SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.Binils.com

Available @

MA8491 NUMERICAL METHODS

Important 13 Mark Questions

Part-B

- 1. Apply Gauss Jordan method, find the solution of the following system: 2x-y+3z=8, x+2y+z=4, 3x+y-4z=0.
- 2. Find the dominant Eigen values of A= $\begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$. Using power method.
- 3. Solve by Gauss Seidal method the following system: 28x + 4y z = 32; x + 3y + 10z = 24; 2x + 17y + 4z = 35
- 4. Solve the equation $x \log_{10} x = 1$. 2 using Newton-Raphson Method
- 5. Find the natural cubic spline to fit the data:

х	0	1	2	3
f(x)	1	2	33	244

Hence find the value for f(2.5) and f'(2.5)

6. From the following data, find θ at x = 84

	х	40	50	60	70	80	90
Ī	у	184	204	226	250	276	304

7. Using Lagrange interpolation find y(9.5)

х	7	8	9	10
у	3	1	1	9

8. Using Newton's divided difference formula, find f(x) from the following data and hence find f(4).

x	0	1	2	5
f(x)	2	3	12	147

9. Using the finite difference method compute y(0.5), given y'' - 64y + 10 = 0, $x \in (0,1)$, y(0) = y(1) = 0, subdividing the interval into (i) 4 equal parts (ii) 2 equal parts

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.Binils.com

Available @

10. By iteration method solve the elliptic equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial t^2} = 0$ over the square region of side 4, satisfying the boundary conditions.

$$(i)u(0,y) = 0,0 \le y \le 4$$
 $(ii)u(4,y) = 8 + 2y,$

 $0 \le y \le 4$ (iii) $u(x,o) = \frac{x^2}{2}, 0 \le x \le 4$ (iv) $u(x,4) = x^2, 0 \le x \le 4$. Compute the values at the interior points correct to one decimal with h = k = 1.

- 11. By Crank Nicholson scheme solve the equation $16\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 1, t > 0, subject to u(x,0) = u(0,t) = 0 and u(1,t) = 100t. Compute u for one step in t direction taking $h = \frac{1}{4}$
- 12. Solve y'' y = 0 with the boundary conditions y(0) = 0 and y(1) = 1 h = 0.2
- 13. Solve $\frac{\partial^2 u}{\partial x^2} 2\frac{\partial u}{\partial t} = 0$ given u(0,t) = 0, u(4,t) = 0, u(x,0) = x(4-x). assume h=1. Find the values of u up to t=5.
- 14. Solve $u_t = u_{xx}$ given u(0,t) = 0, u(5,t) = 0, $u(x,0) = x^2(25 x^2)$ find u in the range taking h=1 up to 3 seconds using Bender Schmidt recurrence equation.
- 15. Evaluate the pivotal value of the equation $u_{tt} = 16u_{xx}$ taking h=1 upto t=1.25. The boundary conditions
- 16. Solve the equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$, 0 < x < 1, t > 0 satisfying the conditions u(x,0) = 0, $\frac{\partial u}{\partial t}(x,0) = 0$, u(0,t) = 0 and $(l,t) = \frac{1}{2}\sin \pi t$. Compute u(x,t) for 4-time steps by taking $h = \frac{1}{4}$
- 17. Using Romberg's rule evaluate $\int_0^1 \frac{dx}{1+x}$ correct to three decimal places by taking h = 0.5, 0.25 and 0.125.
- 18. Using Trapezoidal rule, evaluate $\int_{-1}^{1} \frac{dx}{1+x^2}$ by dividing the range into 8 equal parts.
- 19. Solve $\int_{1}^{2} \frac{dx}{1+x^{3}}$ using Gauss three-point formula.
- 20. Find first and second order derivative f(x) at x = 1.5 and for the following data

х	1.5	2.0	2.5	3.0	3.5	4.0
у	3.37	7.0	13.	24.	38.875	59.0
=f(x)	5		62	0		
			5			

21. Using method

Runge – Kutta of fourth order

find y for x=0.1, 0.2, 0.3 given that $y'=xy+y^2$, y(0)=1. Continue the solution at x=0.4 using Milne's method

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

www.Binils.com

Available @

- 22. Given that $\frac{dy}{dx} = x y^2$, y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795 and y(0.6) = 0.1762. Compute y(0.8) using Milne's method.
- 23. Solve $y' = x y^2$, y(0) = 1 to find y(0.4) by Adam's method starting solutions required are to be obtained using Taylor's method using the value h = 0.1
- 24. Solve $(1+x)\frac{dy}{dx} = -y^2$, y(0) = 1 by Modified Euler's method by choosing h=0.1,find y(0.1) and y(0.2)