted to 

calculate the total drag. The total drag on the model is first measured by experiment. The 

shear drag is analytically determined and the pressure drag on the model is calculated by 

subtracting this value. The drag on the prototype is determined using Froude number similarity. 

The calculated value of viscous drag is then added to obtain the total drag. 

In case of design of river model, if the same vertical and horizontal scales are used, the 

depth will be low for the model and surface tension effects should be considered. But the use of 

distorted model, (vertical scaling smaller than horizontal scaling) overcomes this problem. 

5.3.4 Models for Turbomachinery 

Pumps as well as turbines are included in the general term turbomachines. Pumps are 

power absorbing machines which increase the head of the fluid passing though them. Turbines 

are power generating machines which reduce the head of the fluid passing through them. 

The operating variables of the machines are the flow rate Q, the power P and the speed 

N. The fluid properties are the density and viscosity. The machine parameters are the diameter 

and a characteristic length and the roughness of the flow surface. Power, head and efficiency 

can be expressed as functions of  terms 

scale 

v 
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N Q 

J l Power = f1j , 
 

, Q ND2 7 
3 , j (5.3.11) 

H D D N D  J 
The term  / D is not important due to the various sharp corners in the machine. The 

dimensionless term involving power is defined as power coefficient, defined as Cp = P/ N3 D3. 

The head coefficient is defined as Ch = gh/N2 D2 . The term Q/N D3 is called flow coefficient. If 

two similar machines are operated with the same flow coefficient, the power and head coefficients 

will also be equal for the machines. This will then lead to the same efficiency. Combining flow 

and head coefficients in the case of pumps will give the dimensionless specific speed of the 

pump. 

 

N
sp 

= 
( gh)3/4  

Popularly used dimensional specific speed for pumps is defined as 

 
Nsp = 

h3/ 4   

In the case of turbines, combining power and flow coefficients, the specific speed is 

obtained as 

 

Nst =  
1/ 2 ( gh)5 / 4 

Popularly used dimensional speed for turbines is 
 

Nst = 
h5 / 4   

In model testing at a particular speed, the flow rate at various delivery heads can be 

measured. This can be used to predict the performance of the pump at other speeds using the 

various coefficients defined. The procedure for turbines will also be similar. The model can be 

run at a constant speed when the head is varied, the power and flow rate can be measured. The 

performance of the prototype can be predicted from the results of the tests on the geometrically 

similar model. 

 
 

  5.4 NONDIMENSIONALISING GOVERNING DIFFERENTIAL EQUATIONS   
 

When differential equations describing the phenomenon is not available, the method of 

dimensional analysis is used to obtain similarity conditions. When differential equations 

describing the system are available, similarity parameters can be deduced by non 

dimensionalising the equations. 

Consider the continuity and x directional momentum equations for two dimensional 

flow,  
u 

+ 
u 

= 0
 

x y 

N P 

N  Q 

N   P 
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+ 

 
Jj u 

+ u 
u 

+ v 
u7j = − 

P 
+  

J 2u  
+

 2u 7 

H t x y J x jH  x2  y2 
jJ 

 

The various quantities can be made dimensionless by dividing by reference quantities, 

as given below 

u* = 
u 

, v* = 
v 

, P* = 
p 

, x* = 
x 

, y* = 
y 

, t* = 
t
 

 

U 

u U 
 
u* 

 

V P0 

2u 
= 

U 

   

L L  

2u* 

Then 
x 

=
 L x* 

,
 x2 

 
 

L2 
x*

2

 

Similar method is used in the case of other terms. 

Substituting, the momentum equation reduces to the form 

r L y u* * u* * u* r P0 y P * r    y J 2 u* 2 u* 7 
jlU jQ t*  

+ u
 t

*  
+ v  

t* 
= − jlU 2 

jQ x* 
+ jlUL 

jQ Hj x*
2 

y*
2    j

J 
It may be noted that the non dimensionalised equation is similar to the general equation 

except for the terms in square brackets. These are the similarity parameters thus identified. 

L  
,  

P 

U U 2 
, 

 

UL 

In case gravity force is added, gL/U2 will be identified. These are forms of Strouhal, 

Euler, Reynolds and Froude numbers. As the equation describes the general unsteady flow all 

the numbers are involved. If other forms of forces like surface tension is added. Weber number 

can be identified. If equations for compressible flow is used, Mach number can be obtained by 

a similar method. 

 
 

  5.5 CONCLUSION   
 

In all the problems in this chapter on model testing the  terms identified in chapter 8 are 

used. Reference may be made to the problems in chapter 8. The discussions in this chapter is 

limited to basics. In actual model making and testing as well as interpretation of results many 

other finer details have to be considered for obtaining accurate predictions about the 

performance of the prototype. 

 
 

  SOLVED PROBLEMS   
 

Problem 5.1 To study the pressure drop in flow of water through a pipe, a model of scale 

1/10 is used. Determine the ratio of pressure drops between model and prototype if water is 

used in the model. In case air is used determine the ratio of pressure drops. 

Case (i) Water flow in both model and prototype. 

Reynolds number similarity is to be maintained. 
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 H  J 

um dmm   updp p  
um 

= 
 m 


 dp 

 
 p

 

 m  p 
 

up  p dm m 

As viscosity and density values are the same, 

um 
= 

dp 

up dm 

 
= 10, 

The pressure drop is obtained using pressure coefficient 

[P/(/2) u2]m = [P/(1/2) u2]p 

 
pm = 

mum
2 

, As  =  and u /u = 10, P /P 
 
= 102 = 100. 

 

pp pup
2

 
m p m    p m P 

Case (ii) If air is used in the model, then 

 
u  d  p  J  d    7 2

 

   m 
=

    m 


    p 


    p 
,
   m =   m j m 

    p 


    p j 
up  p dm m pp  p H  p dm m J 

 J     7 2
 

= 100
    p j m j 

m p 
 

From data tables at 200 C, air = 1.205 kg/m3, air = 18.14 × 10–6 kg/ms, 

w = 1000 kg/m3, w = 1.006  10–3 kg/ms 

P    1000 J 18.14  10−6 7 2
 

 m = 100 ×  j j = 26.98 

Pp 

 
 

1.205 H 1.006  10−3 J 
This illustrates that it may be necessary to use a different fluid in the model as compared 

to the prototype. 

Problem 5.2 To determine the pressure drop in a square pipe of 1 m side for air flow, a 

square pipe of 50 mm side was used with water flowing at 3.6 m/s. The pressure drop over a 

length of 3 m was measured as 940 mm water column. Determine the corresponding flow 

velocity of air in the larger duct and also the pressure drop over 90 m length. Kinematic 

viscosity of air = 14.58  10–6 m2/s. Density = 1.23 kg/m3. Kinematic viscosity of water = 1.18 × 

10–6 m2/s 

For pipe flow, Reynolds number analogy should be used. Also the drag coefficients will 

be equal. 

For square section hydraulic mean diameter = 4 A/P = 4a2/4a = a (side itself) 

Re = uD/v = 3.6 × 0.05/1.18 × 10–6 = 152542 

For air 152542 =
 1  u 

 

14.58  10−6 

 
 u = 2.224 m/s 

Drag coefficient F/u2 should be the same for both pipes. 

 Fair 
airuair2 

 

Fw wuw
2
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= j 

j j 
p m 

The pressure drop equals the shear force over the area. For square section, area = a2, 

perimeter = 4a 

 P = 
4 FL 

, P 
= 

4 Fair Lair 
, P

 4 Fw Lw 

a air aair 
w = aw

 

Dividing and substituting for Fair/Fw 

P  L a F L a  J u 7 2
 

air   
=

    air     w       air   
=

    air     w    air j air j 
Pw Lw aair Fw Lw aair w H uw J 

90  0.052  1.23 J 2.2247 2
 

 
1  3  1000 H 3.6 

jJ = 3.521 × 10 

Pair = 940 × 3.521 × 10–5 = 0.033 mm of water column 

Problem 5.3 Water at 15°C flowing in a 20 mm pipe becomes turbulent at a velocity of 

0.114 m/s. What will be the critical velocity of air at 100C in a similar pipe of 40 mm 

diameter. Density of air = 1.23kg/m3. Dynamic viscosity of air = 17.7 × 10–6 kg/ms. 

Density of water = 1000 kg/m3. Dynamic viscosity of water = 1.12 × 10–3 kg/ms. 

As roughness etc are similar, for pipe flow, reynolds number similarity is to be used. 

114  0.02  1000 
= 

uair  0.04  1.23 ,      u
air 

= 0.732 m/s 
 

112  10−3 127  10−6 

Problem 5.4 A model of 1/8 geometric scale of a valve is to be designed. The diameter 

of the prototype is 64 cm and it should control flow rates upto 1m3/s. Determine the flow 

required for model testing. The valve is to be used with brine in a cooling system at –100C. 

The kinematic viscosity of brine at the saturated condition is 6.956 × 10–6 m2/s. For model 

testing water at 300C is used. Kinematic viscosity is 0.8315 × 10–6 m2/s 

This is a situation of flow through closed conduits. Reynolds number similarity is required. 

u d updp um dp vm Dp
2

 

   m   m = ,  
 

u 
= 

d  
v 

, Qp = up 

vm vp  
0.642 

p m p 4 

1 =  × 
4 

up    up = 3.1085 m/s 

 um = 3.1085 × 8 × 0.8315 × 10–6/6.956 × 10–6 = 2.9726 m/s, 

dm = dp/8 = 0.64/8 = 0.08 m 

Q = 
dm

2 

u   = 
 

× 0.082 × 2.9726 = 0.0149 m3/s 

m 4 m 4 

If the valve is to be used with water, then the model velocity has to be 8 × 3.1085 m/s. 

i.e. 24.87 m/s, which is rather high. 

The pressure drop can also be predicted from the model measurements using 

J  p 7 
H u2 J 

J  p 7 
= jH u2 

jJ 

–5 
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p   p p 

Problem 5.5 To predict the drag on an aircraft at a flight speed of 150 m/s, where the 

condition of air is such that the local speed of sound is 310 m/s, a pressurised low temperature 

tunnel is used. Density, viscosity and local sonic velocity at tunnel condition are 7.5 kg/m3, 

1.22 × 10–5 Ns/m2 and 290 m/s. Determine the flow velocity and the scale of the model. 

Assume full dynamic similarity should be maintained. Density and viscosity at the operating 

conditions are 1.2 kg/m3 and 1.8 × 10–5 Ns/m2. 

In addition to Reynolds number similarity compressibility effect should be considered. 

For Mach number similarity, 

 
M = M , 

up 
= 

um  
 

 u   = 150 × 290/310 = 140.32 m/s 
p m    

cp cm 
m 

For Reynolds number similarity 

umm Lm 
= 

up p Lp 

m  p 

Lm  
=

 up 
 

 p 
 

 m 
 = 

   150   
 

1.2 


 1.8  10−5 
 

= 0.252 

Lp um m  p 140.32 7.5  
 

1.22  10−5 

or about 1/4th scale. When both Match number similarity and Reynolds number similarity 

should be maintained, generally the size of the model has to be on the higher side Drag force 

similarity is given by (F/u2L2)m = (F/u2L2)p 

Fm mum
2 Lm

2 
7.5  140.322 

Fp 

= 
 u 2 L 2 

= 
1.2 


 1502 

× (0.252)2 = 0.347 

As the model size is larger, the force ratio is high. 

Problem 5.6 An aircraft fuselage has been designed for speeds of 380 kmph. To estimate 

power requirements the drag is to be determined. A model of 1/10 size is decided on. In order to 

reduce the effect of compressibility, the model is proposed to be tested at the same speed in a 

pressurized tunnel. Estimate the pressure required. If the drag on the model was measured 

as 100 N, predict the drag on the prototype. 

This is fully immersed flow. Hence Reynolds number similarity is required. 

um Lmm 

 m 
= 

up Lp p 

 p 

A viscosity is not affected by pressure and as velocities are equal, 

Lm m = Lp p    m/m = Lp/Lm = 10 

At constant temperature, pressure ratio will be the same as density ratio. 

 P =
 Lp   

P = 10 × P 
m Lm 

p p 

or 10 times the operating pressure of the aircraft. 
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g0 kRT 1  1.4  287  272 

The  parameter for drag force, D, gives 

  Dm 
=

 Dp 
as u = u 

(1 / 2)mum
2 Lm

2 (1 / 2) pup
2 
Lp

2 m p
 

 Dp = Dm (pLp
2/mLm

2) = 100 × (1/10) 102 = 1000 or 1 kN 

Problem 5.7 The performance of an aeroplane to fly at 2400 m height at a speed of 290 

kmph is to be evaluated by a 1/8 scale model tested in a pressurised wind tunnel maintaining 

similarity. The conditions at the flight altitude are temperature = – 10C, pressure = 75 kN/m2. 

 = 17.1 × 10–6 kg/ms. The test conditions are 2150 kN/m2, and 150C. 

 = 18.1 × 10–6 kg/ms. The drag resistance on the model measured at 18 m/s and 27 m/s. 

are 4.7N and 9.6N. Determine the drag on the prototype. 

At the given flight conditions, Velocity of sound is 

C = = = 330 m/s = 1190 kmph 

Mach number = 290/1190 = 0.24 < 0.3 

Hence Reynolds number similarity only need be considered. 

Density at test conditions = 2150 × 103/(287 × 288) = 26.01 kg/m3 

Density at flight conditions = 75 × 103/(287 × 272) = 0.961 kg/m3 

Equating Reynolds numbers, assuming length L, 

Velocity at flight condition = 290000/3600 = 80.56 m/s 

80.56  L  0.961 
= u × 

L 
 

26.01 
 

   u = 25.195 m/s 
 

17.1  10−6 8 18.1  10−6 

This is also low subsonic. Drag can be obtained using drag coefficient F/ Au2
 

F F Fp  p J up 7 2 
Ap 

  m 
=

 p  


 = × j j × 

m Amum
2

 
 p Apup

2 Fm 

26.01 J  80.56 7 2
 

m H um J Am 

=  
0.961 

 jH 25.195 
jJ × 82 = 24.165 

By interpolation using equality of F/u2, drag at 25.195 m/s model speed is obtained as 

8.78 N.    Drag on prototype = 8.78 × 24.165 = 212 N 

Problem 5.8 In a test in a wind tunnel on 1:16 scale model of a bus, at an air speed of 

35m/s, the drag on the model was measured as 10.7N, If the width and frontal area of the 

prototype was 2.44 m and 7.8 m2, estimate the aerodynamic drag force on the bus at 100 

kmph. Conditions of air in the wind tunnel are the same as at the operating conditions of the 

bus. Assume that coefficient of drag remains constant above Reynolds number 105. 

v = 1.006 ×10–6 m2/s. Also determine the power required. 

The width of the model = 2.44/16 = 0.1525 m. 

Re =
 0.1525  35 

= 3.5 × 105, This condition is above 105. 
15.06  10−6 
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w 

1 

Area of the model = 7.8/162
 

F 

 

10.7  2  162 

CD = 
(1 / 2)u2 A 

= 
1.205  352  7.8 

= 0.4758
 

Drag force on the prototype at 100 kmph. ( 27.78 m/s) 

0.4758 =
 F 

 
(1 / 2)1.205  7.8  (27.78)2 

 

   F = 1725 N   or 1.725 kN 

Power required = 1725 × 27.78 W = 47927 W or 47.927 kW. 

Problem 5.9 A water tunnel operates with a velocity of 3m/s at the test section and 

power required was 3.75 kW. If the tunnel is to operate with air, determine for similitude the 

flow velocity and the power required. 

a = 1.25 kg/m3, va = 14.8 × 10–6 m2/s, vw = 1.14 × 10–6 m2/s 

In this case Reynolds number similarity is to be maintained. The length dimension is 

the same. 

ua = 
uw 

va 

 
 Velocity of air, ua = 

vw 

uw 
v = 

vw 
a 

 
3  14.8  10−6 

1.14  10−6 

 

 
= 38.95 m/s 

Power can be determined from drag coefficient, by multiplying and dividing by u as 

F × u power 
F  u 

= 
P 

As A is the same, 
 

Au2u Au3 

air  uair 
3

 

 
 1.28  J 38.957 3

 

P
air 

= P
w 

w u  
3    

= 3.75 ×  
1000  

× jH 3  
jJ = 10.5 kW 

Problem 5.10 The performance of a torpedo, 1 m diameter and 4 m long is to be predicted 

for speeds of 10 m/s. If a scale model of 1/25 size is used to predict the performance using a 

water tunnel, determine the flow velocity required. The ratio of density between sea water 

and fresh water is 1.02 and the viscosity ratio is 1.05. Also determine the value of Reynolds 

number, if the density of water was 1000 kg/m3 and kinematic viscosity was 0.832 × 10–6 m2/s. 

This is a fully submerged flow. Hence Reynolds number similarity should be maintained 

in the test.   i.e. 
Dpup p 

= 
Dmumm , 

 p  m 

 
u   = u 

 

×
 Dp 

 
 p 

 
 

 m 

 

 
= 10 × 25 × 1.02/1.05 = 242.85 m/s 

m p Dm m  p 

This is a very high speed generally not achievable in water tunnel. 

Re = Dm um m/m = 
25 

 
242.85  1000 

1000  0.832  10−6 
= 11.67 × 106

 

For values of Re > 105 the coefficient of drag remains constant. Hence strict Reynolds 

number similarity need not be insisted on beyond such value. 

 
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up 

lp 

v 

In this case for example, velocity around 2.5 m/s may be used for the test which 
corresponds to Re = 1.2 × 105. 

Problem 5.11 A 1/6 scale model of a submarine is tested in a wind tunnel using air of 
density 28.5 kg/m3 and viscosity 18.39 × 10 –6 kg/ms at a speed of 36.6 m/s. Calculate the 
corresponding speed and drag of the prototype when submerged in sea water with density 
1025 kg/m3 and viscosity 1.637 × 10–3 kg/ms if the model resistance was 67 N. 

Reynolds number similarity should be considered in this case. Let L be the length of the 
prototype. 

 36.6  L  28.5 
= 

up  L  1025  u = 15.2 m/s 

6  18.39  10−6 

Using drag coefficient 

1.637  10−3 
p

 

  Fm =
 Fp  

mum
2 
Lm

2 
 pup

2 
Lp

2
 

  p  J  up 7 2  J  Lp 7 2
 

 
1025 J 15.27 2

 

 Fp = Fm × 
m 

jH um 
jJ jH Lm 

jJ = 67 × 
28.5  

jH 36.6
jJ (6)2 = 14961 N 

Problem 5.12 A sonar transducer in the shape of a sphere of 200 mm diameter is used 
in a boat to be towed at 2.6 m/s in water at 20oC. To determine the drag on the transducer a 
model of 100 mm diameter is tested in a wind tunnel, the air being at 20o C. The drag force is 
measured as 15 N. Determine the speed of air for the test. Estimate the drag on the prototype. 

As it is fully immersed type of flow, Reynolds number similarity should be maintained. 

The density and kinematic viscosity values are : 

air = 1.205 kg/m3,   vair = 15.06 × 10–6 m2/s 

w = 1000 kg/m3, vw = 1.006 × 10–6   m2/s 

um Dm 
= 

up Dp 

vm vp 

 Dp vm 
 

200 
 

15.06  10−6 

um = up 

m p 

= 2.6 × 
100

 
1.006  10−6 

= 77.85 m/s 

Mach number will be about 0.25. Hence compressibility effect will be negligible. 

The coefficient of drag should be same for this condition. As A  D2
 

  Fm =
 Fp ,

 

mum
2 

Dm
2 

 pup
2 

Dp
2

 

1000 r  2.6  200  y2
 

 Fp = 15 ×  
1.205 

 jl77.85  100 jQ = 55.54 N 

Problem 5.13 In order to predict the flow conditions after the turbine outlet (tail race) 
of a hydroelectric plant delivering 2400 m3/s, a model of 1/75 scale is proposed. Determine 
the flow rate required. 

This is a free surface flow. Hence Froude number similarity is to be maintained. 

 
Frm 

 
= Frp or 

um   
= or 

um 
= 

up lm 

lm 

lp 

 

D 
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gLm gLp 

H L  J 

H L  J H u J 

As flow (Q = Au) depends on area which varies as L2
 

 
Q A u J L   7 2.5  

    m 
=

    m m 

Qp Apup 
= 

 

Jj  1 7j
2.5 

 

= j m j p 

 
 3 

 Qm  = 2400 H 75J 
= 0.04927 m /s 

Problem 5.14 The total drag on a ship having a wetted hull area of 2500 m2 is to be 

estimated. The ship is to travel at a speed of 12 m/s. A model 1/40 scale when tested at 

corresponding speed gave a total resistance of 32 N. From other tests the frictional resistance to 

the model was found to follow the law Fsm = 3.7 u1.95 N/m2 of wetted area. For the prototype the 

law is estimated to follow Fsp = 2.9 u1.8 N/m2 of wetted area Determine the expected total 

resistance. 

The total resistance to ships movement is made up of (i) wave resistance and (ii) frictional 

drag. For wave resistance study Froude number similarity should be maintained. For frictional 

resistance Reynolds number similarity should be maintained. But it is not possible to maintain 

these similarities simultaneously. In the case of ships the wave resistance is more difficult to 

predict. Hence Froude number similarity is used to estimate wave resistance. Frictional drag 

is estimated by separate tests. From the Froude number similarity, 
 

um = up = 12/400.5 = 1.897 m/s 
 

The skin friction drag for the model is calculated using this velocity. 

Fsm = 3.7 × 1.8971.95 × Am as   Am = 2500/402
 

= 3.7 × 1.8971.95 × 2500/402 = 20.16 N 

Wave drag on the model = 32 – 20.16 = 11.84 N 

The wave drag is calculated using (F/ u2L2)m = (F/ u2L2)p 

Noting that sea water is denser with  = 1025 kg/m3
 

  p J L 7 2  J u   7 2
  1025 2  J   12  7 2

 

F
wp 

= F
wm 

m 
j p j 

m 
j p j 

m 

= 11.84 × 
1000 

(40) jH 1.897
jJ = 774.38 × 103 N 

Skin friction drag for the prototype 

Fsp = 2.9 up
1.8 × Ap = 2.9 × 121.8 × 2500 = 635.13 × 103 N 

 Total resistance = 1.41 × 106 N or 1.41 MN 

Problem 5.15 A scale model of a ship of 1/30 size is to be towed through water. The 

ship is 135 m long. For similarity determine the speed with which the model should be 

towed. The ship is to travel at 30 kmph. 

Froude number similarity is to be maintained. 

   um    
= 

up 
 

   um 

 
= up 

= 
30  1000 

 
   1   

= 1.52 m/s 
3600 

Lm
2 

Lp
2 

 Lm 

Lp 

lm 

lp 

 Lm 

Lp 30 

 

 
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Problem 5.16 The wave resistance of a ship when travelling at 12.5 m/s is estimated by 

test on 1/40 scale model. The resistance measured in fresh water was 16 N. Determine the 

speed of the model and the wave resistance of the prototype in sea water. The density of 

sea water = 1025 kg/m3. 

Froude number similarity is to be maintained. 

 

 um = up = 12.5 = 1.976 m/s 

The wave resistance is found to vary as given below. 

  Fm =
 Fp  

mum
2 
Lm

2 
 pup

2 
Lp

2
 

  p  J  up 7 2  J  Lp 7 2
 

 
1025 J  12.5 7 2

 

 Fp = Fm × 
m

 jH um 
jJ jH Lm 

jJ = 16 ×  
1000 

jH 1.976
jJ (40)2

 

= 1049.6 × 103 N      or      1050 kN 

Problem 5.17 Vortex shedding at the rear of a structure of a given section can create 

harmful periodic vibration. To predict the shedding frequency, a smaller model is to be tested 

in a water tunnel. The air speed is expected to be about 65 kmph. If the geometric scale is 1:6 

and if the water temperature is 20o C determine the speed to be used in the tunnel. Consider air 

temperature as 40o C. If the shedding frequency of the model was 60 Hz determine the shedding 

frequency of the prototype. The dimension of the structure are diameter = 0.12 m, height 

= 0.36 m. 

The frequency of vortex shedding can be related by the equation 

 = F (d, h, u, , ) 

Dimensional analysis leads to the  terms relation, (refer Chapter 8) 
D 

= f Jj D 
, 

uD 7j 
u H H  J 

The model dimension can be determined as 

Dm = 1/6 Dp = 0.12/0.6 = 0.02 m, Hm = 1/6 Hp = 0.36/0.6 = 0.06 m 

 
D 

= 
0.02 

= 
1 

, Reynolds similarity requires 
   

H 0.06 3 

mum Dm 
= 

 pup Dp    u = u  p  m   Dp  

 m  p 

 
 

m p m  p   Dm 

The property values of air and water at the given temperatures are, 

p = 1.128 kg/m3 , p = 19.12 × 10–6 kg/ms 

m = 1000 kg/m3, p = 1.006 × 10–6 kg/ms 

up = 65 × 1000/3600 = 18.056 m/s 

1.128 
 

1.006  10−3 6 

 um = 18.056 ×  
 

1000 19.12  10−6 1 
= 6.43 m/s 

Lm 

Lp 
1 

40 
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u L 

d  u 

p 

Vortex shedding frequency is determined. Using the third  parameter, 

m Dm 
= 

 p Dp 
 

um up 

 up Dp  
  =  

 
= 

18.06 
 

1 
× 60 = 28.08 Hz. 

p um Dm 
m 6.43 6 

The drag also can be predicted from the model. The drag for unit length can be expressed 

in the dimensionless from as D/du2 where D is the drag and d is the diameter. Thus 

  Dp 
=
 Dm 

 
    D = D . 

dp  p up
2 

dp pup
2

 dmmum
2

 

p m . . 
2

 

m m m 

Problem 5.18 In order to determine the drag on supporting columns (of a bridge) of 0.3 

m diameter, due to water flowing at a speed of 14.5 km/hr, a column of 0.25 m diameter was 

tested with air flow. The resistance was measured as 227 N/m, under similar conditions of 

flow. Determine the force on the bridge column per m length. vair = 1.48 × 10–5 m2/s. vw = 

1.31 × 10–6 m2/s,a= 1.23 kg/m3
 

Similarity requires equal Reynolds numbers 

Velocity of flow of water = 14.5 × 1000/3600 = 4.028 m/s 

4.028  0.3 
=

 ua  0.25   

1.31  10−6 1.48  10−5 

   Velocity of air, ua = 54.61 m/s 

The force can be obtained by the dimensional parameter (drag coefficient) 

F/Au2  , here A = 1 × D 

 The parameter in this case for force is 

F 

Du2 

Fw 

w Dwuw
2
 

= 
Fa 

or 
a Daua

2
 

J  7 J D 7 J u  7 2
  1000   0.3  J 4.0287 2

 

Fw = Fa j w j j w j j w j = 227 × 1.23 

 
0.25 

 jH 54.61
jJ = 1205 N 

H a J H Da J H ua J 
Problem 5.19 To ascertain the flow characteristics of the spillway of a dam, 1/20 

geometric scale model is to be used. The spillway is 40 m long and carries 300 m3/s at flood 

condition. Determine the flow rate required to test the model. Also determine the time 

scale for the model. Viscous and surface tension effects may be neglected. 

This situation is open surface flow. Froude number similarity is required. 

u u u J L   7 0.5 

  m 
=

 p  or       m = j m j 
( gLm )

0.5 
( gLp )

0.5
 up H Lp J  

Qm u L2 
As Q = uA = uL2, Qm = um L 2, Qp = u L 2, =   m   m 

 
 

m p   p Qp p 
2 
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= 300 j j 

 N 

1170 2 

 u L 2 J L   7 0.5  J L   7 2 J L   7 2.5  

 Q = Q    m   m  = Q j m j j m j = Q j m j 
m p up

 
Lp

2 p H Lp J H Lp J p H Lp J 
J   1 7 2.5 

 

H 20J 
 
= 0.168 m3/s 

Time scale can be determined from velocities, as velocity = length/time. 

u L    tp  t L u  L  J L 7 0.5 J L   7 0.5 J 1 7 0.5 
m = m 

 
m = m p 

= 
m j p j = j m j = j j = 0.2236 

up Lp tm tp Lp um Lp H Lm J H Lp J H 20J 
Problem 5.20 A fan when tested at ground level with air density of 1.3 kg/m 3, running 

at 990 rpm was found to deliver 1.41 m3/s at a pressure of 141 N/m2. This is to work at a place 

where the air density is 0.92 kg/m3, the speed being 1400 rpm. 

Determine the volume delivered and the pressure rise. 

For similarity condition the flow coefficient Q/ND3 should be equal. 

As D is the same, 

 Q1 
=

 Q2  or Q = Q 
N2 = 1.41 × 

1400
 

  

 
= 2 m3/s 

N1 N2 
2 1 N1

 990 

The head coefficient H/N2D2 is used to determine the pressure rise. 

 
2 N2

2 0.92 J 14007 2  
2 

P2 = P1 2 

1  1 

= 141 × 
1.3  

 jH 990 
jJ = 199.55 N/m 

Problem 5.21 A centrifugal pump with dimensional specific speed (SI) of 2300 running 

at 1170 rpm delivers 70 m3/hr. The impeller diameter is 0.2 m. Determine the flow, head and 

power if the pump runs at 1750 rpm . Also calculate the specific speed at this condition. 

The head developed and the power at test conditions are determined first. (At 1170 

rpm). 

Ns = N Q /H3/4 = 1170 70 /H3/4 = 2300  H = 6.9 m 

Power = mg H = 9.81 × 70000 × 6.9/3600 = 1316 W 

When operating at 1750 rpm, using flow coefficient Q/ND3, as D is the same 

Q  = 70 
JjH 

1750 7jJ = 104.7 m3/hr 

Using head coefficient, H/N2D2, H2 = H1 (N1/N2)
2 = 6.9 × (1750/1170)2 = 15.44 m 

Using power coefficient : P/rN3D5, 

r N  y3
 r1750 y3

 
P = P × j 2 j = 1316 × j j = 4404 W 

2 1 l N1 Q l1170 Q 
Specific speed for the model 

Ns = N Q /H3/4 = 1750 

Note: Specfic speeds are the same. 

 
/(15.44)3/4 = 2300 104.7 
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= 

D 1 

Problem 5.22 A pump running at 1450 rpm with impeller diameter of 20 cm is 

geometrically similar to a pump with 30 cm impeller diameter running at 950 rpm. The discharge 

of the larger pump at the maximum efficiency was 200 litres/s at a total head of 25m. Determine 

the discharge and head of the smaller pump at the maximum efficiency conditions. Also 

determine the ratio of power required. 

The PI terms of interest are the head coefficient, power coefficient scale and Q/D3
 

called flow coefficient (   N) (Refer chapter 8, Problem 8.16). 

Considering flow coefficient, denoting the larger machines as 1 and the smaller as 2, 
 

Q1 Q2 
3 3 

  Q = Q 
2 D2

3 

= 200  
1450 Jj 20 7j = 90.45 l/s 

3 
 

 1D1  2 D2 2 1 
1 

3 
950 H 30J 

Considering head coefficient, (g being common) 

 gh gh J    7 2  J  D  7 2
 

  1   = 2   h = h j 2 j j 2 j 
 2 D 2  2 D 2 

2 1 H 1 J H D1 J 
1 1 2 2 r1450 y2 J 207 2

 

 h2 = 25 × jl 950 jQ 
jH 30

jJ = 25.885 m 

Consider power coefficient 
P1 

   3D 5 = 
P1 

  3 D 5 , as 1 = 2 , 

1   1 1 1   1 1 

P J    7 3  J D  7 5
 J 14507 3  J 207 5

 
    2 

= j 2 j j 2 j = j j j j = 0.468 

P1 H 1 J H D1 J H 950 J H 30J 
As efficiencies should be the same, Q1 1 h1 = Q2 2 h2 , with 1 = 2 

0.200 × 25 = 0.09045 × 25.885/0.468, 5.00 = 5.00 (checks) 

Specific speed = N Q /H3/4 = 1450 0.09045 / 25.8853/4 = 38 (dimensional) 

For larger pump, specific speed = 950 0.2 /253/4 = 38, checks. 

Problem 5.23 A V notch is to be used with utectic calcium chloride solution at 30oC. 

Density = 1282 kg/m3, ve = 2.267 × 10–6 m2/s. The flow rate has to be found for various heads. 

Water was used for the test at 20oC. Density = 1000 kg/m3, vw = 1.006 × 10–6 m2/s. Neglecting 

the effect of surface tension, determine the ratio of corresponding heads and mass flow 

rates of water and the solution at the corresponding heads. 

Dimensional analysis shows (Neglecting surface tension effects), Q being volume flow 

rate that for similarity the following parameters should be equal. (suffix c refers to the solution 

properties) (Refer chapter 8, Problem 8.13). 

  Q  r g1/ 2 h3/ 2 y 
 

g1/ 2 h5/ 2 = f j
l v

 , j
Q
 

 
hw

3 / 2 

= 
hc

3/ 2 

  

vw vc 
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gH 

gHw  gHR  

h J v 7 2/ 3   r2.267  10−6 y2/ 3  
 

 c = j c j = j −6 j = 1.71884 

hw 

Qc  =
 

hc
5/ 2   

H vw J 
Qw 

hw
5/ 2   

l1.006  10 Q 

Q J h 7 5/ 2    
5/2 

 c = j c j = (1.71884) = 3.873 

Qw H hw J 
Ratio of mass flow rates = 3.873 × (1282/1000) = 4.97 

Problem 5.24 The discharge Q through an orifice is found to depend on the parameter 

D /, when surface tension effect is neglected. Determine the ratio of flow rates of water 

and refrigerant 12 at 20oC under the same head. What should be the ratio of heads for the 

same flow rate. R = 2.7 × 10–4 kg/ms., w = 1.006 × 10–3 kg/ms. Density of refrigerent = 923 

kg/m3. 

Qw  w D 

QR   = 
 

R  
 

R 
  

/w and QR  R D 

=
 923 

 
1.006  10−3 

 

/r, Dividing 

 
= 3.44 

Qw w w 

For the same flow rate 

1000 2.7  10−4 

w D  

w 
= 

R D  

 R 

H J     7 2 J 1.006  10−3 923 7 2
 

 
w 

= j w  R j = j  j = 11.827 

HR H  R w J H 2.7  10−4 1000 J 
 
 

  OBJECTIVE QUESTIONS   

 
O Q. 9.1 Fill in the blanks. 

1. The representation of a physical system used to predict the behaviour of the system is called 

  . 

2. The system whose behaviour is predicted by the model is called . 

3. Models are generally in size compared to prototype. 

4. When the prototype is very small model is used. 

5. Models may also be used to predict the effect of to an existing system. 

6. Dimensionless parameters provide conditions for model testing. 

7. For geometric similarity ratio of should be equal. 

8. For dynamic similarity ratio of should be equal. 

9. If stream lines are similar between model and prototype it is called similarity. 

10. When geometric and dynamic similarities exist then automatically will exist. 

gH gH 
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 Boundary Layer Theory and Flow 

Over Surfaces 
 

 
 

 6.0 INTRODUCTION   
 

Ideal inviscid fluids do not exert any force on the surfaces over which they flow. Real fluids 

have viscosity. When these fluids flow over surfaces, “no slip condition” prevails. The layer 

near the surface has to have the same velocity as the surface. If the surface is at rest, then this 

layer comes to rest. The adjacent layer is retarded to a lesser extent and this proceeds to layers 

more removed from the surface at rest. A velocity gradient forms leading to shear force being 

exerted over the layers. The velocity gradient is steepest at the interface and the shear is also 

highest at the interface. Work is to be done to overcome the force. The equations for the analysis 

of the complete flow field has been formulated by Navier and Stokes. But solutions for these 

equations for practical boundary conditions were not available. For a long time empirical 

equations based on experimental results were used in designs. 

The development of boundary layer theory enabled the analysis of such flows to be 

fairly easy. The theory was proposed by Ludwig Prandtl in 1904. He observed that in the case 

of real fluids velocity gradient existed only in a thin layer near the surface. This 

layer was named as boundary layer. Beyond this layer the effect of viscosity was found 

negligible. This was supported by measurement of velocity. The flow field now can be divided 

into two regions, one in which velocity gradient and shear existed and another where viscous 

effects are negligible. This region can be dealt with as flow of inviscid fluid or ideal fluid. In the 

study of flow over immersed bodies like aircraft wings the analysis can be limited to the boundary 

layer, instead of the field extending to long distances for the determination of forces exerted on 

the surface by the fluid flowing over it. 

 
 

 6.1 BOUNDARY LAYER THICKNESS   

 
In the solution of the basic equations describing the flow namely continuity and 

momentum equations of the boundary layer, one boundary is provided by the solid surface. 

The need for the other boundary is met by edge of the boundary layer determined by the 

thickness. The determination of the velocity variation along the layer enables the determination 
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of velocity gradient. This is made possible by these two boundary conditions. Once the velocity 

gradient at the surface is determined, the shear stress can be determined using the equation 

 =  
du

 
dy 

This leads to the determination of resistance due to the flow. 

6.1.1 Flow Over Flat Plate 

 

(6.1.1) 

The simplest situation that can be analyzed is the flow over a flat plate placed parallel 

to uniform flow velocity in a large flow field. The layer near the surface is retarded to rest or 

zero. velocity. The next layer is retarded to a lower extent. This proceeds farther till the velocity 

equals the free stream velocity. As the distance for this condition is difficult to determine, the 

boundary layer thickness is arbitrarily defined as the distance from the surface 

where the velocity is 0.99 times the free stream velocity. 

There are two approaches for the analysis of the problem. 

1. Exact method : Solution of the differential equations describing the flow using the 

boundary conditions. It is found that this method can be easily applied only to simple geometries. 

2. Approximate method : Formulation of integral equations describing the flow and 

solving them using an assumed velocity variation satisfying the boundary conditions. This 

method is more versatile and results in easier solution of problems. The difference between 

the results obtained by the exact method and by the integral method is found to be within 

acceptable limits. 

At present several computer softwares are available to solve almost any type of boundary, 

and the learner should become familiar with such softwares if he is to be current. 

6.1.2 Continuity Equation 

The flow of fluid over a flat plate in a large flow field is shown in Fig. 10.1.1. The flow 

over the top surface alone is shown in the figure. 

 

 
 

u 

 

 

 

 

 

Transition 
 

Figure 6.1.1 Formation of boundary layer over flat plate 

The velocity is uniform in the flow field having a value of u. Boundary layer begins to 

form from the leading edge and increases in thickness as the flow proceeds. This is because the 

viscosity effect is felt at layers more and more removed from the surface. At the earlier stages 

the flow is regular and layers keep their position and there is no macroscopic mixing between 

layers. Momentum transfer resulting in the retarding force is by molecular diffusion 

u 

u 

Laminar Turbulent 
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between layers. This type of flow is called laminar flow and analysis of such flow is 

somewhat simpler. Viscous effects prevail over inertial effects in such a layer. Viscous 

forces maintain orderly flow. As flow proceeds farther, inertial effects begin to prevail 

over viscous forces resulting in macroscopic mixing between layers. This type of 

flow is called turbulent flow. Higher rates of momentum transfer takes place in such a 

flow. For the formulation of the differential equations an element of size dx × dy × 1 is considered. 

An enlarged sectional view of the element is shown in Fig. 6.1.2. 
 

vdx+ 
  

(vdx) dy 
y 

 
 

udy + 
  

(udy) dx 
x 

 
 
 
 
 
 
 

Figure 6.1.2 Enlarged view of element in the boundary layer 

The assumptions are (i) flow is incompressible or density remains constant, (ii) flow is 

steady, (iii) there is no pressure gradient in the boundary layer. 

Continuity equation is obtained using the principle of conservation of mass. Under steady 

flow conditions the net mass flow across the element should be zero. Under unsteady conditions, 

the net mass flow should equal the change of mass in the elemental volume considered. The 

values of velocities are indicated in the figure. The density of the fluid is . Unit time and unit 

Z distance are assumed. Time is not indicated in the equations. 

Flow in across face AA, udy × 1 = udy 

Flow out across face BB, udy + 
  

(udy) dx 
x 

 bug 
Net flow in the x direction = 

x 
dxdy 

Similarly the net flow in the y direction is given by 
 bvg 

x 
dxdy 

Under steady conditions the sum is zero. Also for incompressible flow density is constant. 

Hence 

u 
+ 

v 
 
= 0 (6.1.2) 

x y 

This is known as continuity equation for steady incompressible flow. If u decreases, 
u

 
x 

is – ve and so 
v

 
y 

should be positive. The algebraic sum of x and y directional flows is zero. 

A B 

 u dy 
 

dy 

 v dx 

A B 

dx binils.com
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6.1.3 Momentum Equation 

The equation is based on Newton’s second law of motion. The net force on the surface 

of the element should equal the rate of change of momentum of the fluid flowing through 

the element. Here x directional forces are considered with reference to the element shown 

in Fig. 10.1.3. The flows are indicated on the figure unit time and unit Z distance are 

assumed. The density of the fluid is  

 

 u dx +      u  dydx  dx    u + 
u 

dy    v + 
v 

dy 

x y y 

 

A 

y 

 
 

B 
 

 dy u + 

y 

 
 

 
u 

dx u + 
u 

dx 

 
u (u) dy 

x x 

 
dy 

 

A 

u (v) dx 

B 

 
u 

dx 
x 

dx 

 
 
 

Consider the momentum flow in the x direction : 

Across AA momentum flow = u (u) dy 

Across BB momentum flow = u (u) dy + 
  

{u(u) dy} dx 
x 

Taking the difference, the net flow is (as  is constant) (u2 is written as u × u) 
 

[u(u)dy]dx =  dxdy 
r
ju 

u 
+ u 

u y
j 

x l x x Q 
Considering the flow in the y direction, the net x directional momentum flow is 

  
[u(v)dy]dx =  dxdy 

rju 
u 

+ v 
u yj 

y l y y Q 
Summing up, the net momentum flow is 

r  u u ç  ru vyyy  dxdy j
u 

x 
+ v 

y 
+ (
t
u jl x 

+ 
y 

jQ[jj 
l Q 

From continuity equation, the second set in the above equation is zero. Hence net x 

directional momentum flow is r
ju 

u 
+ v 

u y
j  dxdy 

l x y Q 
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It was assumed that no body forces or pressure forces are present. Only surface forces 

due to viscosity is considered. 

u 
At the bottom surface shear = dx  

y
 

u  At the top surface shear = dx  + 

 
rj 

u 
dx

yj dy
 

y y l y Q 
 


2u 

dxdy 

The net shear on the element is 

 
u 

 
 

y2 

u 

, noting v =  

 
v 2u 

quating, and simplifying, u 
x 

+ v 
y 

= 
 

 

y2 

This is known as momentum equation for the boundary layer. v is also called as 

momentum diffusivity. In case of pressure gradient along the flow – 
1
 

 

P 
has to added on the 

x 

RHS. 

6.1.4 Solution for Velocity Profile 

The continuity and momentum equations should be simultaneously solved to obtain the 

velocity profile. The boundary conditions are 

u 
(i) at y = 0, u = 0, (ii) at y = , u = u, 

y 
= 0 

The solution for these equations was obtained by Blasius in 1908 first by converting the 

partial differential equation into a third order ordinary differential equation and then using 

numerical method. 

The two new vaiables introduced were 
 

 = y 

where  is the stream function giving 

 
u = 

y
 

and f () = / 

 
 

and   v = – 


 

x 

 

 

 

(6.1.5) 

The resulting ordinary differential equation is 

d3 f 
2 

d3 

d2 f 
+ f 

d2 

 
= 0 (6.1.6) 

the boundary conditions with the new variables are 

 f  
 

 f  

at y = 0,    = 0 and 
 

= 0, at y = ,  =    and 
 

= 1 

u 

xv 
vxu 
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u / vx u x / v Rex 

Re 

x 

w 

z L 

 

The results where plotted with u/u as the dependent vairable and y or () as the 

independent variable resulting in a plot as shown in Fig. 10.1.4. 
 

 
1.0 

 
 
 

Slope 0.332 

u/u = 0.99 

 

u/u 

 

 

 
1.0 2.0   3.0   4.0   5.0 

0.5 

(y/x) Rx 

Figure 6.1.4 Velocity distribution in boundary layer 

 

The value of y where u/u = 0.99 is found to be 5. This y value is taken as the 

boundary layer thickness  as per the definition of thickness of boundary layer. 

 

i.e.  = 5,   or    =
 5 

=
 5x 

 
   5x    

= 5x Re –0.5
 

 

This equation was more precisely solved in 1983 by Howarth. The significance of Reynolds 

number has already been explained under dimensional analysis as the ratio of inertia force to 

viscous force. Velocity gradient at the surface is of greater importance because it decides the 

shear on the surface at y = 0 

u    d2 f 

w =  
y 

equals the value of u u / vx 
d

2 , at  = 0 

d2 f 

From the solution, at  = 0, the value of 
d2 , is obtained as 0.332 

Substituting this value and replacing v by / and simplifying 

   = 0.332 u 2 (6.1.8)  
x 

Defining skin friction coefficient, Cfx, as w/(1/2)u
2, we obtain 

Cfx = 0.664 Rex
–0.5

 

The average value over length L can be obtained by using 

1 
L 

(6.1.9) 

Cf = Cfx dx = 1.328 ReL
–0.5

 

0 

Not that these results are obtained for laminar flow over flat plate for Re < 5 × 105. 

u  

vx 

u  

vx 
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x L 

z 

Example 6.1. Air at 30° C flows over a flat plate at a free stream velocity of 5m/s. Determine 

the boundary layer thickness at distances 0.2 m, 0.5 m and 0.8 m. Also determine the skin 

friction coefficients, both local and average, at these locations. 

The property values for air at 30 °C are obtained from tables.  = 1.165 kg/m3, 

v = 16 × 10–6 m2/s,  = 18.63 × 10–6 kg/ms. 

 = 5x Rex
–0.5, Cfx = 0.664 Re –0.5, CfL = 1.328 Re –0.5

 

 
Consider 0.5 m, Rex = 

ux 

v 
= 

   5  0.5    
= 1.5625 × 105 < 5 × 105        Laminar 

16  10−6
 

  = 6.325 mm, Cfx = 1.68 × 10–3, CfL = 3.36 × 10–3
 

The values for other distances are tabulated below. 
 

Distance, m Re , mm C
fx 

C
fL 

0.2 0.63 × 105
 4.000 2.66 × 10–3

 5.32 × 10–3
 

0.5 1.56 × 105
 6.325 1.68 × 10–3

 3.36 × 10–3
 

0.8 2.5 × 105
 8.000 1.33 × 10–3

 2.66 × 10–3
 

Note that as distance increases the local skin friction factor decreases and the average value is 

higher than the local value. Also note that the boundary layer thickness increases along the flow 

direction. 

Example 6.2. Water at 20° C flows over a flat plate at a free stream velocity of 0.2 m/s. Determine 

the boundary layer thickness and friction factors at lengths 0.2, 0.5 and 0.8 m from leading edge. 

The value of kinematic viscosity = 1.006 × 10–6 m2/s,  = 1.006 × 10–3 kg/ms. 

The values calculated using equation 10.1.7, 9 and 10 are tabulated below: 
 

Length, m Re , mm C
fx 

C
fL 

0.2 0.40 × 105
 5.02 3.33 × 10–3

 6.66 × 10–3
 

0.5 0.99 × 105
 7.93 2.11× 10–3

 4.21 × 10–3
 

0.8 1.59 × 105
 10.03 1.67 × 10–3

 3.33 × 10–3
 

Note the same trends as in Example 1. Also note that because of higher viscosity the friction 

values are higher. 

 

6.1.5 Integral Method 

In this case flow rate, momentum etc. in the boundary layer are determined using 

integration over the thickness of the boundary layer. The control volume chosen is shown in 

Fig. 6.1.5. 

There is no flow through the face ad. (consider unit plate width) 

H 

Flow through face ab = 
0 

udy 
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z 

w 

b c 

H 
dy 

 

a d 
y 

dx 

H d  
rj

H yj 
Flow through face cd = z udy + 

dx
 jz udyj dx 

0 
l 0 Q 

 

 

Figure 6.1.5 Boundary layer element for integral analysis 

The difference should flow through bc as no flow is possible across ad. 
d   rj

H yj  
   Flow through face bc = – 

dx
 jz udyj dx 

l 0 Q 
This is the result of continuity principle. Considering x directional momentum, 

H 

Momentum flow through ab = u udy 
0 H 

d   
rj

H yj 
Momentum flow through cd =  z u udy +  

dx
 jz u udyj dx 

0 l 0 Q 
The mass crossing the boundary bc has a velocity of u 

d   rj
H yj  

Momentum flow through bc = – 
dx

 jz uudyj dx 

l 0 Q 
Summing up, the net momentum flow through the control volume 

d   rj
H yj  = 

dx jz (u − u )  udyj dx ... (1) 

l 0 Q 
As (u – u) is zero beyond  the integration limit can be taken as  instead of H. It is 

assumed that there is no pressure gradient in the boundary layer. The velocity gradient at face 

bc is zero. So the only force on the control volume surface is 

–  dx = – 
 du 

dx, Equating 
dy 

 d   rjz
 yj du 

dx  jl0 

(u  − u)  udyjQ 
=   

dy  
y=0
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v 

u x x 

 

  

 

 d rj 2  z
  

 u  j  u 7 yj du 

or 
dx jl

u 
u    

jH 1 −  
u jj dyjQ 

= v  
dy

 

This is called momentum integral equation. The boundary conditions are 

at y = 0, u = 0; at y = , u = u 
and 

du
 

dy 

Also 
d2u 

= 0 at y = 0 (constant pressure gradient) 

dy2 

Equation 10.1.12 can be solved if a velocity profile satisfying the boundary conditions is 

assumed. Out of the popularly used profiles the results obtained from a cubic profile given 

below is in closer agreement with the exact solution. 

u 3  y 1 r y y3
 

u    
= 

2    
−  

2 jl jQ 
Substituting in equation 10.1.12  d çj 2  

   r3  y 1 j  y 7 3 y  r 3   y 1 j  y 7 3 y yj du 

dx 
(j
u

 
z j2    

− 
2 

jH  
jj 

j 
 

j
1 − 

2     
+  

2 
jH  

jj j 
dy[

j 
= v 

dy
 

t 0 l Q l Q J y = 0 

Carrying out the integration, gives 
 d  r 39  

u
2  


y 

=  
3 

v 
u  

dx jl280       jQ  2  

or 
39

 u2 
d 

= 
3 

v 
u 

, Separating variables and integrating 

280 
 dx 2  

z
x 

z
x   

140   v  

 d = 
13

 

0 0 

dx at x = 0,  = 0. This leads to 
 

 = 4.64 x = 4.64x/Re 0.5
 

This solution is closer to the exact solution where the constant is 5 instead of 4.64. The 

value of Cfx can be determined using the assumed velocity profile. 

 u 3 y 1 r y y3 
du r 3 y r 3 y 

u    
= 

2    
−  

2 jl jQ ,    
dy = uj j     w  = u  jl2 jQ 

 

Cf = w /{(1/2)  u 2} = 

 
y=0 

3u 2   
2 

l2 Q 
As  = 4.64x/Re1/2

 

 2 u 

 C   =
 3u Re

0.5 2 

fx 2  4.64  x x   u2 

C   = 
   3  

Re0.5 
= 0.646/Re 1/2

 

fx 4.64 u x x x 

=  

u 

0 y=0 
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z 

(u   − u)z Jz u  
jJ dy 

d 

Compared to 0.664/Rex
1/2 by exact solution. 

Due to flexibility this method becomes more versatile as compared to the exact method. 

Analysis using linear and sine function profiles illustrated under solved problems. 

6.1.6 Displacement Thickness 

Compared to the thickness  in free stream, the flow in the boundary layer is reduced 

due to the reduction in velocity which is the result of viscous forces. In the absence of the 

boundary layer the flow rate that would pass through the thickness  will be higher. The idea 

is illustrated in Fig. 10.1.6. 
 

Boundary 
layer 

u u 

 

 

u 

d 

 
 

 
Figure 6.1.6 Displacement thickness 

The reduction in volume flow is given by (for unit width) 

 

=  (u − u) dy 

0 

If viscous forces were absent the velocity all through the thickness  will be equal to u. 

A thickness d can be defined by equating the reduction in flow to a uniform flow with velocity 

u or ud 

 

   =  
u 

 
dy = 

 

jH1 − 
 u 7 

 
0 0 

Displacing the boundary by a distance d would pass the flow in the boundary layer at 

free stream velocity. 

Displacement thickness d is the distance by which the solid boundary would 

have to be displaced in a frictionless flow to give the same mass flow rate as with the 

boundary layer. 

The displacement thickness will equal /3. The can be shown by assuming polynomial 

variation for velocity u in the boundary layer. Assuming (as there are three boundary conditions) 

the distribution, 

u = a + by + cy2, with boundary conditions, 

(i) u = 0 at y = 0, (ii) u = u at y =  and (du/dy) = 0 at y =  

The first condition gives a = 0 and from the other two conditions 

c = – u /
2     and b = 2u / 
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= j1 − j dy = (1 − + j j[ dy = jy − − 2 j 

 

H 
0 

u y r y y2
 

Hence the profile is 
u    

= 2 
  

− jl jQ 
Note that this is different from the profile previously assumed for the solution of 

momentum integral equation. Substituting in (10.1.17) and integrating, 

z
   J  u 7 

z
   ç 2 y J  y7 y r y2 1  y3 y

 

d u J  H  J 
0 l  3     Q0

 

i.e., d = /3 or displacement thickness equals one third of hydrodynamic boundary layer 

thickness. In case other profiles are adopted, this constant will be different. But this is the 

value nearer the Blasius solution. 
 

Example 6.3. Using data of problems Examples 6.1 and 6.2 determine the displacement 

thickness at the various locations. Also determine the flow out of the boundary layer in the y 

direction and the average values of velocity v in these sections. 

The deficit flow should go out of the top of the boundary layer. From example 6.1 air flow at 

30 °C with free stream velocity 5 m/s, (unit width is assumed) 
 

Distance , mm d, mm Volume flow, m3/s V(0–x), m/s 

0.2 4.0 1.333 1.333 × 5 × 10–3
 0.0333 

0.5 6.325 2.108 2.108 × 5 × 10–3
 0.0211 

0.8 8.00 2.666 2.666 × 5 × 10–3
 0.0167 

The volume flow out (deficit flow) equals d u × width, assuming 1 m width 

 between x = 0 and x = 0.2 flow is 1.333 × 5 × 10–3 m3/s. 

The average velocity, V = volume/area, Area = 1 × 0.2 m2. 

 V = 1.333 × 5 × 10–3/0.2 = 0.0333 m/s. For other lengths values are tabulated above. In the case 

of example 6.2, water flow the values are given below, 
 

Distance, m , mm d, mm flow rate, m3/s V(0–x), m/s 

0.2 5.02 1.673 3.35 × 10–4
 1.67 × 10–3

 

0.5 7.93 2.643 5.29 × 10–4
 1.06 × 10–3

 

0.8 10.03 3.343 6.69 × 10–4
 0.84 × 10–3

 

 
6.1.7 Momentum Thickness 

Similar to the conditions discussed in section (6.1.6) for displacement thickness, there 

is a reduction in momentum flow through the boundary layer as compared to the momentum 

flow in a thickness  at free stream velocity. 

The thickness which at free stream velocity will have the same momentum 

flow as the dificit flow is called momentum thickness. The deficit flow at any thin layer 

at y of thickness dy is (for unit width)  (u – u) dy 

 = (1/3) t J 
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z 

z 

z 
 

Boundary layer 

u0 

u 

Deficit 
momentum 

A m 

Momentum for this flow is u (u – u) dy 

 

Hence the deficit momentum = u (u − u) dy 

0 

Considering m as momentum thickness, 

 

m u   u = u (u − u) dy 

0 

z
   rj u  J  u 7 2 yj z

   
 u  r  u y 

m = ju    
− jH u   

jJ j dy = u    
jl
1 − 

u jQ 
dy 

0 l   Q 0   

The concept of reduction in momentum is shown in Fig. 10.1.7. 

 

 
 

The value of momentum thickness is generally taken as 1/7th of boundary layer thickness 

in laminar flow. The value will vary with the assumption about velocity distribution. For example 

if the velocity profiles as in the previous article is used, then 

u y r y y2
 

u    
= 2 

  
− jl  jQ substituting in 10.1.19 and simplyifying 

 r y r y y2
 r y y3

 r y y4 y 
m = 

0 jl
2 

  
− 5 jl jQ  + 4 jl jQ 

− jl jQ jQ 
dy 

5 1 2 J  1 7 
=  − 

3 
 +  − 

5 
 = 

15 
 = jH 7.5

jJ  

 

 

 6.2 TURBULENT FLOW   
 

As flow preceeds farther along the flat plate, inertia forces begin to prevail and viscous forces 

are unable to keep the flow in an orderly way. Reynolds number is the ratio of inertia 

force to viscous force. As inertia force increases Reynolds number increases and the 

flow becomes turbulent. Generally the limiting Reynolds number for laminar flow over flat 

plate is taken as 5 × 105 (for internal flow the critical Reynolds number is 2000). 
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= j j 

x 

L 

L 

 J u 7  J J y7 1/7 7 j 7 7 j 1 

0  
jH1 −  

u jJ dy = 
0  

j1 − jH  
jJ j dy = jy − 

8
 1/ 7 j = 

8 
 

Turbulent flow is characterized by the variation of velocity with time at any location. 

The velocity at any location at any time, can be represented by 

u = u + u 

where u is the instantaneous velocity, u is the average over time and u is the fluctuating 

component. The flow is steady as u is constant at any location. An accurate velocity profile 

known as universal velocity profile, having different distributions at different heights is 

available. However it is too cmplex for use with integral method at our level of discussion. 

One seventh power law has been adopted as a suitable velocity distribution for turbulent 

flow. 

u J y7 1/7
 

 

u H  J 
Substituting in the integral momentum equation 10.1.2, boundary layer thickness is 

obtained as 

 = 0.382 x/Rex
0.2

 

For combined laminar and turbulent flow, 

(6.2.2) 

L = (0.381x/ReL
0.2) – (10256/ReL) (6.2.2 a) 

The friction coefficient is obtianed as 

Cfx = 0.0594/Re 0.2
 

for combined laminar turbulent flow 

CfL = 0.074Re–0.2 – 1742Re –1
 

Displacement thickness is obtained as d =  

(6.2.3) 

 
(6.2.4) 

 

Example 6.4. Water flows at a velocity of 1.2 m/s over a flat plate 1.2 m long. Assume 1/7th 

power law and determine the boundary layer thickness and displacement thickness. Compare 

the values with values calculated using laminar flow correlations. 

v = 1.006 × 10–6 m2/s. 

Re = 
ux 

= 
v 

1.2  1.2  

1.006  10−6
 

 
= 1.43 × 106 > 5 × 105 So the flow is turbulent 

L = 0.382x/Re 0.2 = 0.0269 m or 26.9 mm 

r 
 

1+ 
1 y

 

z z 
 H J jl

 
 

  

jQ 

dL = 26.9/8 = 3.37 mm, Cf = 0.0594/Re0.2 = 0.003488 

w = Cf (1/2)  u
2 = (0.003488/2) × 1000 × 1.22 = 2.51 N/m2

 

In case laminar flow correlations were used: 

 = 5x/Re0.5 = 0.005 m or   5.0 mm (about 1/5th) 

d = /7 = 0.72 mm, Cf = 0.664/Re0.5 = 5.55 × 10–4
 

 = 5.55 × 10–4 × 0.5 × 1000 × 1.22 = 0.40 N/m2
 

The boundary layer is thicker and shear stress is higher in turbulent flow. 

 
 = 

y 
d 
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P < 0  

x 

P = 0  

x 

P > 0  

x 

Diverging 
section 

 

Separation point 

 

 6.3 FLOW SEPARATION IN BOUNDARY LAYERS   
 

Boundary layer is formed in the case of flow of real fluids. Viscous forces exist in such flows. 

The shear stress at the wall is given by 

w =  

 

 

y=0 

, The wall shear cannot be zero. Hence at y = 0, du 

dy 

cannot be zero. This means that the velocity gradient at the wall cannot be zero. 

Separation of flow is said to occur when the direction of the flow velocity near the surface 

is opposed to the direction of the free stream velocity, which means (du/dy)  0. Such a situation 

does not arise when there is no pressure gradient opposed to the flow direction, ie., the pressure 

downstream of flow is higher compared to the pressure upstream. An example is subsonic 

diffuser. In the direction of flow the pressure increases. The increase in area along the flow 

causes a pressure rise. 
 

Stage I II III 

 
Figure 6.3.1 Flow separation 

If (dp/dx) increases to the extent that it can overcome the shear near the surface, 

then separation will occur. Such a pressure gradient is called adverse pressure gradient. 

In the case of incompressible flow in a nozzle a favorable pressure gradient exists. Separation 

will not occur in such flows. In the case of diverging section of a diffuser, separation can occur 

if the rate of area increase is large. This is shown in Fig. 6.3.1. In turbulent flow, the momentum 

near the surface is high compared to laminar flow. Hence turbulent layer is able to resist 

separation better than laminar layer. 

In the case of flow over spheres, cylinders, blunt bodies, airfoils etc., there is a change in 

flow area due to the obstruction and hence an adverse pressure gradient may be produced. 

Simple analytical solutions are not available to determine exactly at what conditions separation 

will occur. Experimental results are used to predict such conditions. 

6.3.1 Flow Around Immersed Bodies – Drag and Lift 

When fluid flows around a body or the body moves in a fluid there is a relative motion 

between the fluid and the body. The body will experience a force in such a situation. In the case 

of a flat plate positioned parallel to the direction of the flow, the force is parallel to the surface. 

du 

dy 
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L 

L 

But generally in the case of blunt bodies, the force will neither be paraller nor 

perpendicular to the surface. The force can be resolved into two components one 

parallel to the flow and the other perpendicular to the flow. The former may be 

called shear force and the other, the pressure force. 

The component parallel to the direction of motion is called drag force FD and 

the component perpendicular to the direction of motion is called lift force, FL. 

Determination of these forces is very important in many applications, an obvious example 

being aircraft wings. Simple analytical methods are found to be insufficient for the determination 

of such forces. So experimentally measured coefficients are used to compute drag and lift. 

6.3.2 Drag Force and Coefficient of Drag 

Drag is the component of force acting parallel to the direction of motion. Using the 

method of dimensional analysis the drage force can be related to flow Reynolds number by 

FD 

 AV 2 

 

= f (Re) (6.3.1) 

For generality velocity is indicated as V 

Defining coefficient of drag as the ratio of drag to dynamic pressure, it is seen that 

CD = f (Re), 

C = 
FD

 

D (1 / 2)  AV 2 
(6.3.2) 

This applies to viscous drag only. In case wave drag is encountered, then 

CD = f (Re, Fr) (6.3.3) 

If compressibility effect is to be considered 

CD  = f (Re, M) (6.3.4) 

Friction coefficient over flat plate in laminar flow, at a location was defined by 

Cfx = w /(1/2)  A V2 = 0.664/Rex
0.5. Over a given length the average value is obtained as twice 

this value. For a flat plate of length L, in laminar flow 

CD = 1.328/Re 0.5
 

In turbulent flow in the range 5 × 105 > Re < 107 

CD = 0.074/ ReL
0.2

 

For ReL up to 109, an empirical correlation due to Schlichting is 

CD = 0.455/(log ReL)2.58
 

For combined laminar and turbulent flow in the range 5 × 105 > Re < 107
 

(6.3.5) 

 
(6.3.6) 

 
(6.3.7) 

C   = 
0.074 

− 
1740 

 
(6.3.8) 

D Re0.2 
 

Re L 

For the range 5 × 105 > Re < 109
 

C = 
0.455 

D 
(log Re L )

2.58 
− 

1610 

ReL 
(6.3.9) 

The values of CD for laminar flow is in the range 0.002 to 0.004. 
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Example 6.5. A ship having a wetted perimeter of 50 m and length of 140 m is to travel 

at 5 m/s. Determine the power required to overcome the skin friction. Assume kinematic 

viscosity v = 1.4 × 10–6 m2/s. Density 1025 kg/m3
 

Re = 5 × 140/1.4 × 10–6 = 0.5 × 109, 

So the equation applicable is 10.3.9 

0.455 1610 

C
D   

= 
(log 0.5  109 )2.58 

− 
0.5  109

 
= 1.719 × 10–3

 

FD = CD A(1/2) u2 = (1.7179 × 10–3) (1/2) × 140 × 50 × 1025 × 52 N 

= 0.154 × 106 N 

 Power = FD u = 0.154 × 106 × 5 = 0.77 × 106 W = 0.77 MW 

 

6.3.3 Pressure Drag 

When flow is perpendicular to blunt objects, like a plate or a disk, shear does not 

contribute to drag force. The drag is then mainly due to pressure difference between the faces. 

So it is called pressure drag. The drag coefficient is based on the frontal area (or projected 

area) of the object. In the case of airfoils the plan area is the basis for drag coefficient. The drag 

coefficient for same geometries are shown in Table 6.3.1 below. These are applicable for 

Re > 103. 

Table 6.3.1 Drag coefficients for various shapes 

 

Shape CD 

Square plate 1.18 

Rectangle 1:5 1.20 

Cube 1.05 

Disk 1.17 

Hemisphere facing flow 1.42 

Parachute 1.20 

Hemisphere facing downstream 0.38 

It may be seen that the coefficient of pressure drag is independent of Reynolds number. 
 

Example 6.6. A drag chute is used to slowdown a car with a mass 1800 kg travelling at 60 m/s. 

The value of coefficient of drag for the car is 0.32 and frontal area is 1.1 m2. The chute is of 1.8 m 

diameter and drag coefficient is 1.2 Density of air = 1.2 kg/m3. Determine the speed after 50 

secs. Also determine the time for the speed to reach 20 m/s. 

The total drag force at any instant for the car and the chute is given by (subscript C refers to car 

and P refers to parachute) 

F =
 1 

u2 [C A   + C 
 

A ] and this force acts to decelerate the car. 
D 2 DC  C DP  P 
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1 + 
Jj  7j u t0 

 

2 m 
dt 

udt 
0 0 1 + (k / m)u0t (k / m)u0 

0 0 

Force = mass × Acceleration = m(du/dt)    (du/dt) = force/mass 

 
du 

=
 FD = −

 k 
u2 where k = 

 
[C 

 
A   + C A ] 

dt m m 2 DC  C DP  P 

Separating variables and integrating, 

zu  du 
= − 

 k  z t 

0 u 0 

 
 

1 
− 

1 
= −  

k 
t 

   

u0 u m 

 

 u =
 u0 

 
 k 

H mJ 

k = 
1.2 

[( 0.32 × 1.1) + (1.2 × × 1.82/4)] = 2.0433 
2 

 (k/m)u0 = (2.0433 × 60)/1800 = 0.06811 

   (i) After 50 seconds, u = 60/(1 + 0.06811 × 50) = 13.62 m/s 

(ii) For u = 20, 20 = 60/(1 + 0.06811 × t)  t = 29.36 seconds 

The distance travelled can be obtained by integrating u dt. 

 

... (A) 

 s =  z t 

= z t   u0dt   
=  

  u0  ln  [1 + (k/m)u t] = (m/k) ln [1 + (k/m)u t] 

 

At t = 50 sec s = 
  1800   

ln (1 + 0.06811 × 50) = 1306 m 
2.0433 

 

At t = 29.36 sec s =
 1800   

In (1 + 0.06811 ×29.36) = 968 m 
2.0433 

 

6.3.4 Flow Over Spheres and Cylinders 

In these cases both pressure and friction drag contribute to the total drag. The flow 

separation at the rear and formation of wake contributes to the pressure drag. The flow pattern 

and the variation of drag coefficient is shown in Fig. 6.3.2. It may be noted that the coefficient 

of drag is nearly constant from Re = 103 to 5 × 105. From experiments the boundary layer in the 

forward portion is found to be laminar in this range. Separation is found to occur at about mid 

section and a wide wake is found to exist with pressure in the wake below that at the front. 

u 
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Figure 6.3.2 Flow separation in flow over cylinder/sphere 

There is a sharp drop in the value of C
D after the critical Reynolds number. The flow in 

the forward side is found to turn turbulent and separation moves downstream and wake is 

now narrow, reducing the net pressure drag leading to the abrupt decrease in the drag 

coefficient. Turbulent layer has a higher momentum near the surface resisting separation. 

Separation can be reduced by streamlining the body shape, reducing the pressure 

drag. This generally increases the area thus increasing friction drag. An optimum streamlined 

shape is the one which gives minimum total drag. Stream lining is now adopted not only for 

aircrafts but almost for all transport vehicles. 
 

Example 6.7. A model of a bathysphere 50 mm diameter is towed under water at a speed of 1 

m/s. Determine the tension in the towline. Density of water = 1020 kg/m 3. Kinematic 

viscosity = 1.006 × 10–6 m2/s 

Re = uD/v = 1 × 0.05/1.006 × 10–6 = 4.97 × 104
 

From graph (Fig. 10.3.2) CD is read as 0.45 

 
 FD = CD (1/2)  Au2 = 

0.45 

2 

 
× 1020 × 

  0.052
 

4 

 
× 12

 

 
= 0.45 N 

 

6.3.5 Lift and Coefficient of Lift 

The force on an immersed body moving in a fluid can be resolved into two components. 

The component along the flow direction is called drag. The component perpendicular to the 

flow direction is called lift. The lift on airfoil is an example. The coefficient of lift is defined by 

C =
 FL  

L (1 / 2)  Au2 
(6.3.10) 

C
D
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Figure 6.3.3 Variation of Lift and Drag on an airfoil 

Lift is of interest mainly in the design of airfoil sections. Airfoil blade shapes are also 

used in turbomachines. The lift and drag coefficients depend on the Reynolds number and 

angle of attack. The angle between the airfoil chord and the flow direction is called angle of 

attack. The chord of an airfoil is the line joining the leading edge and the trailing edge. The 

planform area (the maximum projected area) is used in the definition of lift and drag coefficients. 

A typical plot of the variation of lift and drag coefficients with angle of attack for a specified 

Reynolds number is shown in Fig. 6.3.3. 

For each airfoil section such plots are available. Flow separation will result in sudden 

drop in the lift, known as stall. Presently computer softwares are available for the design of 

airfoil sections with a very high ratio of lift to drag. These data are for long spans and corrections 

should be made as per the aspect ratio defined by b2/Ap. where b is the span length and Ap is 

the planform area. This will equal the ratio (span/chord) as, Ap = bc. The lift to drag ratio 

varies from 20 to 40 with the lower value applicable for small planes. 

6.3.6 Rotating Sphere and Cylinder 

In order to reduce skin friction in flow over surfaces, particularly curved surfaces 

boundary layer control is used. One method of boundary layer control is by the use of moving 

surfaces at locations where separation may start. This is difficult to apply due to mechanical 

restrictions. However this principle is used in sports like baseball, golf, cricket and tennis 

where spin is applied to control the trajectory of the ball. Spin also provides significant 

aerodynamic lift to increase the distance travelled by the ball. Spin can also be used to obtain 

a curved path of travel for the ball. 

Spin alters the pressure distribution and also the location of boundary layer 

separation. For spin along the flow direction, separation is delayed on the upper surface and 

it occurs earlier in the lower surface. Pressure is reduced on the upper surface and is increased 

on the lower surface and the wake is deflected downwards. 

The coefficients of lift and drag are found to be a function of  D/2u called spin 

ratio. 

CL CD 
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Example 6.8. Show using dimensional analysis that the lift and drag coefficients are 

functions of spin ratio and Reynolds number. 

The variables affecting the phenomenon are listed below. As CL and CD are dimensionless, these 

are not listed. 
 

No Variable Unit Dimension 

1 Linear Velocity, u m/s L/T 

2 Radius, R m L 

3 Angular velocity,  Radians/s 1/T 

4 Kinematic viscosity, v m2/s L2/T 

There are four variables and two dimensions, namely L and T. Hence two  terms can be identified. 

Choosing linear velocity and radius as repeating variables 

 
Let 1 =  uaRb

 
or L0T 0 = 

1
 

T 

La 
b

 

Ta L 

 a + b = 0, – 1 – a = 0    a = – 1      b = 1 

1 =  R/u =  R/2u, called spin ratio. 

 
Let 2 

= vuaRb     or   L0T0 = 
L

2   
L

a

 

T  Ta
 

v 

 
Lb,    2 + a + b = 0, –1 – a = 0 

 
uD 

 a = – 1   b = –1   2 = 
uR 

or 
v 

, Reynolds number. 

Hence C   = f  
r  D 

, 
uD y 

and C = f  r  D 
, 
uD y 

L jl 2u v  jQ D jl 2u v  jQ 
The variation of CL and CD are found to be influenced more by spin ratio than Reynolds number. 

The trend is shown in Fig. Ex. 6.8. In the case of cylinders the area for definition of C 

L × D 
L and CD is 

 

CD 

0.6 

 

 
0.4 

CL 

 
0.2 

 

 
1 2 3 4 5 

Spin ratio  D/2 u 

 

Figure Ex. 6.8 Variation of Lift and Drag with spin ratio 

A force perpendicular to both direction of motion and the spin axis is created during 

the flight. This is known as MAGNUS effect. This can cause drift in the flight path. 

Lift force, FL 

V  
Wake 

C
L

 a
n
d
 C

D
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  

  x  

 rz 

j1 − j dy = j − 
2 j dy =  −  = 

 

  SOLVED PROBLEMS   
 

Problem 6.1 Assuming linear velocity variation in the boundary layer and using 

linear momentum integral equation, determine the thickness of the boundary layer. Also 

determine the friction coefficient and the displacement and momentum thicknesses. 

Momentum integral equation is 

 d  rz y du   u y u y 

dx jl 0 
u(u − u)dyjQ = v 

dy
 
 

y=0 

. As 
 

= 
 

   u = 
   

, 

du 
= 

u    = 
u 

, Considering the integral part 

 r 2 2 
dy  y ru2 

 
u2  y 1 

z ju   y − 
u   y2 j dy = j 

 
−    j = u2  

0  jl  2 jQ lj 2 3  jQ 6    

 d ru2 y u u2  d u  
 j  j = v or  = v 

dx jl 6 jQ  6 dx  

Separating variables and integrating,  d = (6v/u) dx 

2 = (12vx)/u = 12x2/(v/ux) = 12x2/Rex 

  = 3.464x/Rex
0.5, 

The constant is 3.464 instead of 5 in the exact solution 

 
C

fx 
= 

    

(1 / 2) u2 
= 

2u 
=

 

u2  

2v Re0.5 

u 3.464x 

 
= 0.577/Rex 

 
0.5 

The displacement thickness 

   = j1 − 

u  yj dy = z  rj1 −  
y yj dy  = (1/2) or  /2. As against /3 

d 0 l u Q 0 l  Q 
Momentum thickness is given by 

 u r 
0 u l 

By the exact solution, m = (1/7) 

 u y 
u Q 

 r y y2 y 
0 l   Q 

 

1 1 1 

2 3 6 

Problem 6.2 Assuming second degree velocity distribution in the boundary layer 

determine using the integral momentum equation, the thickness of boundary layer friction 

coefficient, displacement and momentum thicknesses. 

Let u = a + by + cy2. The boundary conditions are u = 0 at y = 0, 
du u y J y 7 2

 

At y = , 
dy 

= 0, and u = u. This gives 
u

 = 2 
  

− jH  
jJ 

Substituting in the integral momentum equation, 

u 

m =  z z 
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j j 

 

0 l u Q 

j u u j 

2 

2 

 

 

 

 
 

 

 d  rz  

(
 − u)dy

y 
= v 

du 
, 

dx l 0 Q dy 
y=0 

r y J  y7 2 y  du 
u = u   j2 − j j j, = 2u /,  = 2u / 

 jl  

Considering the integral part, 

H  J jQ dy 
y=0 

 
 

 rJ u 7 J  u 7 2 y  r J  y7 J  y7 2 J  y7 2 J  y7 3 J  y7 4 y 
u2 z j − j dy  = u z j2 j j − j j − 4 j j + 4 j j − j j j dy 

   
0  jlH u J jH u 

jJ jQ 0  jl 
 r 

H  J  H  J H  J 
J  y 7 J  y 7 2 J  y 7 3

 

H  J 
J  y 7 4 y 

H  J jQ 

= u z0  jl
2 jH  

jJ − 5 jH  
jJ + 4 jH  

jJ − 
jH  

jJ jQ 
dy 

= u2  
r
 − 

5 
 +  −  

1 


y 
= 

 2  
u2  ... (A) 

  jl 3 5   jQ  15    

Substituting 

 d  rj
 2  

u2 


yj = 2vu
 /   or 

2 
u2 = 

d 
= 2 vu   /  

dx l15  Q 
 15   dx  

 d = 15(v/u)dx Integrating 
J v 7 2 

2 = 30vx/u, 30 jH u  x 
jJ x = 30x2/Rex,  = 5.477x/Rex

0.5
 

Note that the constant is 5.477 as against 5 by exact solution. 

As  = 2u/ and  = 5.477 x/Rex
0.5

 

    4 u 4v 4vRe0.5 
Cfx = 2 

= 
2 

 = = x = 0.73/Rex
0.5 

 

 
instead of 0.644/Rex

0.5
 

(1 / 2) u u  u  5.477 xu 

z r  u y z r J  y 7 J  y 7 2 y  

d = j1 − j dy = 
 0  jl

1 − 2 jH  
jJ + jH  

jJ jQ 
dy = 

3
 

=  z rj  u  
− 

Jj  u 7j
2 y
j dy = 

 2  
  (see equation A) 

m 
0  jlu H u J jQ 15 

 Problem 6.3 Assuming the velocity distribution in the boundary layer as  u  
= sin 

Jj  y7j 
u H 2 J 

(in the range 0  y   and u/u = 1 beyond  ) determine the thickness of the boundary layer, 

using integral momentum method (Refer equation 10.1.12). 
 u  

= sin 
Jj  y 7j, 

du 
= 

   
cos 

 y  
at y = 0,  

du 
= u   (/2) 

u H 2 J dy 2 2 dy 

 
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u u j  

(z 

= 
2 

− 

 

0 l u Q 

 d r  

dx l 0 

 
− u)dy 

yjQ
 
= v 

du 

dy y=0 

Considering the integral part and substituting the velocity distribution, 

2 zrjJ  u 7  J  u 7 yj 2 2 zr  y 2  y y 
u    

0 jlH u   
jJ − jH u jJ jQ 

dy = u   
0 
jlsin 

2  
− sin 2 jQ dy

 

 
 

Noting 

  

z sin2 ax 
x
 

 
sin 2ax 

4a 

u
2  rj−  

2  y 
− 

 y 
+ 

     y yj

 

=    l  
cos 

2
 2 2 

sin 
2 Q 

= u2  
r
0 − 

  
+ 0

y 
− 

r
− 

2 
− 0 + 0

y 
= 0.1366 × u  2 ×  ... (A) 

 jl 2
 jQ  jl   jQ 

 

d 
[u2  0.1366 ] = 

 
u v, [u2  0.1366] 

d  
= 

 
u v 

 
 

dx  2   
 

  

dx 2  

  d = 
   v 

dx 
 

2  0.1366 u 

Integrating 


2 

= 
   vx

 

2 2  0.1366 u 

 
or  = 4.8x/Rex

0.5
 

Cfx = w/(1/2) u
2, w =  (du/dy), at y = 0, w =  u /2 

 C   = 
2 u  = 

   v 
= 

       v 
Re0.5 = 0.655/Re 0.5

 

fx 2 u2  u 4.8 u x x
 x

 

z r  u y z r J  y7 y r 2  y y
 

d = j1 − j dy = 
 0  

jl
1 − sin Hj 2 Jj jQ 

dy = jl + 
 

cos 
  jQ0

 

= [ + 0] – [0 + (2/)] = 0.3625  = /2.76, instead of /3 

m = 0.1366 , or /7.32 (refer result A) 

Problem 6.4 Using the cubic velocity profile determine upto a length L the flow out 

of the boundary layer in terms of the boundary layer thicknes. 

The free stream flow for thickness of  is  u  

Assuming cubic velocity profile, 

 
u = u 

r3  y 1 J  y 7 3 y 

  jl2    
−  

2 
jH  

jJ jQ 
Mass flow through the boundary layer   r3  y 1 J  y 7 3 y r3 y2 1  y4 y 

5 

= z udy = z0 
 u  

j2    
− 

2 
jH  

jJ j 
dy  =  u  jl2

    
− 

8  3 
jQ = 

8 
u  

0 l Q 0 

 
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 y 

j j 

 

 Mass flow out of the boundary layer = (1–(5/8))  u  = 3/8  u  or displacement 

thickness times the free stream flow. (Nota : d = (3/8)  for cubic profile) 

The average velocity in the y direction can be obtained by dividing the volume flow by 

area i.e., 1 × x for unit width. Volume flow out of the boundary 

 
v = (3/8) u , velocity = 

3 
u 

4.64x
 1 

= 
1.74u 

 
  8 Re0.5  x Re0.5 

L L 

This will be low as Reynolds number will be high. 

Consider the data from example (10.1) Air flow, u = 5 m/s, at a distance 0.5 m, 

Re = 1.56 × 105  v = (1.74 × 5)/(1.56 × 105)0.5 = 0.022 m/s 

This can also be calculated in a round about way using the continuity equation 

 u 
+ 

  v 
= 0 . The value of 

 u
 
 
can be obtained from the assumed profile and then equated to 

 x  y  x 

−   v 
. Integrating the same between 0 and  the same result will be obtained. [Refer Problem 10.6]. 

 

 
Problem 6.5 Using the continuity and momentum equations show that at y = 0, 

Deduce from the above that the cubic profile is approximate. 

u 
 u 

+ v 
 u 

= v 
2 u 

− 
3 u 

 y3 

 
= 0. 

Consider the x directional momentum equation, 
 x

 

resect to y, 

 y  y2 . Differentiating with 

 u  u 
+ u

 2 u + 
  v  u 

+ v 


2 u 
= v 


3 u 

, Simplifying. 
  

 y  x  x  y  y  y  y2  y3 

 u rj u 
+  

 v yj + u
 2 u 

+ v 
2 u 

= v 
3 u 

 y l  x  y Q 
 

 

 x  y 

 

  

 y2  y3 

The first term is zero due to continuity equation. At y = 0, u = 0 and v = 0. Hence the 

3 u 
second and third terms are also zero. So 

 
Consider the cubic profile: 

 y3 
should be zero. 

 u  3  y 1 J  y7 3
 

u   
= 

2    
− 

2 
jH  

jJ 
 

 u 
= u r3 1 3 y2 y 

− 
and 


2 u 

= u r
− 

6 y y 3 u 
= – 3u /3

 

 y  l2  2 3 Q  y2  jl 2  3 
jQ 

 
 

 y2  

This is not zero. Hence profile assume is approximate. 
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 

 y 

x 

j 1 J  y7 3 y 

Problem 6.6 Derive a general expression for the y directional velocity at a location x 

in the boundary layer in flow over a flat plate. Indicate at what y location this will be maximum. 

Assume cubic velocity variation. 

Consider continuity equation. 

 u 
+ 

  v 
= 0 

  v 
= − 

 u 

 x  y  y 

r3  y 
u = u 

 x 

− j j j,  = 5x/Re 1/2 = 
 

5xv1/ 2 

1/ 2  1/ 2 

 

 
= cx1/2 

  jl2   2 H  J jQ x u   x 

where c = [5v1/2/u
1/2] substituting and putting c1 = 3u/2  and c2 = u/2 3, velocity expression 

reduces to u = c y x–1/2 – c y3 x–3/2, 
  v 

= − 
 u = – [c × (–1/2) × y x–3/2 + (3/2) c y3 x–5/2] 

1 2  y  x 1 2 

Integrating w.r.t. y, and substituting for c1 and c2 

 3   u  
y

2 

8c x3/ 2   – 
 3u   

16c3 

y4 

x5/ 2  , Substituting for c 

3 u u 1/ 2 y2 3  u3/ 2   u y4 

v =       – 
8 5v1/ 2 x3 / 2 

 

16  125v 

    

3 /2  x5/ 2   

Substituting 
5xv

1/ 2 

=  

u1/ 2 x1/ 2 

 3 

 

 

 y2 3  

 
y4 3 u  r

y2  − 
1  y4 y 

v = 
8 

u 
 x 

− 
16 

u 
 3 x 

= 
8  x 

jl 2  2 
jQ 

(Check for dimensional consistency : dimensions of y2/ x and y4/3 x cancel and v has the 

same unit as u) 

Maximum value occurs when 
  v 

= 0 . 
     r

jy2  − 
  1   

y4 yj = 2 y − 
  1   

4 y
3 
. Equating to zero and solving y  =  

 y l 22 Q 22 

This is physically explainable as the total flow in y direction should occur at 

y = . Velocity at y =  is v =
 3 u  

= 0.87
 u  

 

x 16 x Re0.5 

Total mass flow when integrated over the length will equal (3/8)  u L (Refer 

Problem 10.4). 

Problem 6.7 The shear at a location 2 m from the leading edge of a flat plate was 

measured as 2.1 N/m2. Assuming the flow to be turbulent from the start determine if air at 

20°C was flowing over the plate (i) the velocity of air (ii) the boundary layer thickness and (iii) 

the velocity at 15 mm above the plate.  = 1.205 kg/m3, v = 15.06 × 10–6 m2/s 

Using equation (10.2.3) Cfx = 0.0594/Rex
0.2, w = Cfx (1/2)  u2, 

v = 
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 

x 

= j j 

1 R r J  r 7 6 

y
2  z 

0.0594  (15.06  10−6)0.2 1 
2 

Equating 2.1 = 
u0.2 20.2 

× 
2 

× 1.205 u , Solving, 

u
1.8 = 621.04 or u = 35.623 m/s 

Re = 35.623 × 2/15.06 × 10–6 = 4.808 × 106, 

Turbulent hence the use of equation (10.2.3) is justified. Using equation (10.2.1), 

 = 0.382x/Re 0.2 = 0.382 × 2/(4.808 × 106)0.2
 

= 0.0352 m or  = 35.2 mm 

If the velocity profile is assumed as 

u J y7 1/7
 

u H  J 
 u = 35.623 (15/35.2)1/7 = 32.05 m/s 

Problem 6.8 Determine the length at which the flow over a flat plate will turn 
turbulent for air, water and engine oil if the flow velocity is 3 m/s. Also determine the boundary 
layer thickness at the location. Temperature of the fluid = 20°C. The kinematic viscosity and 
density of the fluids are : 

 

S. No Density, kg/m3
 Kinematic viscosity Lcv, m , mm 

Air 1.205 15.06 × 10–6
 2.51 17.7 

Water 1000 1.006 × 10–6
 0.17 1.2 

Engine oil 888 901 × 10–6
 150 1061 

The flow turns turbulent at Re = 5 × 105
 

(1) Air : 5 × 105 = 3 × La/15.06 × 10–6  La = 2.51 m 

 = 5x/Rex
0.5 = 5 × 2.51/(5 ×105)0.5 = 0.0177 m 

(2) Water : 5 × 105 = 3 × Lw/1.006 × 10–6  Lw = 0.1677 m 

 = 5x/Rex
0.5 = 5 × 0.1677/(5 ×105)0.5 = 0.0012 m 

(3) Engine oil : 5 × 105 = 3 × Lo/901 × 10–6  Lo = 150.17 m 

 = 5x/Rex
0.5 = 5 × 150.17/(5 ×105)0.5 = 1.061 m 

Problem 6.9 The pressure distribution on the front and back 

surfaces of a thin disk of radius, R oriented perpendicular to a fluid stream 

was measured and the pressure coefficient has been correlated as below. 

Front side : CP = 1 – (r/R)6. Rear surface : CP = – 0.42 

Determine the drag coefficient for the disk. 

CP = P/(1/2)  AV2
 

 P = CP(1/2)  AV2 = CP 2 rdr ( V2/2) 

Consider a small strip of width dr at a radius r. The force on the area = P × 2 rdr 

F   = z R 

P  2 rdr  =  
1 

V 2 zR 

C 2 rdr = V j1 − j  j j 2 rdr 

D 0 2 0 
p 

2 0   jl H R J jQ 
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2  
rr2 j 2  

rR2 
− 

= 
1 

2  V j r8 y 6 = 
1 

2  V j 
− 

R2 y
j
 

2 l 2 8R  Q0 
2 l 2 8  Q 

= 
1 

V 2 R2 
2 

3 / 4 = (1/8)  AV2
 

CD = FD/(1/2)  AV2 CD = 3/4 = 0.75 

On the otherside, the pressure is independent of radius  CD = Cp and it is in the 

opposite direction 

 Cp = 0.75 + 0.42 = 1.17 

Problem 6.10 Air flows along a triagular plate as shown in Fig. P. 10.10. Determine 

the shear force on both sides of the plate. Assume air temperature. as 20°C.  = 1.205 kg/m3, 

kinematic viscosity is 15.06 × 10–6 m2/s. 

 

 

 

 

Flow 
2m/s 

 
 
 
 
 
 
 
 
 

Considering the maximum length of 0.5 m 

Re = 2 × 0.5/15.06 × 10–6 = 0.66 × 105      flow is laminar 

x = 0.332  u2/Re0.5 = 0.332  u2v1/2/u1/2x1/2
 

= 0.332  u1.5v1/2x–1/2 

= 0.332 × 1.205 × 21.5 × (15.06 × 10–6)0.5x–1/2
 

= 4.97 × 10–3x1/2
 

Considering a strip of width dx at a distance x from base, and assuming the length of 

base as 2L, height will be L. 

dA =
 L − x 

× 2L × dx = 2(L – x)dx, Force on the strip 
L 

dF = x dA = 4.97 × 10–3 × 2(L – x)x–1/2dx 

Integrating between x = 0 to x = L 

r Lx1/ 2 x1.5 y L  

4
 

F = 9.94 × 10–3 jl 0.5  

− 
1.5 

j 
0 

= 9.94 × 10–3 × 
3 

× L1.5
 

Here L = 0.5 m.    F = 4.68 × 10–3 N 

Plate 

X dx 

45° 

x 

L 

 

 

 

 

 
1 m  

R 

Q 
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L L fL 

Check for dimensional homogeneity. 

F = const  u1.5v1/2L1.5, 

 

 

Hence checks. 

N = const 
kg

 

m3 

m1.5  

s1.5  

m 

s0.5 

 

m1.5 = kgm/s2 = N, 

Problem 6.11 A water ski is 1.2 m long and 0.2 m wide and moves in water at 10 m/s. 

the water temperature is 20°C. Determine the viscous drag approximating it as a flat plate. 

v = 1.006 × 10–6 m2/s.  = 1000 kg/m3, 

Re = 1.2 × 10/1.006 × 10–6 = 11.93 × 106
 

 The flow is turbulent considering combined laminar and turbulent flows. 

CfL = 0.074Re –0.2 – 1742Re –1 = 2.99 × 10–3, Drag = C (1/2) u2 

Drag = (1/2) 1000 × 102 × 1.2 × 0.2 × 2.99 × 10–3 = 35.88 N 

Power required considering 2 skis, P = 2 × 35.88 × 10 = 717.6 W 

Problem 6.12 In a power plant located near the sea a chimney of 1.2 m diameter and 

35 m height has been installed. During a cyclone the wind reaches velocity in the range of 60 

kmph. Determine the moment at the base of the chimney. 

 = 1.2 kg/m3, v = 17.6 × 10–6 m2/s, u = 600000/3600 = 16.67 m/s 

Re = 16.67 × 1.2/17.6 × 10–6 = 1.14 × 106
 

From graph for circular cylinder CD is read as 0.35 

 FD = CD  Au2/2 = 0.35 × 1.23 × 35 × 1.2 × 16.662/2 = 5022.5 N 

As this is a uniform force, it can be taken to act at the mid point. 

 Moment = 5022.5 × 35/2 = 87893 Nm or 87.893 kNm. 

Problem 6.13 A overhead water tank is in the shape of a sphere of 12 m diameter and 

is supported by a 30 m tall tower of circular section of diameter 2 m. Determine the moment 

at the base caused by the aerodynamic force due to cyclonic wind of speed 100 kmph. Assume 

density of air as 1.205 kg/m3 and kinematic viscosity as 15.06 × 10–6 m2/s. 

For the spherical portion : Re = 12 × 
100  1000 

 
3600 

1 

1506  10−6 

 
= 2.21 × 107

 

The value of CD is read as 0.19 from graph by extrapolation. 

For the cylindrical portion : Re = 2 × 
100  1000 

 

3600 

1 

1506  10−6 

 

= 3.689 × 106
 

The value of CD is read as 0.40 from graph by extrapolation. 

FD = CD (1/2)  AV2, M = FD × distance, 

V = 100 × 1000/3600 = 27.78 m/s. 

For the spherical portion 

M = (30 + 6) × 0.19 × (1/2) × 1.205 × ( ×122/4) × 27.782
 

= 359.6 × 103 Nm 
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For the cylindrical portion 

M = 15 × 0.4 × (1/2) × 1.205 × 2 × 30 × 27.782 = 167.4 × 103 Nm 

Total moment = (359.6 + 167.4) × 103 = 527.0 × 103 Nm 

Problem 6.14 A parachute moves down at a speed of 6 m/s. The mass of the chute and 

the jumper is 120 kg. Determine the minimum diameter of the chute. Density of air = 1.23 

kg/m3. 

For parachute  CD = 1.2, (Refer table 10.3.1) 

Net force = 120 × 9.81 N 

120 × 9.81 = 1.2 × (1/2) × 1.23 × ( D2/4) × 62 Solving D = 7.51 m 

Problem 6.15 Hail stones that are formed in thunder clouds are sopported by the drag 

due to the air draft upwards and will begin to fall when the size reaches a critical value. Estimate 

the velocity upwards so that hailstones begin to fall when the diameter reaches a value of 

40 mm. The density and dynamic viscosity of air at the altitude of 5000 m where the stones are 

formed are 0.7364 kg/m3 and 1.628 × 10–5 kg/ms. Hailstone is assumed to be in the shape of a 

sphere with a density of 940 kg/m3. 

The drag force should be just less than the gravity force when the hailstone begins to 

fall. At the limiting condition thses can be taken as equal. Other body forces like buoyancy 

forces are negligible. 

Drag force = CD (1/2)  Au2, Gravity force =  Vg, V being the volume. 

Equating and substituting the values, 

CD = (1/2) × 0.7364 ×  × 0.022 u2 = (4/3) ×  × 0.023 × 9.81 × 940 

 CD u
2 = 667.85 

CD depends on Reynolds number which cannot be calculated without the value of velocity. 

Looking at the graph for CD for spheres, the value is about 0.45 for Re = 103 to 5 × 105. 

Substituting this value, u = 38.52 m/s or 138.7 kmph. 

Re = 38.52 × 0.04/1.628 ×10–5 = 0.94 ×105. 

Hence the assumed value of CD is acceptable. 

Problem 6.16 A stirrer is constructed as shown in Fig. P. 6.16. The dimensions are 

indicated in the figure. The stirrer speed is 90 rpm. Determine the torque on the shaft and 

also the power required. Assume the vessel is large. Neglect the drag on the rod and the shaft. 

Density of the fluid is 1025 kg/m3. 

 
 

0.15 m 

 
 
 
 
 
 

Figure P. 6.16 Stirrer details 

90 rpm 

0.5 m 
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For circular plate CD = 1.17 

Linear speed of the disk = 
 DN 

= 
  0.5  90 

= 4.7124 m/s 

60 60 

CD = FD/(1/2)  AV2, A =  × 0.152/4 

 FD = 1.17 × (1/2) × 1025 × ( × 0.152/4) × 4.71242 = 235.31 N 

Torque = Force × torque arm = 235.30 × 0.5 = 117.65 Nm. 

Power = 2 NT/60 = ( × 90 × 117.65)/60 = 1109 W 

Problem 6.17 An anemometer has hemispherical cups of 80 mm dia with an arm 

distance from the post to center of 130 mm. If due ot fiction, the cups starts rotating at a wind 

speed of 3 m/s. Determine the starting torque. Consider density of air as 1.23 kg/m3. 

The coefficient of drag when the cup faces the wind is 1.42. The coefficient of drag on the 

back = 0.38. 

 Net coefficient = 1.42 – 0.38 = 1.04 

 Force = CDA V2/2, Torque = Force × torque arm, Substituting 

Starting torque = 1.04 ×  × 
0.08

2 

 
1.23 

× 32 × 0.13 = 3.76 × 10–3 Nm 
  

4 2 

Problem 6.18 Determine the wind force on the antenna shown in Figure P. 10.18. 

All the components face the wind blowing at 100 kmph.  = 1.205 kg/m3, kinematic viscosity 

is 15.06 × 10–6 m2/s. 
 

0.02 m  

× 1.5 m 

 

 
4 × 0.01 m  

× 1 m  

 
 

0.04 m  

× 5 m  

 
 
 
 
 

Figure P. 6.18 Antenna details 

Velocity of wind = 100000/3600 = 27.78 m/s 

The value of Reynolds number is given by 

Re = 27.78 × 0.04/15.06 × 10–6 = 7.38 × 104 for 40 mm rod and 1.84 × 104 for 10 mm rod. 

At this value CD is about 1.4 for both cases. 

F = 1.4 × 
1.205

 
D 2 

= 175.7 N 

× 27.782 [(5 × 0.04) + (1.5 × 0.02) + (4 × 0.01)] 
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    

Problem 6.19 The total mass of an aircraft is 70000 kg. The wing area is 160 m 2. If the 

craft travels at 600 kmph, determine the lift coefficient. Neglect the compressibility effect. 

Air density at the flight conditions is 0.85 kg/m3. 

The lift force should be equal the weight at steady flight. Lift force FL is given by 

FL = CL A(1/2)  V2, flight speed, V = 600000/3600 = 166.7 m/s 

70000 × 9.81 = CL × 160 × (1/2) × 0.85 × 166.72      CL = 0.3635. 

Problem 6.20 In championship tennis, balls are hit at speeds exceeding 100 kmph and 

good amount of spin. Calculate the aerodynamic lift on ball and radius of curvature of 

path in the vertical plane, when the ball is hit at a speed of 108 kmph and a top spin of 8000 

rpm. The ball diameter is 0.064 m and mass is 0.057 kg. For air density = 1.165 kg/m3 and 

kinematic viscosity is 16 × 10–6 m2/s. 

The lift force depends on the spin ratio and Reynolds number. Top spin causes downward 

force. Spin ratio =  D/2u. 

u = 108000/3600 = 30 m/s,  = 8000 × 2/60 = 837.76 radians/s 

   Spin ratio = (837.76 × 0.064/2 × 30) = 0.8936 

Re = 30 × 0.064/16 × 10–6 = 1.2 × 105
 

By interpolation in Fig. 10.3.4, page 341 CL is read as 0.25 

 Lift force = 0.25 ×  × 
0.064

2

 

4 

This force acts downwards due to top spin. 

× 
1 

× 1.165 × 302 = 0.4216 N, 
2 

gravity force = 0.057 × 9.81 = 0.5592 N  Total force = 0.9808 N 

Equating it to the z directional acceleration 

F = mu2/R where R is the radius of the path in the vertical plane. 

R = 0.057 × 302/0.9808 = 52.3 m 

In case only gravity force acts, then R = 0.057 × 302/0.5592 = 91.7 m 

The ball comes down sharply due to the top spin. 

Problem 6.21 A table tennis ball of mass 2.5 grams and a diameter of 38 mm is hit 

with a velocity of 12 m/s, with a back spin . Determine the value of back spin for the ball 

to travel in a horizontal path, not dropping due to gravity. Density and kinematic viscosity 

of air are 1.165 kg/m3 and 16 × 10–6 m2/s. 

For this situation, the force due to gravity should equal the lift force. i.e., 

mg = CL(1/2)  u2A 

  2.5   
× 9.81 = C × 

1 
× 1.165 × 122 ×  × 

0.038
2 

C = 0.2578 

1000 L 2 4 L 

From the graph for CL vs spin ratio, (Fig. 10.3.4) the value of spin ratio is read as 0.91 

 D 
= 0.91, = 574.7 rad/s or 5488 rpm 

2u 
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If the velocity is more, for this spin the ball will rise. If the velocity is less then the ball 

will travel in an arc. 

Problem 6.22 A cork ball 0.3 m diameter with specific gravity 0.21 is tied on the bed of 

a river. At a certain time it rests at 30° to the horizontal due to the flow. Determine the velocity 

of flow. 

The forces on the cork ball are shown in Fig. P. 10.22. 

 

 

Buoyant 
force 

 

V 

 

FD 

 
Drag force 

 
30° 

 
 

 

At equilibrium the components along the rope (at 30° to the horizontal) is taken up by 

the rope. The components perpendicular to this line should balance. 

 FD cos 60 = Fb cos 30 

Fb = Buoyant force = difference in density × volume × g 

= 790 × 
4 

 × 0.153 × 9.81 N = 109.56 N 
3 

 Fb cos 30 = 94.88 N.  FD = 94.88/cos 60 = 189.66 N 

FD = CD (1/2)  AV2, CD = 0.45 for sphere 

189.66 = 
0.45 

× 1000 ×  × 
0.3

2 

V 2 , Solving V = 3.45 m/s 
 

2 

Reynolds number =
 3.45  0.3 

 
1.06  10−6 

4 

 
= 0.98 × 106

 

For this value CD = 0.2 Corresponding V = 5.18 m/s 

Further iteration is necessary as the new value of Re = 1.47 × 106 and CD = 0.35. 

Problem 6.23 Air flows in a square duct of side 0.6 m with a velocity of 3 m/s. The 

displacement thickness in meter is given by d = 0.0039 x0.5 where x is the distance along the 

flow. Determine the velocity outside the boundary layer at a distance of 30 m. Density 

of air = 1.2 kg/m3. 

The flow with boundary layer can be taken as flow at the free stream velocity with the 

boundary moved by a distance equal to the displacement thickness. 

At 30 m, displacement thickness is d = 0.0039 × 300.5 = 0.02136 m 
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2 1 

The side of the square is reduced by twice this thickness. 

 Length of side considering displacement thickness is 

Ld = (0.6 – 2 × 0.02136) = 0.5573 m 

Equating the volume flow rate 0.6 × 0.6 × 3 = 0.55732 × V2 

 V2 = 3.48 m/s 

The pressure drop can be calculated for the flow outside the boundary layer as 

P = (1/2)  (V 2 – V 2) = (1/2) × 1.2 [3.482 – 32] = 1.87 N/m2
 

 
 

  OBJECTIVE QUESTIONS   

 
O Q. 10.1 Fill in the blanks: 

1. In flow over surfaces, fluid at the surface takes on the velocity of the body as a result of 

    condition. 

2. The study of non viscous fluid flow is called . 

3. Equations describing the complete flow field are know as equations. 

4. The effect of viscosity is important only in a thin layer adjacant to the surface called 

_______________. 

5. The flow outside the boundary layer can be treated as flow. 

6. Velocity gradient exists only in the . 

7. The forces which are important in the boundary layer are . 

8. In ideal flwo the forces that are important are . 

9. The pressure gradient at the surface causes on the surface. 

10. Initially flow prevails in the boundary layer. 

 

Answers 

(1) no slip (2) Theoretical hydrodynamics. (3) Navier-Stokes (4) boundary layer (5) Ideal fluid (6) 

boundary layer (7) Inertia and viscous forces (8) pressure and inertia (9) shear stress (10) Laminar 

O Q. 10.2 Fill in the blanks: 

1. Mass and momentum flow in laminar boundary layer is only at the level. 

2. The two methods of analysis of boundary layer flow are . 

3. Macroscopic mixing between layers occurs in . 

4. The ratio of inertia force to viscous force is called number. 

5. Turbulent flow over a flat plate is generally taken to start at a Reynolds number of . 

6. In laminar flow viscous forces are compared to inertia forces. 

7. In turbulent flow viscous forces are 

8. Boundary layer separation occurs when there is an 

compared to inertia force. 

pressure gradient. 

9. Lift is the component of the total force on a body immersed in a flow in the                    

direction. 

10. Drag is the component of the total force on a body immersed in a flow in the                  

direction. 
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