
Binils.com – Free  Anna University, Polytechnic, School Study Material 
 

binils- Android app 
 

Catalog 

Physical Properties of Fluids ················································································································································ 1 

Chapter 1 Physical Properties of Fluids ····················································································································· 1 

1.0 Introduction ················································································································································ 1 

1.1 Three Phases of Matter ····························································································································· 2 

1.2 Compressible and Incompressible Fluids ·································································································· 2 

1.3 Dimensions and Units ································································································································ 3 

1.4 Continuum ················································································································································· 4 

1.5 Definition of Some Common Terminology ································································································· 4 

1.6 Vapour and Gas ········································································································································· 5 

1.7 Characteristic Equation for Gases ············································································································· 6 

1.8 Viscosity ····················································································································································· 7 

1.9 Application of Viscosity Concept ············································································································· 13 

1.10 Surface Tension ····································································································································· 17 

1.11 Compressibility and Bulk Modulus ········································································································· 21 

1.12 Vapour Pressure ···································································································································· 23 

Solved Problems ············································································································································ 24 

Objective Questions ······································································································································· 33 

Chapter 6 Bernoulli Equation and Applications ········································································································ 34 

6.0 Introduction ·············································································································································· 34 

6.1 Forms of Energy Encountered in Fluid Flow ··························································································· 34 

6.2 Variation in the Relative Values of Various Forms of Energy During Flow·············································· 37 

6.3 Euler's Equation of Motion For Flow Along A Stream Line ······································································ 37 

6.4 Bernoulli Equation for Fluid Flow ············································································································· 38 

6.5 Energy Line and Hydraulic Gradient Line ································································································ 41 

6.6 Volume Flow Through A Venturimeter ···································································································· 42 

6.7 Euler and Bernoulli Equation for Flow With Friction ················································································ 44 

6.8 Concept and Measurement of Dynamic, Static and Total Head ······························································ 46 

Solved Problems ············································································································································ 48 

binils.com

binils - Anna University App on Play Store

                    Free PDF Study Materials
binils.com - Anna University, Polytechnic & Schools



binils- Android app 

Binils.com – Free  Anna University, Polytechnic, School Study Material 
 

 

 
 
 
 
 

Chapter-1 Physical Properties of Fluids 
 

 

 
 

  1.0 INTRODUCTION   

 
The flow of ideal non-viscous fluids was extensively studied and mathematical theories were 

developed during the last century. The field of study was called as ‘Hydrodynamics’. However 

the results of mathematical analysis could not be applied directly to the flow of real fluids. 

Experiments with water flow resulted in the formulation of empirical equations applicable to 

engineering designs. The field was called Hydraulics. Due to the development of industries 

there arose a need for the study of fluids other than water. Theories like boundary layer theory 

were developed which could be applied to all types of real fluids, under various conditions of 

flow. The combination of experiments, the mathematical analysis of hydrodynamics and the 

new theories is known as ‘Fluid Mechanics’. Fluid Mechanics encompasses the study of 

all types of fluids under static, kinematic and dynamic conditions. 

The study of properties of fluids is basic for the understanding of flow or static condition 

of fluids. The important properties are density, viscosity, surface tension, bulk modulus 

and vapour pressure. Viscosity causes resistance to flow. Surface tension leads to capillary 

effects. Bulk modulus is involved in the propagation of disturbances like sound waves in fluids. 

Vapour pressure can cause flow disturbances due to evaporation at locations of low pressure. 

It plays an important role in cavitation studies in fluid machinery. 

In this chapter various properties of fluids are discussed in detail, with stress on their 

effect on flow. Fairly elaborate treatment is attempted due to their importance in engineering 

applications. The basic laws used in the discussions are : 

(i) Newton’s laws of motion, 

(ii) Laws of conservation of mass and energy, 

(iii) Laws of Thermodynamics, and 

(iv) Newton’s law of viscosity. 

A fluid is defined as a material which will continue to deform with the 

application of shear force however small the force may be. 
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  1.1 THREE PHASES OF MATTER   
 

Generally matter exists in three phases namely (i) Solid (ii) Liquid and (iii) Gas (includes 

vapour). The last two together are also called by the common term fluids. 

In solids atoms/molecules are closely spaced and the attractive (cohesive) forces between 

atoms/molecules is high. The shape is maintained by the cohesive forces binding the atoms. 

When an external force is applied on a solid component, slight rearrangement in atomic positions 

balances the force. Depending upon the nature of force the solid may elongate or shorten or 

bend. When the applied force is removed the atoms move back to the original position and the 

former shape is regained. Only when the forces exceed a certain value (yield), a small 

deformation called plastic deformation will be retained as the atoms are unable to move to 

their original positions. When the force exceeds a still higher value (ultimate), the cohesive 

forces are not adequate to resist the applied force and the component will break. 

In liquids the inter molecular distances are longer and the cohesive forces are of smaller 

in magnitude. The molecules are not bound rigidly as in solids and can move randomly. However, 

the cohesive forces are large enough to hold the molecules together below a free surface that 

forms in the container. Liquids will continue to deform when a shear or tangential force is 

applied. The deformation continues as long as the force exists. In fluids the rate of deformation 

controls the force (not deformation as in solids). More popularly it is stated that a fluid (liquid) 

cannot withstand applied shear force and will continue to deform. When at rest liquids will 

assume the shape of the container forming a free surface at the top. 

In gases the distance between molecules is much larger compared to atomic dimensions 

and the cohesive force between atoms/molecules is low. So gas molecules move freely and fill 

the full volume of the container. If the container is open the molecules will diffuse to the 

outside. Gases also cannot withstand shear. The rate of deformation is proportional to the 

applied force as in the case of liquids. 

Liquids and gases together are classified as fluids. Vapour is gaseous state near the 

evaporation temperature. The state in which a material exists depends on the pressure and 

temperature. For example, steel at atmospheric temperature exists in the solid state. At higher 

temperatures it can be liquefied. At still higher temperatures it will exist as a vapour. 

A fourth state of matter is its existence as charged particles or ions known as plasma. 

This is encountered in MHD power generation. This phase is not considered in the text. 

 
 

  1.2 COMPRESSIBLE AND INCOMPRESSIBLE FLUIDS     

 
If the density of a fluid varies significantly due to moderate changes in pressure or 

temperature, then the fluid is called compressible fluid. Generally gases and vapours 

under normal conditions can be classified as compressible fluids. In these phases the distance 

between atoms or molecules is large and cohesive forces are small. So increase in pressure or 

temperature will change the density by a significant value. 

If the change in density of a fluid is small due to changes in temperature and 
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or pressure, then the fluid is called incompressible fluid. All liquids are classified under 

this category. 
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When the change in pressure and temperature is small, gases and vapours are treated 

as incompressible fluids. For certain applications like propagation of pressure disturbances, 

liquids should be considered as compressible. 

In this chapter some of the properties relevant to fluid mechanics are discussed with a 

view to bring out their influence on the design and operation of fluid machinery and equipments. 

 
 

  1.3 DIMENSIONS AND UNITS     

 
It is necessary to distinguish clearly between the terms “Units” and “Dimensions”. The word 

“dimension” is used to describe basic concepts like mass, length, time, temperature and force. 

“Large mass, long distance, high temperature” does not mean much in terms of visualising the 

quantity. Dimension merely describes the concept and does not provide any method for the 

quantitative expression of the same. Units are the means of expressing the value of the 

dimension quantitatively or numerically The term “second” for example is used to quantify 

time. “Ten seconds elapsed between starting and ending of an act” is the way of expressing the 

elapsed time in numerical form. The value of dimension should be expressed in terms of units 

before any quantitative assessment can be made. 

There are three widely used systems of units in the world. These are (1) British or 

English system (it is not in official use now in Briton) (2) Metric system and (3) SI system 

(System International d’Unites or International System of Units). India has passed through 

the first two systems in that order and has now adopted the SI system of units. 

The basic units required in Fluid Mechanics are for mass, length, time and temperature. 

These are kilogram (kg), metre (m), second (s) and kelvin (K). The unit of force is defined 

using Newton’s second law of motion which states that applied force is proportional to the time 

rate of change of momentum of the body on which the force acts. 

For a given mass m, subjected to the action of a force F, resulting in an acceleration a, 

Newton’s law can be written in the form 

F = (1/go) m a (1.3.1) 

where go is a dimensional constant whose numerical value and units depend on those selected 

for force, F, mass, m, and acceleration, a. The unit of force is newton (N) in the SI system. 

One newton is defined as the force which acting on a mass of one kilogram will produce 

an acceleration of 1 m/s2. This leads to the relation 

1 N = (1/go)  1 kg  1 m/s2 (1.3.2) 

Hence go = 1 kg m/N s2 (1.3.3) 

The numerical value of go is unity (1) in the SI system and this is found advantageous in 

numerical calculations. However this constant should necessarily be used to obtain dimensional 
homogeneity in equations. 

In metric system the unit of force is kgf defined as the force acted on one kg mass by 

standard gravitational acceleration taken as 9.81 m/s2. The value of go is 9.81 kg m/kgf s
2. 

In the English system the unit of force is lbf defined as the force on one lb mass due to 

standard gravitational acceleration of 32.2 ft/s2. 

The value of go is 32.2 ft lb/lbf s
2. 
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Some of the units used in this text are listed in the table below: 
 

Quantity Unit symbol Derived units 

mass kg ton (tonne) = 1000 kg 

time s min (60s), hr (3600s) 

length m mm, cm, km 

temperature K, (273 + °C) °C 

force N (newton) kN, MN (106 N) 

energy, work, heat Nm, J kJ, MJ, kNm 

power W = (Nm/s, J/s) kW, MW 

pressure N/m2, (pascal, pa) kPa, MPa, bar (105Pa) 

Conversion constants between the metric and SI system of units are tabulated elsewhere 

in the text. 

 
 

  1.4 CONTINUUM  
 

As gas molecules are far apart from each other and as there is empty space between molecules 

doubt arises as to whether a gas volume can be considered as a continuous matter like a solid 

for situations similar to application of forces. 

Under normal pressure and temperature levels, gases are considered as a continuum 

(i.e., as if no empty spaces exist between atoms). The test for continuum is to measure properties 

like density by sampling at different locations and also reducing the sampling volume to low 

levels. If the property is constant irrespective of the location and size of sample volume, then 

the gas body can be considered as a continuum for purposes of mechanics (application of force, 

consideration of acceleration, velocity etc.) and for the gas volume to be considered as a single 

body or entity. This is a very important test for the application of all laws of mechanics to a gas 

volume as a whole. When the pressure is extremely low, and when there are only few molecules 

in a cubic metre of volume, then the laws of mechanics should be applied to the molecules as 

entities and not to the gas body as a whole. In this text, only systems satisfying continuum 

requirements are discussed. 

 
 

  1.5 DEFINITION OF SOME COMMON TERMINOLOGY  
 

Density (mass density): The mass per unit volume is defined as density. The unit used is kg/m3. 

The measurement is simple in the case of solids and liquids. In the case of gases and vapours 

it is rather involved. The symbol used is . The characteristic equation for gases provides a 

means to estimate the density from the measurement of pressure, temperature and volume. 

Specific Volume: The volume occupied by unit mass is called the specific volume of the 
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material. The symbol used is v, the unit being m3/kg. Specific volume is the reciprocal of density. 
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In the case of solids and liquids, the change in density or specific volume with changes 

in pressure and temperature is rather small, whereas in the case of gases and vapours, density 

will change significantly due to changes in pressure and/or temperature. 

Weight Density or Specific Weight: The force due to gravity on the mass in unit 

volume is defined as Weight Density or Specific Weight. The unit used is N/m3. The symbol 

used is . At a location where g is the local acceleration due to gravity, 

Specific weight,  = g  (1.5.1) 

In the above equation direct substitution of dimensions will show apparent non- 

homogeneity as the dimensions on the LHS and RHS will not be the same. On the LHS the 

dimension will be N/m3 but on the RHS it is kg/m2 s2. The use of go will clear this anomaly. As 

seen in section 1.1, go = 1 kg m/N s2. The RHS of the equation 1.3.1 when divided by go will lead 
to perfect dimensional homogeneity. The equation should preferably be written as, 

Specific weight,  = (g/go)  (1.5.2) 

Since newton (N) is defined as the force required to accelerate 1 kg of mass by 1/s2, it 

can also be expressed as kg.m/s2. Density can also be expressed as Ns2/m4 (as kg = Ns2/m). 

Beam balances compare the mass while spring balances compare the weights. The mass is the 

same (invariant) irrespective of location but the weight will vary according to the local 

gravitational constant. Density will be invariant while specific weight will vary with variations 

in gravitational acceleration. 

Specific Gravity or Relative Density: The ratio of the density of the fluid to the 

density of water—usually 1000 kg/m3 at a standard condition—is defined as Specific Gravity 

or Relative Density  of fluids. This is a ratio and hence no dimension or unit is involved. 

 
Example 1.1. The weight of an object measured on ground level where ge = 9.81 m/s2 is 35,000 N. 

Calculate its weight at the following locations (i) Moon, gm = 1.62 m/s2 (ii) Sun, gs = 274.68 m/s2 (iii) 

Mercury, gme = 3.53 m/s2 (iv) Jupiter, gj = 26.0 m/s2 (v) Saturn, gsa = 11.2 m/s2 and (vi) Venus, gv = 
8.54 m/s2.

 

Mass of the object, me = weight  (go/g) = 35,000  (1/9.81) = 3567.8 kg 

Weight of the object on a planet, p = me  (gp/go) where me is the mass on earth, gp is gravity on the 

planet and go has the usual meaning, force conversion constant. 

Hence the weight of the given object on, 

(i) Moon = 3567.8  1.62 = 5,780 N 

(ii) Sun = 3567.8  274.68 = 9,80,000 N 

(iii) Mercury = 3567.8  3.53 = 12,594 N 

(iv) Jupiter = 3567.8  26.0 = 92,762 N 

(v) Saturn = 3567.8  11.2 = 39,959 N 

(vi) Venus = 3567.8  8.54 = 30,469 N 

Note that the mass is constant whereas the weight varies directly with the gravitational constant. 

Also note that the ratio of weights will be the same as the ratio of gravity values. 

 
 

  1.6 VAPOUR AND GAS  

 
When a liquid is heated under a constant pressure, first its temperature rises to the boiling 
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point (defined as saturation temperature). Then the liquid begins to change its phase to the 
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gaseous condition, with molecules escaping from the surface due to higher thermal energy 

level. When the gas phase is in contact with the liquid or its temperature is near the 

saturation condition it is termed as vapour. 

Vapour is in gaseous condition but it does not follow the gas laws. Its specific heats will 

vary significantly. Moderate changes in temperature may change its phase to the liquid state. 

When the temperature is well above the saturation temperature, vapour begins to behave 

as a gas. It will also obey the characteristic equation for gases. Then the specific heat will be 

nearly constant. 

 

  1.7 CHARACTERISTIC EQUATION FOR GASES     

The characteristic equation for gases can be derived from Boyle’s law and Charles’ law. Boyle’s 

law states that at constant temperature the volume of a gas body will vary inversely with 

pressure. Charles’ law states that at constant pressure, the temperature will vary inversely 

with volume. Combining these two, the characteristic equation for a system containing m kg of 

a gas can be obtained as 

PV = mRT (1.7.1) 

This equation when applied to a given system leads to the relation 1.7.2 applicable for 

all equilibrium conditions irrespective of the process between the states. 

(P1V1/T1) = (P2V2/T2) = (P3 V3/T3) = (PV/T) = Constant (1.7.2) 

In the SI system, the units to be used in the equation are Pressure, P → N/m2, volume, 

V → m3, mass, m → kg, temperature, T → K and gas constant, R → Nm/kgK or J/kgK (Note: K 

= (273 + °C), J = Nm). 

This equation defines the equilibrium state for any gas body. For a specified gas body 

with mass m, if two properties like P, V are specified then the third property T is automatically 

specified by this equation. The equation can also be written as, 

Pv = RT (1.7.3) 

where v = V/m or specific volume. The value for R for air is 287 J/kgK. 

Application of Avagadro’s hypothesis leads to the definition of a new volume measure 

called molal volume. This is the volume occupied by the molecular mass of any gas at standard 

temperature and pressure. This volume as per the above hypothesis will be the same for all 

gases at any given temperature and pressure. Denoting this volume as Vm and the pressure as 

P and the temperature as T, 

For a gas a,         PVm = Ma Ra T (1.7.4) 

For a gas b,         PVm = Mb Rb T (1.7.5) 

As P, T and Vm are the same in both cases. 

MaRa = MbRb = M  R = Constant (1.7.6) 

The product M  R is called Universal gas constant and is denoted by the symbol . 

Its numerical value in SI system is 8314 J/kg mole K. For any gas the value of gas constant R 

is obtained by dividing universal gas constant by the molecular mass in kg of that gas. The gas 

constant R for any gas (in the SI system, J/kg K) can be calculated using, 
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R = 8314/M (1.7.7)
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The characteristic equation for gases can be applied for all gases with slight approximations, 

and for practical calculations this equation is used in all cases. 

 
Example 1.2. A balloon is filled with 6 kg of hydrogen at 2 bar and 20°C. What will be the 

diameter of the balloon when it reaches an altitude where the pressure and temperature are 0.2 

bar and –60° C. Assume that the pressure and temperature inside are the same as that at the outside 

at this altitude. 

The characteristic equation for gases PV = mRT is used to calculate the initial volume, 

V1 = [(m RT1)/P1], For hydrogen, molecular mass = 2, and so 

RH = 8314/2 = 4157 J/kgK,    V1 = 6  4157  (273 + 20)/2  105 = 36.54 m3
 

Using the general gas equation the volume after the balloon has reached the altitude, V2 is 

calculated. [(P1V1)/T1] = [(P2V2)/T2] 

[(2  105  36.54)/(273+20)] = [(0.2)  105  V2)/(273 – 60)] solving, 

V2 = 265.63 m3, Considering the shape of the balloon as a sphere of radius r, 

Volume = (4/3)  r3 = 265.63 m3, solving 

Radius, r = 3.99 m and diameter of the balloon = 7.98 m 

(The pressure inside the balloon should be slightly higher to overcome the stress in the wall 

material) 

 
 

  1.8 VISCOSITY 

 
A fluid is defined as a material which will continue to deform with the application of a shear 

force. However, different fluids deform at different rates when the same shear stress (force/ 

area) is applied. 

Viscosity is that property of a real fluid by virtue of which it offers resistance 

to shear force. Referring to Fig. 1.8.1, it may be noted that a force is required to move one 

layer of fluid over another. 

For a given fluid the force required varies directly as the rate of deformation. As the 

rate of deformation increases the force required also increases. This is shown in Fig. 1.8.1 (i). 

The force required to cause the same rate of movement depends on the nature of the 

fluid. The resistance offered for the same rate of deformation varies directly as the viscosity of 

the fluid. As viscosity increases the force required to cause the same rate of deformation 

increases. This is shown in Fig. 1.8.1 (ii). 

Newton’s law of viscosity states that the shear force to be applied for a deformation rate 

of (du/dy) over an area A is given by, 

F =  A (du/dy) (1.8.1) 

or (F/A) =  =  (du/dy) =  (u/y) (1.8.2) 

where F is the applied force in N, A is area in m2, du/dy is the velocity gradient (or rate of 

deformation), 1/s, perpendicular to flow direction, here assumed linear, and  is the 

proportionality constant defined as the dynamic or absolute viscosity of the fluid. 
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ub > ua , Fb > Fa a = b ua = ub , a < b , Fb > Fa 

(i) same fluid (ii) same velocity 

Figure 1.8.1 Concept of viscosity 

The dimensions for dynamic viscosity  can be obtained from the definition as Ns/m2 or 

kg/ms. The first dimension set is more advantageously used in engineering problems. However, 

if the dimension of N is substituted, then the second dimension set, more popularly used by 

scientists can be obtained. The numerical value in both cases will be the same. 

N = kg m/s2 ;  = (kg m/s2) (s/m2) = kg/ms 

The popular unit for viscosity is Poise named in honour of Poiseuille. 

Poise = 0.1 Ns/m2 (1.8.3) 

Centipoise (cP) is also used more frequently as, 

cP = 0.001 Ns/m2 (1.8.3a) 

For water the viscosity at 20°C is nearly 1 cP. The ratio of dynamic viscosity to the 

density is defined as kinematic viscosity, , having a dimension of m2/s. Later it will be seen to 

relate to momentum transfer. Because of this kinematic viscosity is also called momentum 

diffusivity. The popular unit used is stokes (in honour of the scientist Stokes). Centistoke is 

also often used. 

1 stoke = 1 cm2/s = 10–4 m2/s (1.8.3b) 

Of all the fluid properties, viscosity plays a very important role in fluid flow problems. 

The velocity distribution in flow, the flow resistance etc. are directly controlled by viscosity. In 

the study of fluid statics (i.e., when fluid is at rest), viscosity and shear force are not generally 

involved. In this chapter problems are worked assuming linear variation of velocity in the 

fluid filling the clearance space between surfaces with relative movement. 

 
Example 1.3. The space between two large inclined parallel planes is 6mm and is filled with a 

fluid. The planes are inclined at 30° to the horizontal. A small thin square plate of 100 mm side 

slides freely down parallel and midway between the inclined planes with a constant velocity of 3 m/ 

s due to its weight of 2N. Determine the viscosity of the fluid. 

The vertical force of 2 N due to the weight of the plate can be resolved along and perpendicular to 

the inclined plane. The force along the inclined plane is equal to the drag force on both sides of the 

plane due to the viscosity of the oil. 

ua 
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Oil 
6 mm gap 

Sliding plate 
100 mm sq. 2 sin 30 N 

30° 

2N  
2N  30° 

30° 

Viscous force, F = (A  2)    (du/dy) (both sides of plate). Substituting the values, 1 = 

  [(0.1  0.1  2)]  [(3 – 0)/6/(2  1000)}] 

Solving for viscosity,  = 0.05 Ns/m2 or 0.5 Poise 

 

 

Figure Ex. 1.3 

Example 1.4. The velocity of the fluid filling a hollow cylinder of radius 0.1 m varies as u = 10 [1 

– (r/0.1)2] m/s along the radius r. The viscosity of the fluid is 0.018 Ns/m2. For 2 m length of the 

cylinder,  determine  the  shear  stress  and  shear  force  over  cylindrical  layers  of  fluid  at r = 

0 (centre line), 0.02, 0.04, 0.06 0.08 and 0.1 m (wall surface.) 

Shear stress =  (du/dy) or  (du/dr), u = 10 [1 – (r/0.1)2] m/s 

 du/dr = 10 (– 2r/0.12 ) = – 2000 r 

The – ve sign indicates that the force acts in a direction opposite to the direction of velocity, u. 

Shear stress = 0.018  2000 r = 36 rN/m2
 

Shear force over 2 m length = shear stress  area over 2m 

= 36r  2rL = 72 r2  2 = 144 r2
 

The calculated values are tabulated below: 

 

Radius, m Shear stress, N/m2
 Shear force, N Velocity, m/s 

0.00 0.00 0.00 0.00 

0.02 0.72 0.18 9.60 

0.04 1.44 0.72 8.40 

0.06 2.16 1.63 6.40 

0.08 2.88 2.90 3.60 

0.10 3.60 4.52 0.00 

 

Example 1.5. The 8 mm gap between two large vertical parallel plane surfaces is filled with a 

liquid of dynamic viscosity 2  10–2 Ns/m2. A thin sheet of 1 mm thickness and 150 mm  150 mm 

size, when dropped vertically between the two plates attains a steady velocity of 4 m/s. Determine 

weight of the plate. Assume that the plate moves centrally. 

F =  (A  2) =   (du/dy) (A  2) = weight of the plate. 

Substituting the values, dy = [(8 – 1)/(2  1000)] m and du = 4 m/s 

F = 2  10–2 [4/{(8 – 1)/(2  1000)}] [0.15  0.15  2] = 1.02 N (weight of the plate) 
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Example 1.6. Determine the resistance offered to the downward sliding    of a shaft of 400 

mm dia and 0.1 m length by the oil film between the shaft and a bearing of ID 402 mm. The 

kinematic viscosity is 2.4  10–4 m2/s and density is 900 kg/m3. The shaft is to move centrally and 

axially at a constant velocity of 0.1 m/s. 

Force, F opposing the movement of the shaft = shear stress  area 

F =  (du/dy) (   D  L ) 

 = 2.4  10–4  900 Ns/m2, du = 0.1 m/s, L = 0.1 m, D= 0.4 m 

dy = (402 – 400)/(2  1000)m, Substituting, 

F = 2.4  10–4  900  {(0.1 – 0)/[(402 – 400)/ (2  1000)]} (   0.4  0.1) = 2714 N 

 
1.8.1 Newtonian and Non Newtonian Fluids 

An ideal fluid has zero viscosity. Shear force is not involved in its deformation. An ideal fluid 

has to be also incompressible. Shear stress is zero irrespective of the value of du/dy. Bernoulli 

equation can be used to analyse the flow. 

Real fluids having viscosity are divided into two groups namely Newtonian and non 

Newtonian fluids. In Newtonian fluids a linear relationship exists between the magnitude of 

the applied shear stress and the resulting rate of deformation. It means that the proportionality 

parameter (in equation 1.8.2,  =  (du/dy)), viscosity,  is constant in the case of Newtonian 

fluids (other conditions and parameters remaining the same). The viscosity at any given 

temperature and pressure is constant for a Newtonian fluid and is independent of the rate of 

deformation. The characteristics is shown plotted in Fig. 1.8.2. Two different plots are shown 

as different authors use different representations. 

 

 
 

 

 

 

 

 

 

 

 

 

du/dy  
 

Figure 1.8.2 Rheological behaviour of fluids 

Non Newtonian fluids can be further classified as simple non Newtonian, ideal plastic 

and shear thinning, shear thickening and real plastic fluids. In non Newtonian fluids the 

viscosity will vary with variation in the rate of deformation. Linear relationship between shear 

stress and rate of deformation (du/dy) does not exist. In plastics, up to a certain value of applied 

shear stress there is no flow. After this limit it has a constant viscosity at any given temperature. 

In shear thickening materials, the viscosity will increase with (du/dy) deformation rate. In 
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shear thinning materials viscosity will decrease with du/dy. Paint, tooth paste, printers ink 
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are some examples for different behaviours. These are also shown in Fig. 1.8.2. Many other 

behaviours have been observed which are more specialised in nature. The main topic of study 

in this text will involve only Newtonian fluids. 

1.8.2 Viscosity and Momentum Transfer 

In the flow of liquids and gases molecules are free to move from one layer to another. When the 

velocity in the layers are different as in viscous flow, the molecules moving from the layer at 

lower speed to the layer at higher speed have to be accelerated. Similarly the molecules moving 

from the layer at higher velocity to a layer at a lower velocity carry with them a higher value 

of momentum and these are to be slowed down. Thus the molecules diffusing across layers 

transport a net momentum introducing a shear stress between the layers. The force will be 

zero if both layers move at the same speed or if the fluid is at rest. 

When cohesive forces exist between atoms or molecules these forces have to be overcome, 

for relative motion between layers. A shear force is to be exerted to cause fluids to flow. 

Viscous forces can be considered as the sum of these two, namely, the force due to 

momentum transfer and the force for overcoming cohesion. In the case of liquids, the viscous 

forces are due more to the breaking of cohesive forces than due to momentum transfer (as 

molecular velocities are low). In the case of gases viscous forces are more due to momentum 

transfer as distance between molecules is larger and velocities are higher. 

1.8.3 Effect of Temperature on Viscosity 

When temperature increases the distance between molecules increases and the cohesive force 

decreases. So, viscosity of liquids decrease when temperature increases. 

In the case of gases, the contribution to viscosity is more due to momentum transfer. As 

temperature increases, more molecules cross over with higher momentum differences. Hence, 

in the case of gases, viscosity increases with temperature. 

1.8.4 Significance of Kinematic Viscosity 

Kinematic viscosity,  =  , The unit in SI system is m2/s. 

(Ns/m2) (m3/ kg) = [(kg.m/s2) (s/m2)] [m3/kg] = m2/s 

Popularly used unit is stoke (cm2/s) = 10–4 m2/s named in honour of Stokes. 

Centi stoke is also popular = 10–6 m2/s. 

Kinematic viscosity represents momentum diffusivity. It may be explained by modifying 

equation 1.8.2 

 =  (du/dy) = (/) × {d (u/dy)} =  × {d (u/dy)} (1.8.4) 

d (u/dy) represents momentum flux in the y direction. 

So, () =  kinematic viscosity gives the rate of momentum flux or momentum diffusivity. 

With increase in temperature kinematic viscosity decreases in the case of liquids and 

increases in the case of gases. For liquids and gases absolute (dynamic) viscosity is not influenced 

significantly by pressure. But kinematic viscosity of gases is influenced by pressure due to 

change in density. In gas flow it is better to use absolute viscosity and density, rather than 

tabulated values of kinematic viscosity, which is usually for 1 atm. 
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1.8.5 Measurement of Viscosity of Fluids 

1.8.5.1 Using Flow Through Orifices 

In viscosity determination using Saybolt or Redwood viscometers, the time for the flow through 

a standard orifice, of a fixed quantity of the liquid kept in a cup of specified dimensions is 

measured in seconds and the viscosity is expressed as Saybolt seconds or Redwood seconds. 

The time is converted to poise by empirical equations. These are the popular instruments for 

industrial use. The procedure is simple and a quick assessment is possible. However for design 

purposes viscosity should be expressed in the standard units of Ns/m2. 

1.8.5.2 Rotating Cylinder Method 

The fluid is filled in the interspace between two cylinders. The outer cylinder is rotated keeping 

the inner cylinder stationary and the reaction torque on the inner cylinder is measured using 

a torsion spring. Knowing the length, diameter, film thickness, rpm and the torque, the value 

of viscosity can be calculated. Refer Example 1.7. 

Example 1.7. In a test set up as in figure to measure viscosity, the cylinder supported by a torsion 

spring is 20 cm in dia and 20 cm long. A sleeve surrounding the cylinder rotates at 900 rpm and the 

torque measured is 0.2 Nm. If the film thickness between the cylinder and sleeve is 0.15 mm, 

determine the viscosity of the oil. 

 
 
 
 
 
 
 

The total torque is given by the sum of the torque due to 

the shear forces on the cylindrical surface and that on the 

bottom surface. 

Torque due to shear on the cylindrical surface (eqn 1.9.1a), 

Ts = 2 NLR3/15 h, 

Torque on bottom surface (eqn 1.9.3), 

Tb = 2 NR4/60 h 

 

 

 

 

 

 
Figure Ex. 1.7 Viscosity test setup 

Where h is the clearance between the sleeve and cylinder and also base and bottom. In this case 

both are assumed to be equal. Total torque is the sum of values given by the above equations. In 

case the clearances are different then h1 and h2 should be used. 

Total torque = ( 2NR3/ 15.h) {L + (R/4)}, substituting, 

0.2 = [(  2 900  0.13)/(15  0.0015)]  [0.2 + (0.1/4)] 

Solving for viscosity,  = 0.00225 Ns/m2 or 2.25 cP. 

This situation is similar to that in a Foot Step bearing. 

 

1.8.5.3 Capillary Tube Method 

The time for the flow of a given quantity under a constant head (pressure) through a tube of 

known diameter d, and length L is measured or the pressure causing flow is maintained constant 

0.15 200 

900 rpm 

2
0
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and the flow rate is measured. 
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P = (32  VL)/d2 (1.8.5) 

This equation is known as Hagen-Poiseuille equation. The viscosity can be calculated 

using the flow rate and the diameter. Volume flow per second, Q = (  d2/4) V. Q is experimentally 

measured using the apparatus. The head causing flow is known. Hence  can be calculated. 

1.8.5.4 Falling Sphere Method 

A small polished steel ball is allowed to fall freely through the liquid column. The ball will 

reach a uniform velocity after some distance. At this condition, gravity force will equal the 

viscous drag. The velocity is measured by timing a constant distance of fall. 

 = 2r2g (1 – 2)/9V (1.8.6) 

( will be in poise. 1 poise = 0.1 Ns/m2) 

where r is the radius of the ball, V is the terminal velocity (constant velocity),  and  are the 

densities of the ball and the liquid. This equation is known as Stokes equation. 

 
Example 1.8. Oil flows at the rate of 3 l/s through a pipe of 50 mm diameter. The pressure difference 

across a length of 15 m of the pipe is 6 kPa. Determine the viscosity of oil flowing through the 

pipe. 

Using Hagen-Poiesuille equation-1.8.5 , P = (32 uL)/d2
 

u = Q/(d2/4) = 3  10–3/(  0.052/4) = 1.53 m/s 

 =  P  d2/32uL = (6000  0.052)/(32  1.53  15) = 0.0204 Ns m2
 

Example 1.9. A steel ball of 2 mm dia and density 8000 kg/m3 dropped into a column of oil of 

specific gravity 0.80 attains a terminal velocity of 2mm/s. Determine the viscosity of the oil. 

Using Stokes equation, 1.8.6 

 = 2r2g ( – )/9u 

= 2  (0.002/2)2  9.81  (8000 – 800)/(9  0.002) = 7.85 Ns/m2. 

 
 

  1.9 APPLICATION OF VISCOSITY CONCEPT  
 

1.9.1 Viscous Torque and Power—Rotating Shafts 

Refer Figure 1.9.1 

Shear stress,  =  (du/dy) =  (u/y), as linearity is assumed 

u =  DN/60, y = h, clearance in m 

 =  (DN60h) Tangential force =   A, A = DL 

Torque, T = tangential force  D/2 = (DN/60h) (DL) (D/2) 

substituting T =  2NLD3/ 120 h (1.9.1) 

If radius is used, T = 2NLR3/15 h (1.9.1a) 

As power, P = 2NT/60, 

P = 3N2LR3/450 h (1.9.2) 

For equations 1.9.1 and 1.9.2, proper units are listed below: 
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L, R, D, h should be in meter and N in rpm. Viscosity  should be in Ns/m2 (or Pas). The 

torque will be obtained in Nm and the power calculated will be in W. 
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L 

Bearing sleeve 
Oil of viscosity  

 

h 

 

N rpm 
D 

 
 

h 

 

 

Figure 1.9.1 Rotating Shaft in Bearing 

Note: Clearance h is also the oil film thickness in bearings. End effects are neglected. Linear 

velocity variation is assumed. Axial location is assumed. 

 
Example 1.10. Determine the power required to run a 300 mm dia shaft at 400 rpm in journals 

with uniform oil thickness of 1 mm. Two bearings of 300 mm width are used to support the shaft. 

The dynamic viscosity of oil is 0.03 Pas. (Pas = (N/m2)  s). 

Shear stress on the shaft surface =  =  (du/dy) = (u/y) 

u =  DN/60 =   0.3  400/60 = 6.28 m/s 

 = 0.03 {(6.28 – 0)/ 0.001} = 188.4 N/m2
 

Surface area of the two bearings, A = 2  DL 

Force on shaft surface =   A = 188.4  (2    0.3  0.3) = 106.6 N 

Torque = 106.6  0.15 = 15.995 Nm 

Power required = 2  NT/60 = 2   × 400  15.995/60 = 670 W. 

(check using eqn. 1.9.2, P =  3 N2LR3/450 h = 669.74 W) 

 

1.9.2 Viscous Torque—Disk Rotating Over a Parallel Plate 

Refer Figure 1.9.2. 

Consider an annular strip of radius r and width dr shown in Figure 1.9.2. The force on 

the strip is given by, 

F = A (du/dy) = A  (u/y) 

(as y is small linear velocity variation can be assumed) 

u = 2 rN/60, y = h, A = 2r dr 

Torque = Force × radius, substituting the above values 

torque dT on the strip is, dT = 2r dr (2rN/60h)r 

dT = 2r.dr.. 2rN.r/60.h = [2N/15.h]r3dr 
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Plate 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.9.2 Rotating disk 

Integrating the expression from centre to edge i.e., 0 to R, 

T = 2NR4/60 h (1.9.3) 

If diameter is used, R4 = (1/16)D4
 

T = 2ND4/960 h (1.9.3a) 

The power required, P = 2NT/60 

P = 3N2R4/1800 h (1.9.4) 

use R in metre, N in rpm and  in Ns/m2 or Pa s. 

For an annular area like a collar the integration limits are Ro and Ri and the torque is 

given by 

T = 2N(Ro
4 – Ri

4)/60 h (1.9.5) 

Power, P = 3N2(Ro
4 – R 4)/1800 h (1.9.6) 

 

Example 1.11. Determine the oil film thickness 

between the plates of a collar bearing of 0.2 m ID and 0.3 m 

OD transmitting power, if 50 W was required to overcome 

viscous friction while running at 700 rpm. The oil used has 

a viscosity of 30 cP. 

Power = 2NT/60 W, substituting the given values, 

50 = 2  700  T/60, Solving torque, 

T = 0.682 Nm 

This is a situation where an annular surface rotates over 

 

 
Oil film 

 
 

Collar 

 
 
 
 
 
 

Figure Ex. 1.11 

a flat surface. Hence, using equation 1.9.5, Torque, T = 2N (RO
4 – Ri

4)/60.h 

 = 30 cP = 30  .0001 Ns/m2, substituting the values, 

0.682 = (30  0.0001)  2  700  (0.154 – 0.14)/60  h 

 h = 0.000206m = 0.206 mm 

N rpm 

h 
Oil, Viscosity  

dr 

Q 

r 
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1.9.3 Viscous Torque—Cone in a Conical Support 

Considering a small element between radius r and r + dr, as shown in figure 1.9.3. The surface 

width of the element in contact with oil is 

dx = dr/sin  

The surface area should be calculated with respect to centre O as shown in figure—the 

point where the normal to the surface meets the axis—or the centre of rotation, the length OA 

being r/cos . 

Hence contact surface area = 2r.dr/sin .cos . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.9.3 Rotating cone or conical bearing 

The velocity along the surface is (2rN/60).cos  and the film thickness is h. 

F = A (du/dy) = {(2r./sin .cos )} (2rN.cos /60) (1/h) 

F = (2Nr2dr)/(15.h.sin ), Torque = F.r 

Torque on element, dT = 2Nr2dr.r/15.h.sin  = (N/15 h sin )r3 dr 

Integrating between r = 0   and r = R 

T = 2 NR4/60.h sin  (1.9.7) 

Using  in Ns/m2, h and R in metre the torque will be in N.m. When semicone angle 

 = 90°, this reduces to the expression for the disk—equation 1.9.3. For contact only between 

R1 and R2. 
T = 2 N(R 4 – R 4)/60.h. sin  (1.9.8) 

2 1 

Power required, P = 2NT/60 = 3N2[R2
4 – R1

4]/1800 h sin  (1.9.9) 
 

Exmaple 1.12. Determine the power required to overcome viscous 

friction for a shaft running at 700 rpm fitted with a conical bearing. The 

inner and outer radius of the conical bearing are 0.3 m and 0.5 m. The 

height of the cone is 0.3 m. The 1.5 mm uniform clearance between the 

bearing and support is filled with oil of viscosity 0.02 Ns/m2. 

Equation 1.9.8 is applicable in this case. 

tan  = (0.5 – 0.3)/0.3 = 0.667,     = 34° 

 
0.5 m 

 

0.3 m 34° 

0.3 m 

 
Figure Ex. 1.12 

N rpm 

R, R2 

O r/cos  

dr    r 

 A 
A 

h dr 

 

 
R1 
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T = 2 N (Ro
4 – Ri

4)/ 60. h.sin  substituting the values 
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T = 2 × 0.03 × 700 × (0.54 – 0.34)/60  0.0015  sin 34 = 149.36 Nm 

Power required = 2NT/60 = 2  700  149.36/60 = 10948 W 

Check using equation 1.9.9 also, 

P =   3  7002  [0.54 – 0.34]/ [1800  0.0015  sin 34] = 10948 W. 

Note the high value of viscosity 

 

1.10 SURFACE TENSION 
 
Many of us would have seen the demonstration of a needle being supported on water surface 

without it being wetted. This is due to the surface tension of water. 

All liquids exhibit a free surface known as meniscus when in contact with vapour or gas. 

Liquid molecules exhibit cohesive forces binding them with each other. The molecules below 

the surface are generally free to move within the liquid and they move at random. When they 

reach the surface they reach a dead end in the sense that no molecules are present in great 

numbers above the surface to attract or pull them out of the surface. So they stop and return 

back into the liquid. A thin layer of few atomic thickness at the surface formed by the cohesive 

bond between atoms slows down and sends back the molecules reaching the surface. This 

cohesive bond exhibits a tensile strength for the surface layer and this is known as surface 

tension. Force is found necessary to stretch the surface. 

Surface tension may also be defined as the work in Nm/m2 or N/m required to create 

unit surface of the liquid. The work is actually required for pulling up the molecules with 

lower energy from below, to form the surface. 

Another definition for surface tension is the force required to keep unit length of the 

surface film in equilibrium (N/m). The formation of bubbles, droplets and free jets are due to 

the surface tension of the liquid. 

1.10.1 Surface Tension Effect on Solid-Liquid Interface 

In liquids cohesive forces between molecules lead to surface tension. The formation of droplets 

is a direct effect of this phenomenon. So also the formation of a free jet, when liquid flows out 

of an orifice or opening like a tap. The pressure inside the droplets or jet is higher due to the 

surface tension. 
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Figure 1.10.1 Surface tension effect at solid-liquid interface 

binils.com

binils - Anna University App on Play Store

                    Free PDF Study Materials
binils.com - Anna University, Polytechnic & Schools



27 

Binils.com – Free  Anna University, Polytechnic, School Study Material 
 

binils- Android app  

Liquids also exhibit adhesive forces when they come in contact with other solid or liquid 

surfaces. At the interface this leads to the liquid surface being moved up or down forming a 

curved surface. When the adhesive forces are higher the contact surface is lifted up forming a 

concave surface. Oils, water etc. exhibit such behaviour. These are said to be surface wetting. 

When the adhesive forces are lower, the contact surface is lowered at the interface and a 

convex surface results as in the case of mercury. Such liquids are called nonwetting. These are 

shown in Fig. 1.10.1. 

The angle of contact “” defines the concavity or convexity of the liquid surface. It can be 
shown that if the surface tension at the solid liquid interface (due to adhesive forces) is s1 and 

if the surface tension in the liquid (due to cohesive forces) is  then 

cos  = [(2s1/11) – 1] (1.10.1) 

At the surface this contact angle will be maintained due to molecular equilibrium. The 

result of this phenomenon is capillary action at the solid liquid interface. The curved surface 

creates a pressure differential across the free surface and causes the liquid level to be raised or 

lowered until static equilibrium is reached. 

 
Example 1.13. Determine the surface tension acting on the surface of a vertical thin plate of 

1m length when it is lifted vertically from a liquid using a force of 0.3N. 

Two contact lines form at the surface and hence, Force = 2  1  Surface tension 

0.3 = 2  1  Surface tension. Solving, Surface tension,  = 0.15 N/m. 

 
1.10.2 Capillary Rise or Depression 

Refer Figure 1.10.2. 

Let D be the diameter of the tube and  is the contact angle. The surface tension forces 

acting around the circumference of the tube =  × D × . 

The vertical component of this force =   D   × cos  

This is balanced by the fluid column of height, h, the specific weight of liquid being . 

Equating, h    A =   D   cos , A = D2/4 and so 

h = (4  D    cos )/(D2) = (4  cos )/gD (1.10.2) 
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This equation provides the means for calculating the capillary rise or depression. The 

sign of cos  depending on  > 90 or otherwise determines the capillary rise or depression. 

 
Example 1.14. Determine the capillary depression of mercury in a 2 mm ID glass tube. Assume 

 = 0.5 N/m and  = 130°. 

Specific weight of mercury,   = 13600  9.81 N/m3 

Using eqn. 1.10.2, h = (4   cos)/g/D 

= (4  0.5  cos130)/(13600  9.81  0.002) 

= – 4.82  10–3 m = – 4.82 mm 

Example1.15. In a closed end single tube manometer, the height of mercury column above the 

mercury well shows 757 mm against the atmospheric pressure. The ID of the tube is 2 mm. The 

contact angle is 135°. Determine the actual height representing the atmospheric pressure if 

surface tension is 0.48 N/m. The space above the column may be considered as vacuum. 

Actual height of mercury column = Mercury column height + Capillary depression 

Specific weight of mercury = g = 13600  9.81 N/m3
 

Capillary depression, h = (4   cos)/D 

= (4  0.48  cos135)/(0.002  13600  9.81) 

= – 5.09  10–3m = – 5.09 mm (depression) 

Corrected height of mercury column = 757 + 5.09 = 762.09 mm 

 
1.10.3 Pressure Difference Caused by Surface Tension on a Doubly Curved 

Surface 

Consider the small doubly curved element with radius r1 and included angle d in one direction 

and radius r2 and d in the perpendicular direction referred to the normal at its center. 

For equilibrium the components of the surface tension forces along the normal should 

be equal to the pressure difference. 

The sides are r1 d and r2 d long. Components are r1 sin (d2) from  direction sides 

and r2 sin (d/2) from the  direction sides. 

2r1d sin(d/2) + 2r2 d sin (d/2) = (pi – po)r1r2 dd 
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Saddle surface 
 

Figure 1.10.3 Pressure difference, doubly curved surface 
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For small values of angles, sin  = , in radians. Cancelling the common terms 

 [r1 + r2] = (pi – po)  r1r2. Rearranging, (1.10.3) 

(pi – po) = [(1/r1) + (1/r2)]   

For a spherical surface, r1 = r2 = R 

So, (pi – po) = 2/R (1.10.4) 

where R is the radius of the sphere. 

For cylindrical shapes one radius is infinite, and so 

(pi – po) = /R (1.10.4a) 

These equations give the pressure difference between inside and outside of droplets and 

free jets of liquids due to surface tension. The pressure inside air bubbles will be higher compared 

to the outside pressure. The pressure inside a free jet will be higher compared to the outside. 

The pressure difference can be made zero for a doubly curved surface if the curvature is 

like that of a saddle (one positive and the other negative). This situation can be seen in the jet 

formed in tap flow where internal pressure cannot be maintained. 

1.10.4 Pressure Inside a Droplet and a Free Jet 

Refer Figure 1.10.4. 
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Figure 1.10.4 Surface tension effects on bubbles and free jets 

Considering the sphere as two halves or hemispheres of diameter D and considering the 

equilibrium of these halves, 

Pressure forces = Surface tension forces, (pi – po)(D2/4) =  ×  × D 

(pi – po) = 4(/D) = 2(/R) (1.10.5) 

Considering a cylinder of length L and diameter D and considering its equilibrium, 

taking two halves of the cylinder. 

pressure force = DL(pi – po), surface tension force = 2L 

(pi – po) = 2 (/D) = (/R) (1.10.6) 
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Example 1.16. Determine the pressure difference across a nozzle if diesel is sprayed through it 

with an average diameter of 0.03mm. The surface tension is 0.04N/m. 

The spray is of cylindrical shape 

P = /R = 0.04/(0.03  10–3/2) = 2666.67 N/m2 = 2.67 kpa 

Example 1.17. Calculate the surface tension if the pressure difference between the inside and 

outside of a soap bubble of 3mm dia is 18 N/m2. 

Referring equation 1.10.5,  P = 4D 

Surface tension,  = P  D/4 = 18  (0.003/4) = 0.0135 N/m 

 
 

 1.11 COMPRESSIBILITY AND BULK MODULUS 

 
Bulk modulus, Ev is defined as the ratio of the change in pressure to the rate of change of 

volume due to the change in pressure. It can also be expressed in terms of change of density. 

Ev = – dp/(dv/v) = dp/(d/) (1.11.1) 

where dp is the change in pressure causing a change in volume dv when the original volume 

was v. The unit is the same as that of pressure, obviously. Note that dv/v = – d/ 

The negative sign indicates that if dp is positive then dv is negative and vice versa, so 

that the bulk modulus is always positive (N/m2). The symbol used in this text for bulk modulus 

is Ev (K is more popularly used). 

This definition can be applied to liquids as such, without any modifications. In the case 

of gases, the value of compressibility will depend on the process law for the change of volume 

and will be different for different processes. 

The bulk modulus for liquids depends on both pressure and temperature. The value 

increases with pressure as dv will be lower at higher pressures for the same value of dp. With 

temperature the bulk modulus of liquids generally increases, reaches a maximum and then 

decreases. For water the maximum is at about 50°C. The value is in the range of 2000 MN/m2 

or 2000  106 N/m2 or about 20,000 atm. Bulk modulus influences the velocity of sound in the 

medium, which equals (go  Ev/)0.5. 

Example 1.18. Determine the bulk modulus of a liquid whose volume decreases by 4% for an 

increase in pressure of 500  105 pa. Also determine the velocity of sound in the medium if the 

density is 1000 kg/m3. 

Bulk modulus is defined as Ev = – dp/(dv/v), substituting the values, 

Ev = (– 500  105)/(–4/100) = 1.25  109 N/m2
 

Velocity of sound c is defined as = (go  Ev /)0.5
 

 c = [1  1.25  109/100]0.05 = 1118 m/s. 

Example 1.19. The pressure of water in a power press cylinder is released from 990 bar to 1 bar 

isothermally. If the average value of bulk modulus for water in this range is 2430  106 N/m2. What 

will be the percentage increase in specific volume? 

The definition of bulk modulus, Ev = – dp/(dv/v) is used to obtain the solution. Macroscopically the 

above equation can be modified as 
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Ev = – {P1 – P2}{(v2 – v1)/v1}, Rearranging, 
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Change in specific volume = (v2 – v1)/v1 = – (P2 – P1)/Ev 

= (990  105 – 1  105)/2430  106 = 0.0407 

% change in specific volume = 4.07% 

Example 1.20. Density of sea water at the surface was measured as 1040 kg/m3 at an atmospheric 

pressure of 1 bar. At certain depth in water, the density was found to be 1055 kg/m3. Determine 

the pressure at that point. The bulk modulus is 2290  106 N/m2. 

Bulk modulus, Ev = – dp/(dv/v) = – (P2 – P1 )/ [(v2 – v1)v1] 

As v = 1/, – (P2 – P1) = Ev  [{1/2) – (1/1)}/(1/1)] 

= Ev  [(– )/] 

P2 = P1 – Ev  [(– )/] = 1 105 – 2290  106 {(1040 – 1055)/1055} 

= 32.659  106 N/m2 or about 326.59 bar. 

 
1.11.1 Expressions for the Compressibility of Gases 

The expression for compressibility of gases for different processes can be obtained using the 

definition, namely, compressibility = – dp/(dv/v). In the case of gases the variation of volume, 

dv, with variation in pressure, dp, will depend on the process used. The relationship between 

these can be obtained using the characteristic gas equation and the equation describing the 

process. 

Process equation for gases can be written in the following general form 

Pvn = constant (1.11.2) 

where n can take values from 0 to . If n = 0, then P = constant or the process is a constant 

pressure process. If n = , then v = constant and the process is constant volume process. These 

are not of immediate interest in calculating compressibility. If dp = 0, compressibility is zero 

and if dv = 0, compressibility is infinite. 

The processes of practical interest are for values of n = 1 to n = cp/cv (the ratio of specific 

heats, denoted as k). The value n = 1 means Pv = constant or isothermal process and n = cp/cv 

= k means isentropic process. 

Using the equation Pvn = constant and differentiating the same, 

nPv(n–1)dv + vndp = 0 (1.11.3) 

rearranging and using the definition of Ev, 

Ev = – dp/(dv/v) = n  P (1.11.4) 

Hence compressibility of gas varies as the product n  P. 

For isothermal process, n = 1, compressibility = P. 

For isentropic process, compressibility = k  P. 

For constant pressure and constant volume processes compressibility values are zero 

and  respectively. 

In the case of gases the velocity of propagation of sound is assumed to be isentropic. 

From the definition of velocity of sound as [go  Ev/]0.5 it can be shown that 

c = [go  k P/]0.5 = [go  k  R  T]0.5 (1.11.5) 

It may be noted that for a given gas the velocity of sound depends only on the temperature. 

As an exercise the velocity of sound at 27°C for air, oxygen, nitrogen and hydrogen may be 

calculated as 347.6 m/s, 330.3 m/s, 353.1 m/s and 1321.3 m/s. 
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 1.12 VAPOUR PRESSURE 

 
Liquids exhibit a free surface in the container whereas vapours and gases fill the full volume. 

Liquid molecules have higher cohesive forces and are bound to each other. In the gaseous state 

the binding forces are minimal. 

Molecules constantly escape out of a liquid surface and an equal number constantly 

enter the surface when there is no energy addition. The number of molecules escaping from 

the surface or re-entering will depend upon the temperature. 

Under equilibrium conditions these molecules above the free surface exert a certain 

pressure. This pressure is known as vapour pressure corresponding to the temperature. As the 

temperature increases, more molecules will leave and re-enter the surface and so the vapour 

pressure increases with temperature. All liquids exhibit this phenomenon. Sublimating solids 

also exhibit this phenomenon. 

The vapour pressure is also known as saturation pressure corresponding to the 

temperature. The temperature corresponding to the pressure is known as saturation 

temperature. If liquid is in contact with vapour both will be at the same temperature and 

under this condition these phases will be in equilibrium unless energy transaction takes place. 

The vapour pressure data for water and refrigerants are available in tabular form. The 

vapour pressure increases with the temperature. For all liquids there exists a pressure above 

which there is no observable difference between the two phases. This pressure is known as 

critical pressure. Liquid will begin to boil if the pressure falls to the level of vapour pressure 

corresponding to that temperature. Such boiling leads to the phenomenon known as cavitation 

in pumps and turbines. In pumps it is usually at the suction side and in turbines it is usually 

at the exit end. 

1.12.1 Partial Pressure 

In a mixture of gases the total pressure P will equal the sum of pressures exerted by each of 

the components if that component alone occupies the full volume at that temperature. The 

pressure exerted by each component is known as its partial pressure. 

P = p1 +p2 + p3 + .... (1.12.1) 

where p1 = (m1R1T)/V ; p2 = (m2R2T)/V in which T and V are the common temperature and 

volume. 

For example air is a mixture of various gases as well as some water vapour. The 

atmospheric pressure is nothing but the sum of the pressures exerted by each of these 

components. Of special interest in this case is the partial pressure of water vapour. This topic 

is studied under Psychrometry. The various properties like specific heat, gas constant etc. of 

the mixture can be determined from the composition. 

cm =  (ci  mi)/  mi (1.12.2) 

where cm is the specific heat of the mixture and ci and mi are the specific heat and the mass of 

component i in the mixture. 
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    SOLVED PROBLEMS  

 
Problem 1.1. A liquid with kinematic viscosity of 3 centi stokes and specific weight 

9 kN/m3 fills the space between a large stationary plate and a parallel plate of 475 mm square, 

the film thickness being 1 mm. If the smaller plate is to be pulled with uniform velocity of 

4 m/s, determine the force required if the liquid film is maintained all through. 

The force required (eqn 1.8.2),   A = A    (du/dy), where  is shear stress, and  is 

dynamic viscosity. In this problem kinematic viscosity and specific weight are given. 

Stoke = 10–4 m2/s. Density = specific weight/g. So,  = 0.03  10–4 × 9000/9.81 Ns/m2
 

Force = [0.03  10–4  9000/9.81]  (4.0/0.001)  0.475  0.475 = 2.484 N. 

Problem 1.2. A small thin plane surface is pulled through the liquid filled space between 

two large horizontal planes in the parallel direction. Show that the force required will be 

minimum if the plate is located midway between the planes. 

Let the velocity of the small plane be u, and the 

distance between the large planes be h. 

Let the small plane be located at a distance of   y 

from the bottom plane. Assume linear variation of velocity 

and unit area. Refer Fig. P 1.2. 

Velocity gradient on the bottom surface = u/y 

Velocity gradient on the top surface = u/(h – y), 

Considering unit area, 

Figure P.1.2 Problem model 

Force on the bottom surface =  × (u/y), Force on the top surface =   u/(h – y) 

Total force to pull the plane =  × u × {(1/y) + [1/(h – y)]} ...(A) 

To obtain the condition for minimisation of the force the variation of force with respect 

to y should be zero, or dF/dy = 0, Differentiating the expression A, 

dF/dy =   u {(–1/y2) + [1/(h – y)2]}, Equating to zero 

y2 = (h – y)2 or y = h/2 

or the plane should be located at the mid gap position for the force to be minimum. 

The force required for different location of the plate is calculated using the following 

data and tabulated below. 

 = 0.014 Ns/m2 , u = 5 m/s, h = 0.1 m. 

Equation A is used in the calculation. 

Model calculation is given for y = 0.002 m. 

F = 0.014  5  {(1/0.002) + [1/0.01 – 0.002)]} = 43.75 N/m2
 

Note that the minimum occurs at mid position 
 

Distance, y mm 2 3 4 5 6 

Force, N/m2
 43.75 33.33 29.17 28.00 29.17 
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Problem 1.3. A small plane is pulled along the centre plane of the oil filled space 

between two large horizontal planes with a velocity u and the force was measured as F. The 

viscosity of the oil was 1. If a lighter oil of viscosity 2 fills the gap what should be the location 

of the plate for the force to be the same when pulled with the same velocity u. 

If the plane is located centrally in the case where the oil is lighter the force will be 

smaller. 

So the plane should now be located away from the central plane. Let it be located at a 

distance, y from the lower plane as shown in Fig. P1.2 : 

Case 1: The velocity gradient is equal on both sides = u/(h/2) = 2  u/h 

Total force = 1 × {(2u/h) + (2u/h)} = 4 × 1 × u/h 

Case 2: Velocity gradient on the top surface = u/(h–y) 

Velocity gradient on the bottom surface = u/y 

Total force = 2  u  {(1/y) + [1/(h – y)]} = 2  u  {h/[y × (h – y)]} 

 
Equating and solving, (2/1) = 4  y  (h – y)/h2 = 4[y/h] × [1 – (y/h)] 

Solve for (y/h). A quadratic equation. 

Problem 1.4. A large thin plate is pulled through a narrow gap filled with a fluid of 

viscosity  on the upper side and a fluid of viscosity c on the lower side. Derive an expression 

for the location of the plate in the gap for the total force to be minimum. 

The force will not be minimum if the plate is centrally located as the viscosity are not 

equal. Let the plate be located at a distance of y from the lower surface on the side where the 

viscosity is c. Let the gap size be h, the total force for unit area will be 

F = c  (u/y) +   u/(h – y) =   u {(c/y) + [1/(h – y)]} 

At the minimum conditions the slope i.e., the derivative dF/dy should be zero. 

dF/dy =   u {[1/(h – y)2] – [c/y2]}, Equating to zero yields, y2 = c × (h – y)2 

Taking the root, 

 (h – y) = y or   y = (h    c )/(1 +   c ) = h/[1 + (1/ c )] 

Consider the following values for the variables and calculate the force for different 

locations of the plate. 

u = 5 m/s,  = 0.014 N/m2 , h = 4 mm   and c = 0.49 or 

For optimum conditions 

y = (0.004  0.7)/(1 + 0.7) = 0.001647 m 

= 0.7 

Using F = 5  0.014  {(0.49/y) + [1/(0.004 – y)]}, the force for various locations is 

calculated and tabulated below: 
 

y, mm 1.0 1.5 1.65 2.0 2.5 

Force, N/m2
 57.63 50.87 50.58 52.15 60.39 

c 

c 
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Problem 1.5. A hydraulic lift shaft of 450 mm dia moves in a cylinder of 451 mm dia 

with the length of engagement of 3 m. The interface is filled with oil of kinematic viscosity of 

2.4 × 10–4 m2/s and density of 900 kg/m3. Determine the uniform velocity of movement of the 

shaft if the drag resistance was 300 N. 

The force can be determined assuming that the sliding is between the developed surfaces, 

the area being  × D × L,  = v = 2.4 × 10–4 × 900 = 0.216 Ns/m2, 

Clearance = (Do – Di)/2 = 0.5 mm. Using equations 1.8.1 and 1.8.2 

Drag resistance = 300 =  × 0.45 × 3 × 0.216 × (u/0.0005) 

Solving for u, velocity = 0.16374 m/s. 

Problem 1.6. A shaft of 145 mm dia runs in journals with a uniform oil film thickness 

of 0.5 mm. Two bearings of 20 cm width are used. The viscosity of the oil is 19 cP. Determine 

the speed if the power absorbed is 15 W. 

The equation that can be used is, 1.9.2 i.e., (n is used to denote rpm) 

P = [3n2LR3/450 h] 

The solution can be obtained from basics also. Adopting the second method, 

 =  (du/dy) =  (u/y),  = 19 cP = 0.019 Ns/m2, 

y = 0.5 mm = 0.0005 m, let the rpm be n 

u =  Dn/60 =  × 0.145 × n/60 = 7.592 × 10–3 × n 

 = 0.019 (7.592 × 10–3 × n/0.0005) = 0.2885 × n N/m2, 

A = 2 ×  DL = 0.182 m2, Force F = A ×  = 0.2885 × n × 0.182 = 0.0525 × n, 

Torque = force × radius, 

T = 0.0525 × n × 0.145/2 = 3.806 × 10–3 × n Nm 

Power, P = 2nT/60 = 15 = 2 ×  × n 3.806 × 10–3 × n/60 

Solving, speed, n = 194 rpm. (Check using the equation 1.9.2) 

15 = [0.019 × 3 × n2 (2 × 0.20) × 0.07253/ (450 × 0.0005)] 

Solving speed, n = 194 rpm. 

Problem 1.7. A circular disc of 0.3 m dia rotates over a large stationary plate with 1 mm 

thick fluid film between them. Determine the viscosity of the fluid if the torque required to 

rotate the disc at 300 rpm was 0.1 Nm. 

The equation to be used is 1.9.3, (n denoting rpm) 

Torque T = ( × 2 × n × R4)/(60 × h), (h – clearance), 

n = 300 rpm, R = 0.15 m, h = 0.001 m, Substituting the values, 

0.1 =  × 2 × 300 × 0.154/ (60 × 0.001), Solving for  

Viscosity  = 4 × 10–3 Ns/m2 or 4 cP. 

(care should be taken to use radius value, check from basics.) 

Problem 1.8. Determine the viscous drag torque and power absorbed on one surface 

of a collar bearing of 0.2 m ID and 0.3 m OD with an oil film thickness of 1 mm and a viscosity 

of 30 cP if it rotates at 500 rpm. 
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o i 
The equation applicable is 1.9.5. T =  × 2 × n × (R 4 – R 4)/60 × h 

 = 30 × 0.001 Ns/m2, n = 500 rpm, R
o 
= 0.15 m, R

i 
= 0.1 m, h = 0.002 m 

substituting the values 

T = 30 × 0.001 × 2 × 500 × {0.154 – 0.14}/{(60 × 0.002)} = 0.5012 Nm 

P = 2nT/60 = 2 ×  × 500 × 0.5012/60 = 26.243 W. 

Problem 1.9. A conical bearing of outer radius 0.5 m and inner radius 0.3 m and height 

0.2 m runs on a conical support with a uniform clearance between surfaces. Oil with viscosity 

of 30 cP is used. The support is rotated at 500 rpm. Determine the clearance if the power 

required was 1500 W. 

The angle  is determined using the difference in radius and 

the length. 

tan  = (0.5 – 0.3)/0.2 = 1.0; So  = 45°. 

Using equation 1.9.9 i.e., 

P = 3 ×  × n2 × (R 4 – R 4)/1800 × h × sin  
2 1 

( = 30 cP = 0.03 Ns/m2, n = 500 rpm, R
2 

= 0.5 m, R
1 

= 0.3 m) 

1500 = 3 × 0.03 × 5002 × (0.54 – 0.34)/1800 × h × sin 45° 

Solving for clearance, h = 6.626 × 10–3 m or 6.63 mm 

Problem 1.10. If the variation of velocity with distance from the surface, y is given by u 

= 10 y0.5 whre u is in m/s and y is in m in a flow field up to y = 0.08 m, determine the wall 

shear stress and the shear stress at y = 0.04 and 0.08 m from the surface. 

u = 10y0.5, (du/dy) = 5/y0.5. 

The substitution y = 0 in the above will give division by zero error. It has to be 

approximated as (u
2 

– u
1
)/(y

2 
– y

1
) for near zero values of y. 

Considering layers y = 0 and y =10–6, the velocities are 0.0 and 0.01 m/s 

(using u = 10 y0.5), the difference in y value is 10–6. 

So (u
2 

– u
1
)/(y

2 
– y

1
) = 0.01/10–6 = 10000, 

At the wall, (du/dy) = 10000,  =  (du/dy) = 10000 ×  

At     y = 0.04, (du/dy) = 5/0.040.5 = 25,  = 25 ×  

At     y = 0.08, (du/dy) = 5/0.080.5 = 17.68,  = 17.68 ×  

In this case the clearance considered is large and so the assumption of linear velocity 

variation may lead to larger error. The concept that the torque along the radius should be 

constant can be used to determine the torque more accurately. 

Problem 1.11. A hollow cylinder of 12 cm ID filled with fluid of viscosity 14 cP rotates 

at 600 rpm. A shaft of diameter 4 cm is placed centrally inside. Determine the shear stress on 

the shaft wall. 

The hollow cylinder rotates while the shaft is stationary. Shear stress is first calculated 

at the hollow cylinder wall (Assume 1 m length). 

Solution is obtained from basics. Linear velocity variation is assumed. Clearance, 

h = 0.04 m,  = 14 × 0.001= 0.014 N/m2
 

0.5 m 

0.2 m 
45° 

0.3 m 
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o 

At the inside wall of the hollow cylinder, 

u = 2 Rn/60 = 3.77 m/s 

(du/dr) = u/h = 3.77/0.04 = 94.25/s,  =  (du/dr) 

= 0.014 × 94.25 = 1.32 N/m2
 

F =  × D × L ×  =  × 0.12 × 1 × 1.31 = 0.498 N 

torque = F × R = 0.498 × 0.06 = 29.86 × 10–3 Nm 

Torque at all radii should be the same. At mid radius R = 0.04 m, the velocity gradient is 

obtained by using this concept. 

29.86 10–3 = 
du

 
dr 

 

 
 

0.04 

 
× 0.014 ×  × 0.08 × 1 × 0.04, 

 

Solving, 
du 

dr 

 

 
0.04 

= 212.06/s, 

This can be checked using equation, (see problem 1.13) 

du 
= 

du × (R 2/R 2) at 0.04, 
du

 
 

× 25 × 0.062/0.042 = 212.06/s 
dr R1

 dr R2 
2 1 dr 0.04 

The velocity gradient at the shaft surface = 94.25 × 0.062/0.022 = 848.25/s 

Shear stress at the shaft wall = 848.25 × 0.014 = 11.88 N/m2. 

Problem 1.12. The velocity along the radius of a pipe of 0.1 m radius varies as u = 10 × 

[1 – (r/0.1)2] m/s. The viscosity of the fluid is 0.02 Ns/m2 . Determine the shear stress and the 

shear force over the surface at r = 0.05 and r = 0.1 m. 

 =  (du/dr), u = 10 × [1 – (r/0.1)2], 

du/dr = – 10 × (2 × r/0.12) = – 2000 r 

(the –ve sign indicates that the force acts opposite to the flow direction.) 

 = 0.02 × (– 2000) × r = – 40 r, Shear force F = 2rL, Considering L =1  

At    r = 0.05,     = – 2 N/m2, F = 0.628 N 

At r = 0.1,  = – 4 N/m2, F = 2.513 N. 

Problem 1.13. A sleeve surrounds a shaft with the space between them filled with a 

fluid. Assuming that when the sleeve rotates velocity gradient exists only at the sleeve surface 

and when the shaft rotates velocity gradient exists only at the shaft surface, determine the ratio 

of these velocity gradients. 

The torque required for the rotation will be the same in both cases. Using general 

notations, 


i 
[2 r

i 
× L] × r

i 
= 

o 
[2 r

o 
× L] × r

o
 


i 
=  (du/dr)

ri
,  =  (du/dr)

ro
 

Substituting in the previous expression and solving 

(du/dr)
i 
= (du/dr)

o 
× [r

o
2/r

i
2] 
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X dX 

L 

This will plot as a second degree curve. When the gap is large % error will be high if 

linear variation is assumed. 

Problem 1.14. Derive an expression for the force required for axial movement of a shaft 

through a taper bearing as shown in figure. The diameter of the shaft is D m and the length is 

L m. The clearance at the ends are t
1
m and t

2
m. The oil has a viscosity of  and the shaft moves 

axially at a velocity u. 

In this case the clearance varies along the length and so the velocity gradient will vary 

along the length. Hence the shear stress also will vary along the length. The total force required 

can be determined by integrating the elemental force over a differential length dX. The 

clearance, t at location X is obtained, assuming t
1 

> t
2
, 

t = t
1 

– (t
1 

– t
2
) × (X/L) = {(t

1 
× L) – (t

1 
– t

2
) X}/L 

du/dy = u/t = u × L/{(t
1 

× L) – (t
1 

– t
2
) × X} 

The velocity gradient at this location is u/t, assumed linear. 

 =  (du/dy), dF =  dA =  ×  × D × dX, substituting 

dF = [{L ×  × u ×  × D}] × [dX/{(t
1 

× L) – (t
1 

– t
2
) × X}] 

Integrating between the limits X = 0 to X = L 

F = [{ × D × u × L × }/{t
1 
– t

2
}] × [ln(t

1
/t

2
)] 

 

 

t1 t2 

 
 
 
 
 
 
 
 

 
Figure P.1.14 

Problem 1.15. The clearance between the shaft of 100 mm dia and the bearing varies 

from 0.2 mm to 0.1 mm over a length of 0.3 m. The viscosity of the oil filling the clearance is 

4.8 × 10–2 Ns/m2. The axial velocity of the shaft is 0.6 m/s. Determine the force required. 

Using the equation derived in the previous problem as given below and substituting the 

values F = [{ × D × u × L × }/{t
1
– t

2
}] [ln(t

1
/t

2
)] 

F = [{ × 0.1 × 0.6 × 0.3 × 4.8 × 10–2}/{0.0002 – 0.0001}] × [ln(0.0002/0.0001)] = 18.814 N 

If the clearance was uniform, F =  × D × L × u × /t 

For t = 0.2 mm, F
0.2 

= 13.572 N, For t = 0.1 mm, F
0.1 

= 27.143 N 

The arithmetic average is 20.36 N, while the logarithmic average is what is determined 

in this problem, 18.814 N. 
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Problem 1.16. Derive an expression for the torque required to overcome the viscous 

resistance when a circular shaft of diameter D rotating at N rpm in a bearing with the clearance 

t varying uniformly from t
1 

m at one end to t
2
m at the other end. The distance between the ends 

is L m. The oil has a viscosity of . 

In this case the clearance varies along the length and so the velocity gradient (du/dr) 

will vary along the length. Hence the shear stress and the torque also will vary along the 

length. The total torque required can be determined by integrating the elemental torque over 

a differential length dX. 

The clearance, t at location X is obtained, assuming t
1 

> t
2 

, 

t = t
1 

– (t
1 

– t
2
) × (X/L) = {(t

1 
× L) – (t

1 
– t

2
) × X }/L 

The velocity gradient at this location X is u/t, as linear profile is assumed. 

 du/dy = u/t = u × L/{(t
1 

× L) – (t
1 

– t
2
) × X} 

 =  (du/dy), dF =  dA =  ×  × D × dX, substituting 

dF = [{L ×  × u ×  × D}] × [dX/{(t
1 

× L) – (t
1 

– t
2
) × X}] 

Torque = dF × (d/2) and u = ( DN)/60. Substituting and Integrating between the limits 

X = 0 to X = L, Torque = [{2 × D3 × L × N × }/ {120(t
1 
– t

2
)}] × [ln (t

1
/t

2
)] 

Power = 2NT/60, hence 

P = [{3 × D3 × L × N2 × }/{3600(t
1 
–t

2
)}] × [ln (t

1
/t

2
)]. 

Problem 1.17 The clearance between the shaft of 100 mm dia and the bearing varies 

from 0.2 mm to 0.1 mm over a length of 0.3 m. The viscosity of the oil filling the clearance is 

7.1 × 10–2 Pa.s (Ns/m2). The shaft runs at 600 rpm. Determine the torque and power 

required. 

Using the equations derived in the previous problem as given below and substituting 

the values T = [{2 × D3 × L × N × }/{120(t
1 

– t
2
)}] × [ln(t

1
/t

2
)] 

P = [{3 × D3 × L × N2 × }/{3600(t
1 

– t
2
)}] × [ln(t

1
/t

2
)] 

T = [{2 × 0.13 × 0.3 × 600 × 7.1 × 10–2}/{120(0.0002 – 0.0001)}] 

× [ln (0.0002/0.0001)] 

= 7.29 Nm. 

P = [{3 × 0.13 × 0.3 × 6002 × 7.1 × 10–2}/{3600(0.0002 – 0.0001)}] 

× [ln (0.0002/0.0001)] 

= 457.8 W. 

Check: P = 2 × 600 × 7.29/60 = 458W. 

Problem 1.18. Determine the capillary depression of mercury in a 4 mm ID glass 

tube. Assume surface tension as 0.45 N/m and  =115°. 

The specific weight of mercury = 13550 × 9.81 N/m3, Equating the surface force and the 

pressure force, [h ×  × D2/4] = [ × D ×  × cos ], Solving for h, 

h = {4 ×  × cos }/{ × D} = [4 × 0.45 × cos 115]/[13550 × 9.81 × 0.004] 

= – 1.431 × 10–3 m   or – 1.431 mm, (depression) 
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Problem 1.19. A ring 200 mm mean dia is to be separated from water surface as shown 

in figure. The force required at the time of separation was 0.1005 N. Determine the surface 

tension of water. 

 
 
 
 
 
 

A 

 
 

 

Figure P.1.19 

The total length of contact just before lifting from the surface will be twice the 

circumference or 2D. The force will equal the product of surface tension and the length of 

contact. 

 × 2 ×  × 0.2 = 0.1005 N. Solving  = 0.08 N/m 

The surface tension of a liquid can be measured using this principle provided the fluid 

wets the surface. 

Problem 1.20. A thin plate 1 m wide is slowly lifted vertically from a liquid with a 

surface tension of 0.1 N/m. Determine what force will be required to overcome the surface tension. 

Assume  = 0. 

The total length of contact just before separation from the surface will be twice the 

width of the plate or 2L. The force will equal the product of surface tension and the length of 

contact. 

F = 2 × 1 × 0.1 = 0.02 N. 

Problem 1.21. Diesel injection nozzle sprays fuel with an average diameter of 0.0254 mm. 

The surface tension is 0.0365 N/m. Determine the pressure difference between the inside and 

outside of the nozzle. Also determine the pressure difference if the droplet size is reduced to 10 

m. 

A droplet forms at the mouth of the nozzle. The pressure inside the droplet will be 

higher compared to that at outside. 

The equation applicable is (P
i 
– P

o
) = 2/R. 

So (P
i 
– P

o
) = {2 × 0.0365 × 2}/{0.0254 × 10–3} = 5748 N/m2 = 5.748 kN/m2

 

When the droplet size is reduced to 10 m the pressure difference is 

(P
i 
– P

o
) = {2 × 0.0365 × 2}/{10 × 10–6} = 14600 N/m2 = 14.6 kN/m2. 

Problem 1.22. A glass tube of 8 mm ID is immersed in a liquid at 20°C. The specific 

weight of the liquid is 20601 N/m3. The contact angle is 60°. Surface tension is 0.15 N/m. 

Calculate the capillary rise and also the radius of curvature of the meniscus. 

0.1005 N 

A 

200 mm 
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Capillary rise, h = {4 ×  × cos }/{ × D} = {4 × 0.15 × cos 60}/{20601 × 0.008} 

= 1.82 × 10–3 m or   1.82 mm. 

The meniscus is a doubly curved surface with equal radius as the section is circular. 

(using equation 1.10.3) 

(P
i 
– P

o
) =  × {(1/R

1
) + (1/R

2
)} = 2 /R 

R = 2/(P
i 
– P

o
), (P

i 
– P

o
) = specific weight × h 

So, R = [2 × 0.15]/ [1.82 × 10–3 × 2060] = 8 × 10–3 m   or 8 mm. 

Problem 1.23. A mercury column is used to measure the atmospheric pressure. The 

height of column above the mercury well surface is 762 mm. The tube is 3 mm in dia. The 

contact angle is 140°. Determine the true  pressure in mm of mercury if surface tension is 

0.51 N/m. The space above the column may be considered as vacuum. 

In this case capillary depression is involved and so the true pressure = mercury column + 

capillary depression. 

The specific weight of mercury = 13550 × 9.81 N/m3, equating forces, 

[h ×  ×  D2/4] = [ × D ×  × cos ]. 

So h = {4 ×  × cos }/{ × D} 

h = (4 × 0.51) × cos 140]/[13550 × 9.81 × 0.003] 

= – 3.92 × 10–3 m or – 3.92 mm, (depression) 

Hence actual pressure indicated = 762 + 3.92 = 765.92 mm of mercury. 

Problem 1.24. Calculate the pressure difference between the inside and outside of a 

soap bubble of 2.5 mm dia if the surface tension is 0.022 N/m. 

The pressure difference in the case of a sphere is given by, equation 1.10.5 

(Pi – Po) = 2/R = {2 × 0.022}/{0.0025} = 17.5 N/m2. 

Problem 1.25. A hollow cylinder of 150 mm OD with its weight equal to the buoyant 

forces is to be kept floating vertically in a liquid with a surface tension of 0.45 N/m2. The 

contact angle is 60°. Determine the additional force required due to surface tension. 

In this case a capillary rise will occur and this requires an additional force to keep the 

cylinder floating. 

Capillary rise, h = {4 ×  × cos }/{ × D}. 

As (Pi – Po) = h × specific weight, (Pi – Po) = {4 ×  × cos }/D 

(Pi – Po) = {4 × 0.45 × cos 60}/{0.15} = 6.0 N/m2
 

Force = Area × (Pi – Po) = { × 0.0152/4} × 6 = 0.106 N 

As the immersion leads to additional buoyant force the force required to kept the cylinder 

floating will be double this value. 

So the additional force = 2 × 0.106 = 0.212 N. 

Problem 1.26. The volume of liquid in a rigid piston—cylinder arrangement is 2000 cc. 

Initially the pressure is 10 bar. The piston diameter is 100 mm. Determine the distance through 

which the piston has to move so that the pressure will increase to 200 bar. The temperature 

remains constant. The average value of bulk modulus for the liquid is 2430 × 10–6 N/m2. 
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By definition—refer eqn 1.11.1 

Ev = – dP/(dv/v) = – (P2 – P1)/[(v2 – v1)/v1] 

So 2430 × 106 = –190 × 105/(dv/0.002), Solving, 

dv = – 0.002 × 190 × 105/2430 × 106 = 15.64 × 10–6 m3
 

Piston movement, L = dv/area 

L = dv × 4/D2 = 15.64 × 10–6 × 4/ × 0.12 = 1.991 × 10–3 m = 1.991 mm 

(the piston-cylinder arrangement is assumed to be rigid so that there is no expansion of the 

container) 

Problem 1.27. The pressure of water increases with depth in the ocean. At the surface, 

the density was measured as 1015 kg/m3. The atmospheric pressure is 1.01 bar. At a certain 

depth, the pressure is 880 bar. Determine the density of sea water at the depth. The average 

value of bulk modulus is 2330 × 106 N/m2. 

The density will increase due to the pressure increase. 

Bulk modulus is defined in eqn 1.11.1 as Ev = – dP/(dv/v) = – (P2 – P1)/[v2 – v1)/v1], 

[(v2 – v1)/v1] = – (P2 – P1)/Ev = – [880 × 105 – 1.01 × 105]/2330 × 106 = –0.03772 

v1 = 1/1015 m3/kg, substituting the values in 

v2 = [v1 × {– (P2 – P1)/Ev}] + v1, 

v2 = [– 0.03772 × (1/1015)] + (1/1015) = 9.48059 × 10–4 m3/kg 

Density = 1/(9.48059 × 10–4 m3/kg) = 1054.79 kg/m3 an increase of 4%. 

The density increases by 4.0% due to the increase in pressure. 

[(v2 – v1)/v1] also equals [(1 – 2)/2] = [(P2 – P1)/Ev] 

Use of this equation should also give the same answer. 

Problem 1.28. A diesel fuel pump of 10 mm ID is to deliver against a pressure of 

200 bar. The fuel volume in the barrel at the time of closure is 1.5 cc. Assuming rigid barrel 

determine the plunger movement before delivery begins. The bulk modulus of the fuel is 1100 × 

106 N/m2. 

By definition—eqn 1.11.1—the bulk modulus is Ev = – dP/(dv/v), 

1100 × 106 = – 200 × 105/(dv/1.5 × 10–6), Solving dv = – 2.77 × 10–8 m3
 

Plunger movement = dv/area = – 2.77 × 10–8 × 4/(  × 0.00152) 

= 3.47 × 10–4 m = 0.347 mm 

(the pressure rise will also be affected by the expansion of the pipe line). 
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Chapter-2 Bernoulli Equation and 

Applications 
 

 
 

  2.0 INTRODUCTION  
 

In chapter five flow of ideal fluids was discussed. The main idea was the study of flow pattern. 

The determination of equal flow paths and equal potential lines was discussed. No attempt 

was made to determine the numerical value of these quantities. 

In this chapter the method of determination of the various energy levels at different 

locations in the flow is discussed. In this process first the various forms of energy in the fluid 

are identified. Applying the law of conservation of energy the velocity, pressure and potential 

at various locations in the flow are calculated. Initially the study is limited to ideal flow. However 

the modifications required to apply the analysis to real fluid flows are identified. 

The material discussed in this chapter are applicable to many real life fluid flow problems. 

The laws presented are the basis for the design of fluid flow systems. 

Energy consideration in fluid flow: 

Consider a small element of fluid in flow field. The energy in the element as it moves in 

the flow field is conserved. This principle of conservation of energy is used in the determination 

of flow parameters like pressure, velocity and potential energy at various locations in a flow. 

The concept is used in the analysis of flow of ideal as well as real fluids. 

Energy can neither be created nor destroyed. It is possible that one form of energy is 

converted to another form. The total energy of a fluid element is thus conserved under usual 

flow conditions. 

If a stream line is considered, it can be stated that the total energy of a fluid element at 

any location on the stream line has the same magnitude. 

 
 

  2.1 FORMS OF ENERGY ENCOUNTERED IN FLUID FLOW   
 

Energy associated with a fluid element may exist in several forms. These are listed here and 

the method of calculation of their numerical values is also indicated. 
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2.1.1 Kinetic Energy 

This is the energy due to the motion of the element as a whole. If the velocity is V, then 

the kinetic energy for m kg is given by 

mV 2 
KE = 

2 go 
Nm (2.1.1) 

The unit in the SI system will be Nm also called Joule (J) 

{(kg m2/s2)/(kg m/N s2)} 

The same referred to one kg (specific kinetic energy) can be obtained by dividing 2.1.1 

by the mass m and then the unit will be Nm/kg. 

V 2 

KE = 
2 go 

, Nm/kg (2.1.1b) 

In fluid flow studies, it is found desirable to express the energy as the head of fluid in m. 

This unit can be obtained by multiplying equation (6.1.1) by go/g. 

V 2 go = 
V 2 

Kinetic head = 
 

  

2 go    g 2 g 

m2 s2 

The unit for this expression will be 
s

2 
m   

= m 

Apparantly the unit appears as metre, but in reality it is Nm/N, where the denominator 

is weight of the fluid in N. 

The equation in this form is used at several places particularly in flow of liquids. But the 

energy associated physically is given directly only be equation 6.1.1. 

The learner should be familiar with both forms of the equation and should be able to 

choose and use the proper equation as the situation demands. When different forms of the 

energy of a fluid element is summed up to obtain the total energy, all forms should 

be in the same unit. 

2.1.2 Potential Energy 

This energy is due to the position of the element in the gravitational field. While a zero 

value for KE is possible, the value of potential energy is relative to a chosen datum. The value 

of potential energy is given by 

PE = mZ g/go Nm (2.1.3) 

Where m is the mass of the element in kg, Z is the distance from the datum along the 

gravitational direction, in m. The unit will be (kg m m/s2) × (Ns2/kgm) i.e., Nm. The specific 

potential energy (per kg) is obtained by dividing equation 6.1.3 by the mass of the element. 

PE = Z g/g0 Nm/kg (2.1.3. b) 

This gives the physical quantity of energy associated with 1 kg due to the position of the 

fluid element in the gravitational field above the datum. As in the case of the kinetic energy, 

the value of PE also is expressed as head of fluid, Z. 

PE = Z (g/go) (go/g) = Z m. (2.1.4) 
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This form will be used in equations, but as in the case of KE, one should be familiar with 

both the forms and choose the suitable form as the situation demands. 

2.1.3 Pressure Energy (Also Equals Flow Energy) 

The element when entering the control volume has to flow against the pressure at that 

location. The work done can be calculated referring Fig. 2.1.1. 
 

Fluid element 
Area – A 

 
 
 
 
 

Figure 2.1.1 Flow work calculation 

The boundary of the element of fluid considered is shown by the dotted line, Force = P1 

A, distance to be moved = L, work done = P1AL = P1 mv as AL = volume = mass × specific 

volume, v.  flow work = P mv. 

The pressure energy per kg can be calculated using m = 1. The flow energy is given by 

FE = P.v = P/, Nm/kg (2.1.5) 

Note: 
N m3 

→
 Nm 

m2   kg kg 

As in the other cases, the flow energy can also expressed as head of fluid. 

FE =
 P go , m (2.1.5a) 

  g 

As specific weight  =  g/go, the equation is written as, 

FE = P/, m (2.1.5b) 

It is important that in any equation, when energy quantities are summed up consistent 

forms of these set of equations should be used, that is, all the terms should be expressed either 

as head of fluid or as energy (J) per kg. These are the three forms of energy encountered more 

often in flow of incompressible fluids. 

2.1.4 Internal Energy 

This is due to the thermal condition of the fluid. This form is encountered in compressible 

fluid flow. For gases (above a datum temperature) IE = cv T where T is the temperature above 

the datum temperature and cv is the specific heat of the gas at constant volume. The unit for 

internal energy is J/kg (Nm/kg). When friction is significant other forms of energy is converted 

to internal energy both in the case of compressible and incompressible flow. 

1 Control volume 

P1 

L 
1 

2 

2 
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2.2  VARIATION IN THE RELATIVE VALUES OF VARIOUS FORMS OF 

ENERGY DURING FLOW 

2.3  EULER’S EQUATION OF MOTION FOR FLOW ALONG A STREAM 

LINE 

2.1.5 Electrical and Magnetic Energy 

These are not generally met with in the study of flow of fluids. However in magnetic 

pumps and in magneto hydrodynamic generators where plasma flow in encountered, electrical 

and magnetic energy should also be taken into account. 

 

 

 

Under ideal conditions of flow, if one observes the movement of a fluid element along a stream 

line, the sum of these forms of energy will be found to remain constant. However, there may be 

an increase or decrease of one form of energy while the energy in the other forms will decrease 

or increase by the same amount. For example when the level of the fluid decreases, it is possible 

that the kinetic energy increases. When a liquid from a tank flows through a tap this is what 

happens. In a diffuser, the velocity of fluid will decrease but the pressure will increase. In a 

venturimeter, the pressure at the minimum area of cross section (throat) will be the lowest 

while the velocity at this section will be the highest. 

The total energy of the element will however remain constant. In case friction is present, 

a part of the energy will be converted to internal energy which should cause an increase in 

temperature. But the fraction is usually small and the resulting temperature change will be so 

small that it will be difficult for measurement. From the measurement of the other forms, it 

will be possible to estimate the frictional loss by difference. 

 
 

 

Consider a small element along the stream line, the direction being designated as s. 

 

s 

 
P 

. ds, V +  
V 

. ds 

s s 

 
 
 
 
 

 

Figure 2.3.1 Euler’s equation of Motion – Derivation 

The net force on the element are the body forces and surface forces (pressure). These are 

indicated in the figure. Summing this up, and equating to the change in momentum. 

PdA – {P + (P/s} dA – g dA ds cos  =  dA ds as 

where as is the acceleration along the s direction. This reduces to, 

1 P 

(2.3.1) 

 s + g cos  + as = 0 (2.3.2) 

Stream line 
 
Element 
considered 

dA 

P+   

ds r 

dz 

 

P 

V  g d s  dA 
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(Note: It will be desirable to add go to the first term for dimensional homogeneity. As it is, the 

first term will have a unit of N/kg while the other two terms will have a unit of m/s2. Multiplying by go, 
it will also have a unit of m/s2). 

as = dV/dt, as velocity, V = f(s, t), (t = time). 

dV = 
V 

ds + 
V 

dt dividing by dt, 

s t 

dV 
= 

V ds 
+ 

V 
  

 
As 

ds 
= V, 

 

dt s dt t dt 

and as cos  = dz/ds, equation 6.3.2 reduces to, 

1 P 
+ g 

z 
+V 

V 
+ 

V 
 
= 0 (2.3.2. a) 

 s s s t 

For steady flow V/t = 0. Cancelling s and using total derivatives in place of partials as 

these are independent quantities. 

dp 

   
+ gdz + VdV = 0 (2.3.3) 

(Note: in equation 2.3.3 also it is better to write the first term as go.dp/ for dimensional homo- 
geneity). 

This equation after dividing by g, is also written as, 
dp j V 2 7 rP V 2 y 

    
+ djH 2 g jj + dz = 0 or    dj

l   
+  

2 g  
+ zj

Q = 0 (2.3.4) 

which means that the quantity within the bracket remains constant along the flow. 

This equation is known as Euler’s equation of motion. The assumptions involved are: 

1. Steady flow 

2. Motion along a stream line and 

3. Ideal fluid (frictionless) 

In the case on incompressible flow, this equation can be integrated to obtain Bernoulli 

equation. 

 
 

  2.4 BERNOULLI EQUATION FOR FLUID FLOW   
 

Euler’s equation as given in 2.3.3 can be integrated directly if the flow is assumed to be 

incompressible. 

dP 
+ gdz + VdV = 0, as  = constant 

 

 P 
+ gz + 

V 2 P jj g 7j V 
= const. or + z + 

 
 = Constant (2.4.1) 

 2  H g0 j 2 g0 

The constant is to be evaluated by using specified boundary conditions. The unit of the 

terms will be energy unit (Nm/kg). 

2 
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V V 

1 1 2 2 2 

In SI units the numerical value of go = 1, kg m/N s2. Equation 6.4.1 can also be written 

as to express energy as head of fluid column. 
 

 P 
+ z + 

V 2 

 2 g 
= constant (2.4.2) 

( is the specific weight N/m3). In this equation all the terms are in the unit of head of the fluid. 

The constant has the same value along a stream line or a stream tube. The first term 

represents (flow work) pressure energy, the second term the potential energy and the third 

term the kinetic energy. 

This equation is extensively used in practical design to estimate pressure/velocity in 

flow through ducts, venturimeter, nozzle meter, orifice meter etc. In case energy is added or 

taken out at any point in the flow, or loss of head due to friction occurs, the equations will read 

as, 

 P1 
+ 

V 2 
+ 

z  g   
W − 

hf g 
=

 P 
+ 

V 2 
+

 z g 
 

 2 go go go  2 go go 

where W is the energy added and hf is the loss of head due to friction. 

In calculations using SI system of units go may be omitting as its value is unity. 

Example 2.1 A liquid of specific gravity 1.3 flows in a pipe at a rate of 800 l/s, from point 1 to point 

2 which is 1 m above point 1. The diameters at section 1 and 2 are 0.6 m and 0.3 m respectively. If 

the pressure at section 1 is 10 bar, determine the pressure at section 2. 

Using Bernoulli equation in the following form (2.4.2) 

 P 
+ z + 

V 2 

 2 g 
= constant, 

Taking the datum as section 1, the pressure P2 can be calculated. 

V1 = 0.8 × 4/ × 0.62 = 2.83 m/s, V2 = 0.8 × 4/ × 0.33 = 11.32 m/s 

P1 = 10 × 105 N/m2,  = sp. gravity × 9810. Substituting. 

10  105 
 

 

9810  1.3 

 
+ 0 + 

2.832 
 

 

2  9.81 
=
 P2 + 1 + 
9810  1.3 

11.322 
 

 

2  9.81 

Solving, P2 = 9.092 bar (9.092 × 105 N/m2). 

As P/ is involved directly on both sides, gauge pressure or absolute pressure can be used without 

error. However, it is desirable to use absolute pressure to avoid negative pressure values (or use of 

the term vacuum pressure). 

Example 2.2 Water flows through a horizontal venturimeter with diameters of 0.6 m and 0.2 m. 

The guage pressure at the entry is 1 bar. Determine the flow rate when the throat pressure is 0.5 

bar (vacuum). Barometric pressure is 1 bar. 

Using Bernoulli’s equation in the form, 

 P1 

 

 
+ Z1 

 
2 

+
   1   

=
 

2 g 

 
+ Z2 

 
2 

+
   2   

2 g 

+ 

P2 

 
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2 g  

 

and noting   Z1 = Z2, P1 = 2 × 105 N/m2 (absolute) 

P2 = 0.5 ×105 N/m2 (absolute),  = 9810 N/m3
 

V1 = Q × 4/( × 0.602) = 3.54 Q, V2 = Q × 4/( × 0.202) = 31.83Q 

2  105
 
 

3.542
 0.5  105 31.83

2 
Q

2
 

 

9810 
+ 0 + 

2  9.81 Q2 = 
9810 

+ 0 + 
2  9.81 

Solving,   Q = 0.548 m3/s, V1 = 1.94 m/s, V2 = 17.43 m/s. 

Example 2.3 A tap discharges water evenly in a jet at a velocity of 2.6 m/s at the tap outlet, the 

diameter of the jet at this point being 15 mm. The jet flows down vertically in a smooth stream. 

Determine the velocity and the diameter of the jet at 0.6 m below the tap outlet. 

The pressure around the jet is atmospheric throughout. Taking the 

tap outlet as point 1 and also taking it as the datum using Bernoulli 

equation. 

 P1 + Z
 + 

V 2 

=
 P 

+ Z + 
V 2 

1 2 2 

 
1 2 

 

P1 = P2, Z2 = 0, 

Z2 = – 0.6 m, V1 = 2.6 m/s 

2.62
 

 

 
2  9.81 

 
= − 0.6 + 

V2
2 

 

2  9.81 

 

 
Figure Ex. 2.3 Problem model 

 V2 = 4.3 m/s. 

using continuity equation (one dimensional flow) and noting that density is constant. 

A1V1 = A2V2 

  0152
 

4 

 
× 2.6 = 

  D2
 

4 
× 4.3,    D = 0.01166 m or 11.66 mm 

As the potential energy decreases, kinetic energy increases. As the velocity is higher the flow area 

is smaller. 

Entrainment of air may increase the diameter somewhat. 

Example 2.4 Water flows in a tapering pipe vertically as shown in Fig. Ex.6.4. Determine the 

manometer reading ‘‘h’’. The manometer fluid has a specific gravity of 13.6. The flow rate is 

100 l/s 

0.1 m  
2 

 
0.6 m 

 
 
 

3 

Q = 0.1 m /s 

 
Water 

 
 

1       
xm 

A B 
h
 

 

Mercury 0.2 m  

Jet 

 
 

 
0.6 m 

2g 
, 
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The velocities at sections 1 and 2 are first calculated. 

V1 = 4 × 0.1/ ( × 0.22) = 3.183 m/s, 

V2 = 4 × 0.1/ ( × 0.12) = 12.732 m/s 

It is desired to determine P1 – P2. Rearranging Bernoulli equation for this flow, 

 P1 − P2 

 

 
= 0.6 + (12.7322 – 3.1832)/(2 × 9.81) = 8.346 m of water 

For water  = 9810 N/m3. For the manometer configuration, considering the level AB and equating 

the pressures at A and B 

 P1 
+ x + h =

 P2
 
 
+ 0.6 + x + sh 

  

(where x, h are shown on the diagram and s is specific gravity) 

 P1 − P2 

 

 
= 0.6 + h(s – 1), substituting the values, 

8.346 = 0.6 + h(13.6 – 1) 

 h = 0.6148 m or 61.48 cm 

 

 

  2.5 ENERGY LINE AND HYDRAULIC GRADIENT LINE   
 

The total energy plotted along the flow to some specified scale gives the energy line. When 

losses (frictional) are negligible, the energy line will be horizontal or parallel to the flow direction. 

For calculating the total energy kinetic, potential and flow (pressure) energy are considered. 

Energy line is the plot of
 P

 

 

+ Z + 
V2

 

2 g 
along the flow. It is constant along the flow when losses 

are negligible. 

The plot of 
P

 

 

 

 

+ Z along the flow is called the 

hydraulic gradient line. When velocity increases this will 

dip and when velocity decreases this will rise. An 

example of plot of these lines for flow from a tank through 

a venturimeter is shown in Fig. 6.5.1. 

The hydraulic gradient line provides useful 

information about pressure variations (static head) in a 

flow. The difference between the energy line and 

hydraulic gradient line gives the value of dynamic head 

(velocity head). 

 

 

 

 

 

 
Figure 2.5.1 Energy and hydraulic 

gradient lines 

Tank Energy line 

H.G. line 

 
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j1 − 2 

1 A1 2 1 A1 2 

 

  2.6 VOLUME FLOW THROUGH A VENTURIMETER   

 
Example 2.6 Under ideal conditions show that the volume flow through a venturimeter is given by 

A r J P − P 7 y0.5  
Q = 

2 
0.5  j2 gj    1 2  + (Z1 − Z2 )j j 

{1 − ( A2 / A1)2} lj H  J jQ 
 

where suffix 1 and 2 refer to the inlet and the throat. 

Refer to Fig. Ex. 6.5 

Volume flow = A1 V1 = A2 V2 

A J A  7 2
 

 V  =  
    2  

V , V 2 =  jH
    2 jJ . V 2, 

r 
 (V 2 – V 2) = V 2

 

J
j  A  7j

2 yj 

2 1 2    jl H A1 J jQ 

Applying Bernoulli equation to the flow and considering section 1 and 2, 

 P1 + Z
 + 

V 2 

=
 P 

+ Z + 
V 2 

 

Rearranging, 

1 2 
1 

2 g  

2 
2 

2g 

r ç   yy0.5  
r
j J  A  7 2 y

j
0.5 

 j2 g ( P1 −  P2  + (Z1 −  Z2 )[j = V 1 − j 2 j 

lj t  jjQ 2 jl H A1 J jQ 

1 r 

 

ç P − P 

 
yy0.5  

V = 2 0.5 j2 g( 1 2 + (Z1 − Z2 )[j 
 

 
 Volume flow is 

2 [1 − ( A2/ A1) ] lj t  jjQ 

  A r ç P − P   yy0.5  

A V = 
2     

2  0.5  j2 g( 1 2  + (Z1 −  Z2 )[j 
2   2 [1 − ( A2/ A1) ] lj t  jjQ 

This is a general expression and can be used irrespective of 

the flow direction, inclination from horizontal or vertical 

position. This equation is applicable for orifice meters and 

nozzle flow meters also. 

In numerical work consistent units should be used. 

Pressure should be in N/m2, Z in m, A in m2 

flow will be m3/s. 

and then volume 

A coeficient is involved in actual meters due to friction. 

P2 
A2 

Z 

P1 

A1 1
 

Z 1 

Z2 

Datum 

h 

A B 
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Example 6.6 Show that when a manometric fluid of specific gravity S2 is used to measure the head 

in a venturimeter with flow of fluid of specific gravity S1, if the manometer shows a reading of hm, 

the volume flow is given by 

A r J S 7 y0.5  

Q = 
2
 0.5 j2ghj 2 − 1jj 

1 − ( A2 / A1)2 lj H S1 J jQ 

Comparing the equation (6.6.1) with the problem at hand, it is seen that it is sufficient to prove, 

h
J
j S2  

− 1
7
j = 

 P1 − P2 + (Z – Z ) 

H S1 J  1 
2 1

 

Considering the plane A–B in the manometer and equating the pressures at A and B Fig. Ex. 6.5 : 

The manometer connection at the wall measures the static pressure only) 

P1 + Z1 1 + h1 = P2 + Z21 + h2 

(P1 – P2) + (Z1 – Z1) 1 = h(2 – 1), dividing by 1, 

 P1 − P2  + (Z 
– Z ) = h

J
j  2  − 1

7
j = h

J S2  − 1
7 

 1 
1 2 

Hence volume flow, 

H  1 J 

 
A 

jH S1 
jJ 

 
r J S 

 
 

7 y0.5  
Q = 

2  
2 0.5 j2ghj 2 − 1jj 

[1 − ( A2/ A1) ] jl H S1 J jQ 
This equation leads to another conclusion. The fluid head, H, causing the flow is equal to the 

manometer reading h[(S2/S1) – 1] and flow is independent of the inclination if the reading of the 

manometer and the fluids are specified. 

i.e., As the manometer reading converted to head of flowing fluid, H = h[(S2/S1) – 1] 

Q =
 A2 [2 gH]0

.5 
 

[1 − ( A2/ A1)
2
]
0.5

 

If the pressure at various locations are specified, these equations are applicable for orifice and 

nozzle meters also. 

Example. 2.7 Determine the flow rate through the siphon Fig. Ex. 6.7 when flow is established. 

Also determine the pressure at A. 

The pressure at C and B are atmospheric. Considering 

locations C and B and taking the datum at B, applying 

Bernoulli equation, noting that the velocity at water 

surface at C = 0. 

0 + 0 + VB
2/2g = 3 + 0 + 0 

 VB = 7.672 m/s. 

 Flow rate = ( D2/4) × V 

= ( × 0.12/4) × 7.672 

A 

Water level 

C      

 

 
Tank 

 
Pipe, 100 mm  

 

 
1.0 m 

 
 
 

333   mm  

 

 
B 

= 0.06 m3/s Figure Ex. 2.7 Problem model 
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2 

 

The velocity at A is the same as velocity at B. Now considering locations C and A, 

3 + 0 + 0 = 4 + (PA/) + 7.6722/ (2 × 9.81) 

 PA/ = – 4m or – 4m of water head or 4m water-head below atmospheric pressure. 

Check: Consider points A and B 

PA 

4 +   

 + 

VA 
2 

2 g = 
VB

2 

2 g 

 
+ 0 + 0   as VA = VB, 

 
 PA = – 4 m checks. 

 

Example. 2.8 Water flows in at a rate of 80 l/s from the pipe as shown in Fig. Ex.2 .8 and 

flows outwards through the space between the top and bottom plates. The top plate is fixed. 

Determine the net force acting on the bottom plate. Assume the pressure at radius r = 0.05 m is 

atmospheric. 

25 mm  dr 
r 

Bearing 

0.7 m 

 

1 2 

 
Top plate 

(fixed) 

 
 

Bottom plate 

 

0.1 m Element considered 
 

Figure Ex. 2.8 Problem model 

Consider an element area of width dr (annular) in the flow region at a distance r as shown in 

figure. The pressure at this location as compared to point 1 can be determined using Bernoulli 

equation. 

 P1 V 2 P V2
2 

   
+ Z

1 
+    1   =   2 + Z2 + 

2g 
, P1 is atmospheric 

 

 

 
As   Z 

 

 
= Z , P 

2 g  

 

– P = 
   

(V 2 – V 2) 
1 2 2 1 2 g 1 2 

V1
2 = (0.08/2 × 0.05 × 0.025)2 = 103.75 

V 2 = (0.08/2 × 0.025 × r)2 = 0.2594/r2
 

(P2 – P1) is the pressure difference which causes a force at the area 2rdr at r. 

The force on the element area of the bottom plate = 2rdr (P2 – P1) 

Substituting and nothing  = g/g0, the elemental force dF is given by, 

dF =  rdr rj103.75 −  
0.2594 yj , 

l r
2 Q 

Integrating between the limits r = 0.05 to 0.35, 

Net force = 1000 ×   
rj(103.75 (0.35

2   

− 0.052 ) / 2) − 
Jj0.2594 ln 

0.357j yj = 17970  N 

l H 0.05J Q 

dr 

r 
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  2.7 EULER AND BERNOULLI EQUATION FOR FLOW WITH FRICTION   
 

Compared to ideal flow the additional force that will be involved will be the shear force acting 

on the surface of the element. Let the shear stress be , the force will equal  2r ds (where r is 

the radius of the element, and A =  r2) 

Refer Para 2.3 and Fig. 2.3.1. The Euler equation 6.3.3 will now read as 

dP 
+ VdV + gdZ – 

2ds 
= 0 

 r 

dP J V 2 7  2ds 

    
+ djH 2 g jJ + dZ – 

 r   
= 0 

 

ds can also be substituted in terms of Z and  

Bernoulli equation will now read as (taking s as the length) 
 

 P1 
+ 

V12  P2 
+ 

V22 2s 

 2 g 
+ Z1 = 


 2 g 

+ Z
2 

+ 
r 

The last term is the loss of head due to friction and is denoted often as hL,hf in head of 

fluid in metre height (check for the unit of the last term). 
 

Example 2.9 The delivery line of a pump is 100 mm ID and it delivers water at a height of 12 m 

above entry. The pipe ends in a nozzle of diameter 60 mm. The total head at the entry to the pipe is 
20 m. Determine  the flow  rate  if  losses  in  the  pipe  is  given by  10  V 2/2g. where V   is the 

2 2 

velocity at nozzle outlet. There is no loss in the nozzle. 

Equating the total energy at inlet and outlet, 

V 2 V 2 

20 = 12 + 
   2   

+ 10 
  2 , 

2 g 2 g 
 

 V 2 = 
8  2  9.81 

, V
  = 3.777 m/s 

2 11 2 

 
  0.062 

3 3
 

Flow = A2 V2 = 
4
 × 3.777 = 0.01068 m /s = 0.64 m /min. 

(If losses do not occur then, V2 = 12.53 m/s and flow will be 2.13 m3/min) 

Example 2.10 A tank with water level of 12 m has a pipe of 200 mm dia connected from its bottom 

which extends over a length to a level of 2 m below the tank bottom. Calculate the pressure at 

this point if the flow rate is 0.178 m3/s. The losses due to friction in the pipe length is accounted for 

by 4.5 V2
2/2g. 
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V V 

2 1 1 

2.8  CONCEPT AND MEASUREMENT OF DYNAMIC, STATIC AND TOTAL 

HEAD 

Taking location of the outlet of the pipe as the datum, using Bernoulli equation and accounting for 

frictional drop in head (leaving out the atmospheric pressure which is the same at the water level 

and at outlet). 

P V 
2 

V 
2

 

14 = 
  2 

+
   2   

+ 4.5 
   2  

 

 2 g 2 g 

 V2 = 0.178/ × 0.1 × 0.1 = 5.67 m/s 

14 – 5.5 × 
5.67

2

 

2  9.81 
=

 P2 

 
= 5 m of water head. 

 P2 = 9810 × 5 N/m2 = 0.49 bar (above atmospheric pressure) 

Example 2.11 A vertical pipe of diameter of 30 cm carrying water is reduced to a diameter of 15 

cm. The transition piece length is 6 m. The pressure at the bottom is 200 kPa and at the top it is 80 

kPa. If frictional drop is 2 m of water head, determine the rate of flow. 

Considering the bottom as the datum, 

200  103
 

 
 

9810 

 
2 

+ 0 +
   1   

= 
2 g 

80  103
 

 
 

9810 

 
2 

+ 6 + 
  2 

+2 
2 g 

V 2 = V 2 (0.3/0.15)4 = 16V 2
 

120  103 V 2 

 – 8 = 15
 1 

, Solving, V = 2.353 and V = 9.411 m/s 
9810 2g 1 2 

 Flow rate = A1 V1 = A2V2 = 0.166 m3/s 

 

 

 
In the Bernoulli equation, the pressure term is known as static head. It is to be measured by a 

probe which will be perpendicular to the velocity direction. Such a probe is called static probe. 

The head measured is also called Piezometric head. (Figure 2.8.1 (a)) 

The velocity term in the Bernoulli equation is known as dynamic head. It is measured 

by a probe, one end of which should face the velocity direction and connected to one limb of a 

manometer with other end perpendicular to the velocity and connected to the other limb of the 

manometer. (Figure 2.8.1 (b)) 

The total head is the sum of the static and dynamic head and is measured by a single 

probe facing the flow direction. (Figure 2.8.1 (c)) 

The location of probes and values of pressures for the above measurements are shown in 

Fig.2.8.1. 
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(a) (b) (c) 
 

 
 

2.8.1 Pitot Tube 

Figure 2.8.1 Pressure measurement 

The flow velocity can be determined by 

measuring the dynamic head using a device known 

as pitot static tube as shown in Fig. 2.8.2. The holes 

on the outer wall of the probe provides the static 

pressure (perpendicular to flow) and hole in the tube 

tip facing the stream direction of flow measures the 

total pressure. The difference gives the dynamic 

pressure as indicated by the manometer. The head 

will be h (s – 1) of water when a differential 

manometer is used (s > 1). 

The velocity variation along the radius in a 

duct can be conveniently measured by this 

 

 

 

 
Pitot 
tube 

 
 
 
 
 

 
Dynamic 
head 

Manometer 

arrangement by traversing the probe across the 

section. This instrument is also called pitot–static 

tube. 

Static probe openings (⊥ r to flow) 

Total pressure probe (Facing flow) 

Figure 2.8.2 Pitot-Static tube 
 

Example 2.12 The dynamic head of a water jet stream is measured as 0.9 m of mercury column. 

Determine the height to which the jet will rise when it is directed vertically upwards. 

Considering the location at which the dynamic head is measured as the datum and converting the 

column of mercury into head of water, and noting that at the maximum point the velocity is zero, 

0.9 × 13.6 + 0 + 0 = 0 + 0 + Z  Z = 12.24 m 

Note. If the head measured is given as the reading of a differential manometer, then the head 

should be calculated as 0.9 (13.6 – 1) m. 

h 

h 

V 
V 

Static 
head 

Dynamic 
head 

Total 
head 
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Example 2.13 A diverging tube connected to the outlet of a 

reaction turbine (fully flowing) is called ‘‘Draft tube’’. The 

diverging section is immersed in the tail race water and this 

provides additional head for the turbine by providing a pres- 

sure lower than the atmospheric pressure at the turbine exit. 

If the turbine outlet is open the exit pressure will be atmos- 

pheric as in Pelton wheel. In a draft tube as shown in Fig. Ex. 

6.13, calculate   the   additional   head   provided   by   the 

draft tube. The inlet diameter is 0.5 m and the flow velocity 

is 8 m/s. The outlet diameter is 1.2 m. The height of the inlet 

above the water level is 3 m. Also calculate the pressure at the 

inlet section. 

Considering sections 1 and 2 

 P1 V 2 P V 
2
 

+
 1   

Z
 = 

  1 
+

   1   
+ Z 

 2 g 1  2 g 2 

Considering tail race level, 2 as the datum, and calulating the velocities 

0.52
 

V1 = 8 m/s, V2 = 8 × 
1.22

 
= 1.39 m/s. 

P2 = atmospheric pressure, Z2 = 0, Z1 = 3 

 P1 8
2 

1.39
2
 

 
+ 

2  9.81 
+ 3 = 

2  9.81 

 
P1 

 
= – 6.16 m of water. (Below atmospheric pressure) 

Additional head provided due to the use of draft tube will equal 6.16 m of water 

Note: This may cause cavitation if the pressure is below the vapour pressure at the temperature 

condition. Though theoretically the pressure at turbine exit can be reduced to a low level, cavitation 

problem limits the design pressure. 

  SOLVED PROBLEMS   

Problem 2.1 A venturimeter is used to measure the volume flow. The pressure head is 

recorded by a manometer. When connected to a horizontal pipe the manometer reading was h 

cm. If the reading of the manometer is the same when it is connected to a vertical pipe with flow 

upwards and (ii) vertical pipe with flow downwards, discuss in which case the flow is highest. 

Consider equation 2.6.2 

  A2 r J S 7 y0.5 
Q = 

2 0.5 j2 ghj 2 − 1jj 
1 − (A2 / A1) lj H S1 J jQ 

0.5 m 
 

1 

333   mm  

Tail race 
2 

1.2 
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As long as ‘h’ remains the same, the volume flow is the same for a given venturimeter as 

this expression is a general one derived without taking any particular inclination. 

This is because of the fact that the manometer automatically takes the inclination into 

account in indicating the value of (Z1 – Z2). 

Problem 2.2 Water flows at the rate of 600 l/s through a horizontal venturi with diameter 

0.5 m and 0.245 m. The pressure gauge fitted at the entry to the venturi reads 2 bar. Determine 

the throat pressure. Barometric pressure is 1 bar. 

Using Bernoulli equation and neglecting losses 

P1 V 2 + 1 + Z 
P2 V 2 = +   2 + Z , P 

 
= 2 bar (gauge) = 3 bar (absolute) 3 × 105 N/m2

 
 

 2 g 
 

1  2 g 

Q 

2 1 

 

0.6  

V1 = 
(  d2/4) 

J  D  7 2
 

= 
(  0.52/4) 

= 3.056 m/s   can also use 

V = V j 2 j 
2 1 H D1 J 

0.6  

V2 = 
(  0.2452 /4) 

= 12.732 m/s, Substituting 

 

3  105 3.0562 P2 12.7322 

9810 
+ 

2  9.81 
+ 0 = 

9810 
+

 2  9.81 
+ 0

 

 P2 = 223617 N/m2 = 2.236 bar (absolute) = 1.136 bar (gauge) 

Problem 2.3 A venturimeter as shown in Fig P. 6.3 is 

used measure flow of petrol with a specific gravity of 0.8. The 

manometer reads 10 cm of mercury of specific gravity 13.6. 

Determine the flow rate. 

Using equation 2.6.2 

  A2 r J S 7 y0.5 
Q = 

2 0.5 j2 ghj 2 − 1jj 
1 − ( A2 / A1) lj H S1 J jQ 

A2 = (/4) 0.032 as D2 = 3 cm 

 (A2/A1)
2 = (D2/D1)

4 = (0.03/0.05)4, 

h = 0.10 m S2 = 13.6, S1 = 0.8, Substituting, 

(  0.032 / 4) r J 13.6 7 y0.5 

1 − (0.03 / 0.05) 4  
0.5  jl

2  9.81  0.1jH 0.8  
− 1jJ jQ 

 

= 4.245 × 10–3 m3/s or 15.282 m3/hr or 4.245 l/s or 15282 l/hr or 3.396 kg/s 

3 cm  

5 cm  
30° 

10 m 

Q = 
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Problem 2.4 A liquid with specific gravity 0.8 flows at the rate of 3 l/s through a 

venturimeter of diameters 6 cm and 4 cm. If the manometer fluid is mercury (sp. gr = 13.b) 

determine the value of manometer reading, h. 

Using equation (6.6.2) 

  A r J S 7 y0.5 

Q = 2 0.5 j2 ghj 2 − 1jj 
1 − (A2 / A1)2

 jl H S1 J jQ 

A = 
  0.062 

1 
4
 

 

A  = 
  0.042 

2 4 

 
= 2.83 × 10–3 m2 ; 

 
 

= 1.26 × 10–3 m2
 

 

1.26  10−3 r J 13.6 7 y0.5 

3 ×10–3 =  
r J 7  

0.5  j2  9.81  hHj 0.8  
− 1jJ j −3  2 y l Q 

j1 − jH 
1.26  10

−3 jJ j
 

l 2.83  10 Q 
Solving, h = 0.0146 m = 14.6 mm. of mercury column. 

Problem 2.5 Water flows upwards in a vertical pipe line of gradually varying section 

from point 1 to point 2, which is 1.5m above point 1, at the rate of 0.9m3/s. At section 1 the pipe 

dia is 0.5m and pressure is 800 kPa. If pressure at section 2 is 600 kPa, determine the pipe 

diameter at that location. Neglect losses. 

Using Bernoulli equation, 

 P1 

 

V 2 

+   1 + Z = 
2 g 1 

 P2 

 

V 2 

+ 2 + Z 
2 g 2 

V 2 

+ 2 +1.5 
2  9.81 

 

 
Flow = area × velocity, 2 ×19.37 = 0.9 m3/s 

4 

Solving for d2, Diameter of pipe at section 2 = 0.243 m 

As (p/) is involved directly on both sides, gauge pressure or absolute pressure can be 

used without error. However it is desirable to use absolute pressure to aviod nagative pressure 

values. 

Problem 2.6 Calculate the exit diameter, if at the inlet section of the draft tube the 

diameter is 1 m and the pressure is 0.405 bar absolute. The flow rate of water is 1600 l/s. The 

vertical distance between inlet and outlet is 6 m. 

800  103 + (0.9  4 /   0.52 ) + 0 = 
600  103 

9810  2  9.81 9810 

Solving,   V2 = 19.37 m/s. 

  d2 
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1 

Applying Bernoulli equation between points 1 and 2, neglecting losses 

P1 V 2 + 1 + Z 
P2 V 2 = + 2 + Z 

 

 2 g 1  2 g 2 

V = 
  Q  4   

=
 

1   D 2 

1600  10−3  4 

  12 
= 2.04 m/s 

P2 = atmospheric pressure; Z2 = 0 (datum); Z1 = 6 m 

0.405  105 
+

 2.042 + 6 = 1.013  105 V 2 
+ 2 + 0    V = 0.531 m/s 

9810 2  9.81 

A2 

 

9810 

V1 D2 = =    2 = 

2  9.81 

 
2.04 

   D
 

2 

 

 

= 1.96 m 
A1 V2 12 0.531 2

 

0.405 bar absolute means vacuum at the inlet section of the draft tube. This may cause 

‘‘cavitation’’ if this pressure is below the vapour pressure at that temperature. Though 

theoretically the pressure at turbine exit, where the draft tube is attached, can be reduced to a 

vary low level, cavitation problem limits the pressure level. 

Problem 2.7 Water flows at the rate of 200 l/s upwards through a tapered vertical pipe. 

The diameter at the bottom is 240 mm and at the top 200 mm and the length is 5m. The pressure 

at the bottom is 8 bar, and the pressure at the topside is 7.3 bar. Determine the head loss 

through the pipe. Express it as a function of exit velocity head. 

Applying Bernoulli equation between points 1 (bottom) and 2 (top) and considering the 

bottom level as datum. 

P V 2 
P V 2 

   1 +
   1   

+ Z =   2 +   2 + Z + losses 

 2 g 1  2 g 2 

8  102 

9810 
+ 

(200  10−3  4) /   0.242)2 

2  9.81 

 
7.3  105 

 
+ 0 

 

(200  10−3  4)/(  0.22)2 
= 

9810 
+

 2  9.81 
+ 5 + losses 

 Losses = 1.07 m 

V 2 r200  10−3  4 y2
 

1.07 = X   2  
= X j j /2 × 9.81  X = 0.516, 

2 g l   0.22 Q 

V 2 

Loss of head = 0.516    2  
2g 
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r 

Problem 2.8 Calculate the flow rate of oil (sp. gravity, 0.8) in the pipe line shown in 

Fig. P. 2.8. Also calculate the reading ‘‘h’’ shown by the differential manometer fitted to the 

pipe line which is filled with mercury of specific gravity 13.6. 

Applying Bernoulli equation (neglecting losses) between points 1 and 2 

P1 V 2 + 1 + Z 
 

P2 V 2 = + 2 + Z 
 

 2 g 1  2 g 2 

P1 = 2 × 105 N/m2; P2 = 0.8 ×105 N/m2 ; 

Z1 = 0, Z2 = 2 m 

2 
0.8 bar 

0.2 

2 m  

1 2 bar 

0.5 

Figure P. 2.8 

Applying continuity equation between points 1 and 2 
A   J   0.52 /47 

A V = A V , V = V 
1 

= V j 2 j = 6.25 V 

1   1 2   2 2 1 A2 1 H   0.2 /4J 1 

2  105 

9810  0.8 

V 2 

+ 1 + 0 = 
2  9.81 

0.8  105 
 

 

9810  0.8 

(6.25V1)2
 

+ 
2  9.81 

 
+ 2 V1 

 
= 2.62 m/s 

 
Flow rate, Q = A1 V = 

  0.52 
1 4 

 
× 2.62 = 0.514 m3/s = 514 l/s 

Using equation (6.6.2) (with A2 = 0.031 m2, A1 = 0.196 m2) 

A r J S 7 y0.5 

Flow rate, Q = j2 ghj 2 − 1jj 
jl 

  0.031 r 

H S1 J jQ 
J 13.6 

 
7 y0.5 

0.514 = 

j
1 − 

Jj 0.0317j 2 y0.5  jl
2  9.81  hjH 0.8  

− 1jJ jQ j 
l H 0.196J Q 

Solving, h = 0.854 m 

 
h 

2 

1 − ( A2 / A1)2
 

0.5 
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2 

D 2 1 4 
2 

1 1 2 

Problem 2.9 Water flows at the rate of 400 l/s through the pipe with inlet (1) diameter of 

35 cm and (2) outlet diameter of 30 cm with 4m level difference with point 1 above point 2. If P1 

= P2 = 2 bar absolute, determine the direction of flow. 

Consider datum as plane 2 

 
Total head 1, 

2  105 
+

 

9810 

 
2  105 

(0.4  4/  0.352 )
2
 

 

2  9.81 

(0.4  4/  0.32 )
2
 

 
+ 4 = 25.27 m water column 

Total head at 2, 
9810 

+
 2  9.81 

+ 0 = 22.02 m of water column 

The total energy at all points should be equal if there are no losses. This result shows 

that there are losses between 1 and 2 as the total energy at 2 is lower. Hence the flow will 

take place from points 1 to 2. 

Problem 2.10 Petrol of relative density 0.82 flows in a pipe shown Fig. P.2.10. The 

pressure value at locations 1 and 2 are given as 138 kPa and 69 kPa respectively and point 2 is 

1.2m vertically above point 1. Determine the flow rate. Also calculate the reading of the 

differential manometer connected as shown. Mercury with S = 13.6 is used as the manometer 

fluid. 

 
 

2 
0.69 bar 

0.15 m 

 
 

 

1.2 m 

 
 

 

1 1.38 bar 

h 
0.3 m 

B A 

 

Figure P. 2.10 Problem Model 

Considering point 1 as a datum and using Bernoulli equation. 

 P1 V 2 
+   1 + Z = P2 

 
V 2 

+   2 + Z , Z 
 = 0, Z  = 1.2 m, V = V A1 

J D2 7 = V1j     1 j 
 2 g 1  2 g 2 1 2 

J D4 7 

2 1 A2
 H D2 J 

 V 2 = V 2  jH  
1  jJ = 16 V 2 as D /D  = 2 

binils.com

binils - Anna University App on Play Store

                    Free PDF Study Materials
binils.com - Anna University, Polytechnic & Schools



54 

 

 

1 

r 

 138  103 V 2  69  103 J V 2 7 
+   1 + 0 = + 16 j 1 j + 1.2 

 
 

0.82  9810 2 g 

 
 

0.82  9810 H 2 g J 

(138 − 69)103 

0.82  9810 

 
V 2 

– 1.2 = 15 1 . Solving, V = 3.106 m/s 
2 g 

 

 Volume flow = 
  0.32

 

4 

 

× 3.106 = 0.22 m3/s or 180 kg/s 

The flow rate is given by equation 6.6.2 

  A  r J S   7 y0.5    
S2 

 

 
13.6 Q = 2 

0.5 j2 ghj 2 − 1jj , 
S   

= 
0.82 

j1 − Jj A2 7
j

2 yj 
jl H S1 J jQ 1 

lj H A1 J jQ 
 

   0.152/4 r J 13.6 7 y0.5 

0.22 = 

j
1 − 

Jj 0.157j 4 y0.5  jl
2  9.81  hjH 0.82 

− 1jJ jQ j 
l H 0.3 J Q 

Solving, h = 0.475 m of mercury column 

Problem 2.11 Water flows downwards in a pipe as shown 

in Fig. P.6.11. If pressures at points 1 and 2 are to be equal, 

determine the diameter of the pipe at point 2. The velocity 

at point 1 is 6 m/s. 

Applying Bernoulli equation between points 1 and 2 

(taking level 2 as datum) 

P1 62 P2 V 2 

 + 
2  9.81 

+ 3 = +    2 + 0 
2 g 

as P1 = P2, V2 = 9.74 m/s 

Using the relation A1 V1 = A2V2, 

  0.32  6 
=

 

4 

  d2  9.74 
 

 

4 

Figure P. 2.11 Problem model 

 d = 0.2355 m. 

Problem 2.12 A siphon is shown in Fig P. 2.12. Point A is 1m above the water level, 

indicated by point 1. The bottom of the siphon is 8m below level A. Assuming friction to be 

negligible, determine the speed of the jet at outlet and also the pressure at A. 

v1 = 6 m/s 

1 
0.3 m 

3 m  

2 

 
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7  2  9.81 

 1  2 

 

1 
1 m  

8 m  

Using Bernoulli equation, between 1 and 2. 
 

A 

2 

 

Figure P. 2.12 Problem model 
 

 P1 V 2 P2 V 2 
+   1 + Z = 

2 g 
+   2 + Z , 

2 g 

P1 = P2 = atmospheric pressure. 

Consider level 1 as datum. The velocity of water at the surface is zero. 
 

V 2 

0 + 0 = 2 – 7 
2 g 

 

 V2 = = 11.72 m/s = VA 

Considering surface 1 and level A. As flow is the same, 

P1 PA V 2 

   
+ 0 + 0 = + 1 +   A  

2 g 

Considering P1/ = 10.3 m of water, 

PA P1 V 2 

= – 1 – 2 = 10.3 – 1 – 7 
 2 g 

= 2.3 m of water column (absolute) 

Problem 2.13 A pipe line is set up to draw water from a reservoir. The pipe line has to 

go over a barrier which is above the water level. The outlet is 8 m below water level. Determine 

the maximum height of the barrier if the pressure at this point should not fall below 1.0 m 

of water to avoid cavitation. Atmospheric pressure is 10.3 m. 

Considering outlet level 3 as datum and water level as 1 and appyling Bernoulli equation, 

Z3 = 0, Z1 = 8, V1 = 0, P1 = P3 

V 2 

=
   3   

2 g 
   V3 = = 12.53 m/s 8  9.81  2 

 

 

  
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3 

 

Figure P. 2.13 Problem model 

Considering the barrier top as level 2 

P2 V 2 + 2 + Z 
 = 

P3 V 2 
+   3 + Z ,   As V 

 
= V , Z 

 
= 0, P / = 1 

 2 g 2  2 g 3 2 3 3 2 

1 + Z2 = 10.3 

 Z2 = 9.3 m. Therefore the barrier can be 1.3 m above water level. 

Problem 2.14 Determine the flow rate of water across the shutter in an open canal if 

the water level upstream of shutter is 5m and downstream is 2m. The width of the canal is 1m 

and flow is steady. 

Applying Bernoulli equation between point 1 in the upstream and point 2 in the 

downstream on both sides of the shutter, both surface pressures being atmospheric. 

V 2 V 2 
   1   + 5 =   2 + 2 (1) 
2 g 2 g 

Applying continuity equation, flow rate, Q = A1V1 = A2V2 

(1 × 5) V1 = (1 × 2) V2, m   V2 = 2.5 V1,   Substituting in equation (1), 

V 2 
  1 + 5 = 
2  9.81 

(2.5V1)2
 

 

2  9.81 

 
+ 2, 

 V1 = 3.35 m/s, V2 = 8.37 m/s. Q = 16.742 m3/s, 

Problem 2.15 Uniform flow rate is maintained at a shutter in a wide channel. The 

water level in the channel upstream of shutter is 2m. Assuming uniform velocity at any section 

if the flow rate per m length is 3m3/s/m, determine the level downstream. 

Assume velocities V1 and V2 upstream and downstream of shutter and the datum as the 

bed level. Using Bernoulli equation 

V 2 
2 +   1 = h V 2 

+
   2   

 
(A) 

2 g 2 2 g 

Considering unit width from continuity 1 × 2 × V1 = 1 × h2 × V2 (B) 

3 

 V2 = (2/h2) V1, from flow rate V1 = 3/2 = 1.5 m/s    V2 = h2
 

2 

WL 1 h 

8 m  
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2 2 

j j 

Substituting 

 

2 + 
1.52 

2  9.81 

 

 
= h2 

 
+ 

32 

h2  2  9.81 

Simplifying, this reduces to h 3 – 2.1147 h 2 + 0.4587 = 0 

Solving, h2 can be 2 m, – 0.425 m, 0.54 m 

h2 = 0.54 m is the acceptable answer. 2m being trivial. 

Using B, 0.54 × V2 × 1 = 2 ×1.5 = 3.  V2 = 5.56 m/s. 

check using A, 2 + 0.1147 = 0.54 + 1.57 checks. 

The difference between the dynamic head values will equal the difference between the 

datum heads. This may be checked using the calculated velocity values. 

Problem 2.16 A pump with centre line 2m above the sump water level develops 50m 

head of water. The suction pipe is of 150 mm ID. The loss of head in the suction line is given by 

5 Vs
2/2g. The delivery line is of 100 mm dia and the loss in the line is 12 Vd

2/2g. The water is 

delivered through a nozzle of 75 mm dia. The delivery is at 30m above the pump centre line. 

Determine the velocity at the nozzle outlet and the pressure at the pump inlet. 

Let the velocity at the nozzle be Vn 

752 9 
Velocity in the delivery pipe = Vd = Vn × 

1002   = 
16 

Vn 

 
Velocity in suction pipe Vs= Vn 

 
V 2 

Kinetic head at outlet =    n  
2 g 

J  75 7 2 
Vn 

 

H 150J = 
4 

V 2 J 9 7 2   V 2 V 2 

Loss in delivery pipe =    d   = 12 × jH Jj  
    n    

= 3.797    n  
 

2 g 16 2 g 2 g 

 
V 2 5   V 2 V 2 

Loss in suction pipe =   s    = n = 0.3125 n  
 

2 g 16 2 g 2 g 

Equating the head developed to the static head, losses and kinetic head, 
 

V 2 

50 = 30 + 2 + n [1 + 3.797 + 0.3125] 
2 g 

18 × 2 × 9.81 = Vn
2 [5.109] 

 Velocity at the nozzle Vn = 8.314 m/s 

Pressure at suction : Taking datum as the water surface and also the velocity of the 

water to be zero at the surface, 
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V 

V V 

V 
o 

2 

xo xo 

g 2 
– 

2 

P1 as atmospheric, 10.3 m of water column, Kinetic head V2/2g, loss 5V2/2g 

P   
J (8.314/4)2 7 

10.3 = 

 

P2 

2   + 2 + jH 
 
2  9.81 

j
J × (5 + 1) (as Vs = Vn/4) 

 
 

= 10.3 – 3.321 m = 6.979 m absolute 

or 3.321 m below atmospheric pressure. 

Problem 2.17 A liquid jet at a velocity V0 is projected at angle . Describe the path of the 

free jet. Also calculate the maximum height and the horizontal distance travelled. 

The horizontal component of the velocity of jet is Vxo = V o cos . The vertical component 

Vzo = Vo sin . 

In the vertical direction, distance travelled, Z, during time t, (using the second law of 

Newton) 

Z = Vzo t – (1/2) gt2 (A) 

The distance travelled along x direction 

X = Vxo t or t = X/Vxo (B) 

Solving for t from B and substituting in A, 

Z = 
Vzo 

Vxo 

X – 
1

 
2 

g   
X2 (C) 

xo 

Z value can be maximised by taking dz/dx and equating to zero 

 

 

 
Substituting in C, 

dz 
= 

Vzo   – 
1 

dx Vxo 2 

g   
2X, 

Vzo   = 
gX

 

2 Vxo 
2
 

   X = Vzo Vxo/g 

Z = 
Vzo . 

max Vxo
 

VzoVxo 1 g 
 

2 
xo 

 
2 2 
zo   xo 

 

g2 

 

= 
1    zo 

2 g 

V02 sin2  
= 

2 g 

 
, Z

max 

 
= V 2 sin2 /2g (D) 

The maximum height is achieved when  = 90°. 

 Xmas = 2 times x as Zmax. 

Xmax = 2Vo
2 sin  cos  g = Vo

2 sin g (E) 

Maximum horizontal reach is at  = 45° or 2 = 90° and for this angle it will reach half 

the vertical height. 

This describes an inverted parabola as shown in Fig. P.2.17 

Bernoulli equation shows that Zt + Vt
2/2g = constant along the rejectory. Vt is the 

velocity at that location when air drag is neglected. Pressure is assumed to be uniform all over 

the trejectory as it is exposed to atmosphere all along its travel. Hence 

V 

V 

V 
. 

 
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0 

2g 

2 

Zt + Vt
2 /2g = constant for the jet. 

(Note: Velocity at time t = Vzo t = V0 sin  + a × t, where a = – g, so the velocity decreases, 

becomes zero and then turns – ve) 
 

Total head = Energy grade line 

 
Vx2 

 
 
 

 
2 

0 

2g 
V 

V0
 

Jet path 
2g 

Vx0 

 
 

V 2 

V Vx = Vx0 = constant 
2g Vz = Vz0 – gt 

z0 

V0 sin  

 
0 

 

Vx0 = V0 cos  

 
Vx0 Vz0 

g 

Zmax =    z0 P 

Z 

 
 
 

X 

 

 

Problem 2.18 A jet issuing at a velocity of 20 m/s is directed at 30° to the horizontal. 

Calculate the height cleared by the jet at 25m from the discharge location? Also determine 

the maximum height the jet will clear and the corresponding horizontal location. 

Ref Fig. P. 2.17 

Vxo = Vo cos 30 = 20 cos 30 = 17.32 m/s; 

Vzo = Vo sin 30 = 20 sin 30 = 10 m/s; 

at time t, X = Vxot; Z = Vzo t – (1/2) gt2, Substituting for t as X/Vxo with X = 25 m 

Z = 
Vzo   

X – 
1 g

 
 

X2 (A) 

 

Height cleared, Z25 

Vxo 

= 
10 

17.32 

 

2 
xo 

 

× 25 – 
1

 
2 

 

9.81 

17.322 

V 2 

 

 
× 252 = 4.215 m 

 
102 

Maximum height of the jet trajectory =   zo 
2 g 

= 
2  9.81 

= 5.097 m 

 

Corresponding horizontal distance = 
VxoVzo = 

17.32  10 
= 17.66 m 

g 9.81 

Total horizontal distance is twice the distance travelled in reaching 

Zmax = 35.32 m 

It would have crossed this height also at 10.43 m from the starting point (check using 

equations derived in Problem 6.17). 

 

V 

2 V 
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o 

o 

Problem 2.19 Determine the velocity of a jet directed at 40° to the horizontal to clear 

6 m height at a distance of 20m. Also determine the maximum height this jet will clear and the 

total horizontal travel. What will be the horizontal distance at which the jet will be again at 6m 

height. 

From basics, referring to Fig. P. 2.17, 

Vxo = Vo cos 40, Vzo = Vo sin 40, 

X = Vxo t, t = 
X 

Vxo 

,   Z = Vzo 

 

t – (1/2) gt2
 

Substituting for t as X/Vxo 

Z = 
Vzo X – 

1 g
 

 

 
X2 (A) 

 

Vxo 2 Vxo 
2

 

Substituting the values, 

Vo sin 40 
 20 

1 9.81  202 
6 = 

V cos 40 
− 

2 
 

V 2 cos2 40 
o o 

1 9.81  202 

6 = 20 tan 40 – 
2 V 

2 
cos

2 
40

 

9.81  202 

(B) 

 V 2 = 
2 cos2 40(20 tan 40 − 6) 

= 310      Vo = 17.61 m/s. 

Maximum height reached 

= Vzo
2/2g = (Vo sin 40)2/2g 

= (17.61 × sin 40)2 /2 × 9.81 = 6.53 m 

The X value corresponding to this is, (half total horizontal travel) 

X = VxoVzo/g = 17.612 sin 40 cos 40/9.81 = 15.56 m. 

This shows that the jet clears 6m height at a distance of 20 m as it comes down. The jet 

would have cleared this height at a distance less than 15.56 m also. By symmetry, this can be 

calculated as – (20 – 15.56) + 15.56 = 11.12 m 

check by substituting in equation B. 

1 9.81  11.122 
11.12 tan 40 – 

2 
× 

17.612 cos2 40 
= 6 

When both Z and X are specified unique solution is obtained. Given Vo and Z, two values 

of X is obtained from equation A. 

Problem 2.20 Determine the angle at which a jet with a given velocity is to be projected 

for obtaining maximum horizontal reach. 

Refer Problem 6.17. X = Vxo t, Z = Vzo t – (1/2) gt2
 

The vertical velocity at any location/time is given by, 

V
zt 

= 
dz 

dt 
= Vzo 

 

– gt 
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o 

o o 

xo 

Fall 

Rise 

82.5° 

29.3° 

10 m 

 

 
4m  

The horizontal distance travelled will be half the total distance travelled when 

Vzt = 0 or t = Vzo/g 

Total X distance travelled during time 2t. 

X = 2 Vxo Vzo/g = 2 V 2 cos  sin /g = V 2 sin 2/g 

For X to be maximum sin 2 should be maximum or 2 = 90° or 

 = 45°. For maximum horizontal reach, the projected angle should be 45°. 

The maximum reach, X = V 2/g as sin 2 = 1. 

Problem 2.21 Determined the angle at which a jet with an initial velocity of 20 m/s 

is to be projected to clear 4m height at a distance of 10 m. 

 

 

 

 

 
Vzo  

 
1 gx2 

Z = 
Vxo 

x – 
2 V 

2 

Substituting in terms of Vo and . 

Vo sin  

 
 

1 gx2 

 

1 gx2 

 

 
1 gx2 

Z = 
Vo

 
cos  

x – 
2 Vo

2 cos2    
= x tan  – 

2 
2 (sec2 ) 

o 

Z = x tan  – 
2 Vo 

2 (1 + tan2 ) 

 

Substituting the given values, 4 = 10 tan  – 
1 9.81  10

2

 
 
(1 + tan2 ) 

 

2 202 

Hence, tan2  – 8.155 tan  + 4.262 = 0, solving tan  = 7.594 or 0.5613 

This corresponds to  = 82.5° or 29.3°. In the first case it clears the height during the 

fall. In the second case it clears the height during the rise. See Fig. P.6.21. 

V 
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WL 

H1 
A 

H2 

B 

y1 

y2 

X 

GL 

Problem 2.22 From a water tank two identical jets issue at distances H1 and H2 from 

the water level at the top. Both reach the same point at the ground level of the tank. If the 

distance from the ground level to the jet levels are y1 and y2. Show that H1y1 = H2y2. 

 

 
 

In this case the jets issue out at A and B horizontally and so the position can be taken as 

the Zmax position. 

Referring to Problem 6.17, eqn. (D) 

 
Z

max 
= 

Vzo
2

 

2 g 

 
,   y1 = 

Vzo1
2

 

2 g 

 
or Vzo1   = 

 

 
Similarly, y2 = 

V 2 zo2 

2 g 

 
or   Vzo2 = 

 
(A) 

(Vzo1 and Vzo2 are the Z components at point where the jet touches the ground) 

X = 
VzoVxo   

and so 
Vzo1Vxo1   

= 
Vzo2Vxo2 

(B)
 

max g 

 

V
xo1 

= 

g g 
 

, Vxo2 = 

 

(C) 

Substituting results (A) and (C) in equation (B), and simplifying, 
 

   2 gH1 2 gy1 
= 

   2 gH2 2 gy2  
 

 H y = H y 
g g 1   1 2    2 

Problem 2.23 A jet of water initially 12 cm dia when directed vertically upwards, reaches 

a maximum height of 20 m. Assuming the jet remains circular determine the flow rate and 

area of jet at 10 m height. 

As V = 0 at a height of 20 m, Bernoulli equation reduces to 

V 2 

2 g 
= 20, 

2 gy1 

2 gy2 

2 gH1 2 gH2 
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2 

V 

r d y 

 V = (20 × 9.81 × 2)0.5 = 19.809 m/s 

Flow rate = area × velocity = 
  0.12

2

 

4 

 
× 19.809 = 0.224 m3/s 

When the jet reaches 10 m height, the loss in kinetic energy is equal to the increase in 

potential energy. Consider this as level 2 and the maximum height as level 1 and ground as 

datum, 

P1 = P2, V1 = 0, Z2 = Z1 – 10 = (20 – 10) = 10 

 
20 = 10 + 

V 220 

2 g 

V2
2 

 
2 g 

 
= 10, 

 V2 = (10 × 2 × 9.81)0.5 = 14 m/s 

Flow rate = area × velocity, 0.224 = 
  D2

 

4 

 
 
× 14    D = 0.1427 m 

Problem 2.24 Water is discharged through a 150 mm dia pipe fitted to the bottom of a 

tank. A pressure gauge fitted at the bottom of the pipe which is 10 m below the water level shows 

0.5 bar. Determine the flow rate. Assume the frictional loss as 4.5V 2/2g. 

Applying Bernoulli equation between the water level, 1 and the bottom of the pipe, 2 

and this level as datum 

 P1 
+ 

V12 P2 
+ 

V22 

 2 g 
+ Z1 = 


 

2 g 
+ Z2 + losses 

0.5  105 
+

 V2
2 V2

2 

0 + 0 + 10 = 
9810 2  9.81 

+ 0 + 4.5 
2  9.81 

Solving, V2 = 4.18 m/s 

Flow rate = 
  0.152

 

4 

 

 
× 4.18 = 0.0739 m3/s = 73.9 l/s. 

Problem 2.25 An open tank of diameter D 

containing water to depth ho is emptied by a smooth orifice 

at the bottom. Derive an expression for the time taken to 

reduce the height to h. Also find the time tmax for emptying 

the tank. 

Considering point 1 at the top of the tank and point 2 

at the orifice entrance, and point 2 as datum 

 

 
 

 
– dh 

 

V 2 
V 2 

P + 1   + h =   2   + p 
atm 

 

 

 

2 g 

2 
   1   + h = 
2 g 

2 g 

V2
2 

2 g 

atm  

 
d 

 
Figure P. 2.25 Problem model 

4 

Also V1
2 = V2

2 jl D jQ 

D 

 

 
 

h0 

 

 
h 
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h 

ho h 

Jj  D 7j
4
 

2 g 

H d J − 1 

ho 

ho 

= − j j 

z 

j j 

 

 V2 = 

Let the level at the time considered be h. 

The drop in level dh during time dt is given by (as dh is negative with reference to 
datum) 

 

 
J  d 7 2

 

dh 
= − 

 

dt 

V2 A2  

A1 

J  d 7 2
 

H DJ 

Taking  jH D 
jJ inside and rearranging 

 
dh 

= − 
 

dt 

 

Separating variables and integrating 

h dh 
= − 

 

ho 

 

 

t 

. dt 
0 

 

 

2 − = . t 

(A) 

 

 
 

t = 2( −   h) / = −   h / (B) 

 

 
Equation (A) can be rearranged to give 

r
j    

y
j

2

 

 h 
= j1 − t g / 2 ho j

 
h0 j 

l 
J  D7 4

 

H d J − 1 j 
(C) 

Equation (B) will be useful to find the drop in head during a given time interval. 

Consider a numerical problem. 

Let D = 0.5 m, d = 0.025 m, ho = 0.5 m, 

Time for emptying is calculated as h = 0, 

 
 

t = / 

2 gh 

1 − (d/D)4 

    2 gh  

1 − 
J j j 

4 

H J 
 d 

D 

Jj  D7j
4  

−
 

2 gh 

H d J 1 

  2g  

jJ  D7j
4  

−
 

H d J 1 

ho 
  2g  

Jj  D7j
4  

−
 

H d J 1 

Jj  D7j
4  

−
 

g /2  

H d J 1 

Jj  D7j
4  

−
 

g /2  

H d J 1 

z 

Q 
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h 

ho 

0.5  

j −j 

2   2 

 

 

= 0.5 / = 127.7 seconds. 

 

To find the drop in level in say 100 seconds. 

r
j   

y
j

2

 

 h 
= j1 − 

100 9.81/ 2  0.5 
j 

ho j 
l 

J  0.5 7 4
 

H 0.25J 1
 

j = 0.0471 

Q 
 Drop in head = 0.5 (1 – 0.0471) = 0.4764 m 

In case d << D, then V2 = when head is h m 

dh A V 
= −  

J  d 7 2
 J  d 7 2   

 

dt A1 
= – V2 jH DjJ = − jH DjJ . 2 gh 

Separating variables and integrating zh  dh J d 7 2        t
 

= – j j 2 g . z dt 

ho H DJ 0 

J  d 7 2       
 

2 [ – h ] = jH DjJ 2 g . t 

In this case to empty the tank, 
J 0.0257 2   

 

2 = jH 0.5 
jJ .

 
2  9.81 . t. 

Solving t = 127.71 s. 

The same answer because the same diameter of the orifice is used. Say d = 0.01 m, then 

time for employing is 1130 sec. 

Problem 2.26 Two identical jets issuing from a touch as shown in figure reach the 

ground at a distance of 10 m. Determine the distances indicated as h and H. 

Consider top jet: 

x distance travelled in time t is 10 m. 

 Vxo1t = 10 (A) 

t = 10/Vxo1 

The height drop is as Vzo as start is zero, 

 V t = H = 
1 

gt2 (B) 
zo1 2 

Jj   0.5  7j
4
 

9.81 / 2 

H 0.025 J − 1 

2 gh 
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xo1 

2 V 

xo2 

 

 

 

 

 

 

 

 

 
x 

 
 
 
 

H = 
1 

g 
100 

 

 
   V2

 = 
50 g 

 

2 Vxo2 
xo H 

As jet issues from the nozzle it has any x directional velocity Vxo1, is present. 

V2 = 2 g4 = 8g (C) (as head available in 4 m) 

Substituting, 8g = 
50 g 

H 

 

or H = 6.25 m. 

Considering the second jet. 

10 
Vxo2 t = 10, t = 

Vxo2 
, 

The head drop in (H – h) m. As in the previous case Vzoc = 0 at start 

H – h = 
1 

gt2. Substituting 
2 

1 1Vo 50 g 

H – h = g 2 

xo2 
Vxo2

2
 

(D) 

As at start only Vxo2 is present, 

V 2 = (4 + h) g × 2 

Substituting in (D) 

H – h = 
50 g

 
(4 + h) g  2 

 

 
= 

25 

4 + h 

 

 

 

 
, as H = 6.25 m. 

6.25 – h = 
25

 
4 + h 

 
. This leads to 

h2 – 2.25h = 0, or   h = 2.25 m. 

It may be also noted from problem 6.22. 

H × 4 = (H – h) (4 + h). 

6.25 × 4 = 4 × 6.25 

Hence this condition is also satisfied. 

Z 

1 

 
2 

3 

10 m 

h 

mm  44   

 

 

H 

= 
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