Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

MA3151 MATRIX AND CALCULUS

IMPORTANT QUESTIONS AND QUESTION BANK

UNIT-1 MATRICES

2-Marks

- 1. Find the characteristic equation of $A = \begin{pmatrix} 1 & -2 \\ -5 & 4 \end{pmatrix}$
- 2. Find the eigen values of A² if $A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$
- 3. If the eigen values of the matrix A Of order 3X3 are 2,3 and 1, then the find the determinant of A
- 4. If the sum of 2 eigen values and the trace of a 3X3 matrix are equal, find the value of |A|
- 5. Prove that sum of eigen values of a matrix is equal to its trace.
- 6. Find the sum of eigen values of 2A, if A = $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$
- 7. Find the sum and product of the eigen values of A = $\begin{pmatrix} 2 & -2 & 2 \\ -2 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix}$
- 8. State Cayley-Hamilton theorem
- 9. Define index, signature and rank
- 10. Write any 2 applications of Cayley Hamilton theorem.

- 1. Test for the consistency of the following system of equations and solve them, if consistent 3x + y + z = 8, -x + y 2z = -5, x + y + z = 6, -2x + 2y 3z = -7.
- 2. Examine the consistency of the equations x + y + z = 3, 2x y + 3z = 4, 5x y + 7z = 11.
- 3. Investigate for the value of λ , μ the system of equations x+y+z=6, x+2y+3z=10, $x+2y+\lambda z=\mu$ have (i) Unique solution, (ii) Infinitely many Solution (iii) no solution.
- 4. Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$
- 5. Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 5 & \overline{0} & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{pmatrix}$
- 6. Obtain the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{pmatrix}$.

Notes Syllabus **Question Papers** Results and Many more...

www.binils.com

Available @

- 7. Obtain the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$
- 8. Find the characteristic equation of the matrix $A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \end{pmatrix}$ and also find A⁴
- 9. Verify Cayley-Hamilton theorem and hence find A1 of $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$
- 10. Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ 2 & 4 & 4 \end{pmatrix}$ and also find A-1
- 11. Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 12xy + 4xz 8yz$ in to canonical form by orthogonal reduction
- 12. Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ and
- also find A⁻¹
 13. Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ and also find A^T

 Find A^T

 13. Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 2 & -2 & -3 \\ -1 & -2 & -1 \\ 2 & 2 & -2 \end{pmatrix}$

14. Find the eigen values and eigen vectors of the matrix A =

and also find A4

15. Determine the nature quadratic form 2xy - 2yz + 2xz by reduce into canonical form by orthogonal transformation

UNIT-II DIFFERENTIAL CALCULUS

- 1. Find the critical points of $y = 5x^2 6x$
- 2. Find the critical number of the function $f(x) = 2x^3 3x^2 36x$
- 3. Find the Taylor's series expansion of the function $f(x) = \sin x$ about the point $x = \frac{\pi}{2}$
- 4. Verify Lagrange's law for the function $f(x) = \frac{1}{x}$, [1,2]
- 5. Estimate $\frac{d}{dx}((sinx)^{cosx})$

Notes
Syllabus
Question Papers
Results and Many more...

www.binils.com

Available @

- 6. Estimate $y'if x^3 + 3 = 6xy$
- 7. Where the function f(x) = |x| is differentiable?
- 8. Point out $\frac{dy}{dx}$, if $y = In|\cos(In x)|$.
- 9. Using Rolle's theorem find the value of c for the function $f(x) = \sqrt{1 x^2}$, -1 $\leq x \leq 1$
- 10. State Rolle's theorem.

13-Marks

- 1. Find $\frac{dy}{dx}$ if $y = x^2 e^{2x} (x^2 + 1)^4$.
- 2. Discuss the curve $y=x^4-4x^3$ with respect to concavity points of inflection and local maxima and minima.
- 3. Find y' for cos(xy) = 1 + siny
- 4. Verify Rolle's theorem for the following $f(x) = x(x-1)(x-2), x \in [0,2]$
- 5. Find $\frac{dy}{dx}$ for the following functions $e^x + e^y = e^{x+y}$
- 6. Find y'' if $x^4 + y^4 = 16$
- 7. Find the Taylor's series expansion $f(x) = \tan^{-1} x$ about x = 0
- 8. Examine the local extreme of $f(x) = x^4 + 2x^3 3x^2 4x + 4$. Also discuss the concavity and find the inflection points.
- 9. Use second derivative test to examine the relative maxima for $f(x) = x(12-2x)^2$.
- 10. Find the tangent line to the equation $x^2 = x^2 = 6xy$ at the point (3,3) and at what point the tangent line is horizontal in the first quadrant.
- 11. Find $\frac{dy}{dx}$, when $y = \frac{a \cos x + b \sin x}{b \cos x a \sin x}$.
- 12. Find the point on the parabola $y^2 = 2x$ that is close to the point (1,4)
- 13. Find the equation of tangent at a point (a, b) to the curve $xy = c^2$.
- 14. At what point on the curve $x^2 y^2 = 2$, the slopes of tangents are equal to 2.
- 15. A cylindrical hole 4mm in diameter and 12mm deep in a metal block is rebored to increase the diameter to 4.12mm. Estimate the amount of metal removed.

UNIT-III FUNCTIONS OF SEVERAL VARIABLES

- 1. If $u = \frac{y}{z} + \frac{z}{x} + \frac{x}{y}$ then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$.
- 2. Find $\frac{dy}{dx}$ if $x^3 + y^3 = 3ax^2y$

Notes
Syllabus
Question Papers
Results and Many more...

www.binils.com

Available @

- 3. If $x^y + y^x = 1$ then find $\frac{dy}{dx}$
- 4. Find the values of $\frac{du}{dt}$, given $u = x^2 + y^2$, $x = at^2$, y = 2at
- 5. If $u = x^3y^2 + x^2y^3$ where $x = at^2$ and y = 2at, then find $\frac{du}{dt}$
- 6. Find $\frac{du}{dx}$ if $u = \frac{x}{y}$, where $ex = e^t$, $y = \log t$
- 7. Find $\frac{\partial r}{\partial x}$, if $x = r \cos \theta$ and $y = r \sin \theta$
- 8. Find the Taylor series expansion of x^y near the point (1,1) up to first term.
- 9. Expand xy + 2x 3y + 2 in powers of (x 1)&(y + 2), using Taylor's theorem up to first degree form.
- 10. State the sufficient condition for f(x, y) to be extremum at a point.

- 1. Divide the number 24 into the three parts such that the continued product of the first, square of the second and the cube of the third may be maximum.
- 2. The temperature at a point (x, y, z) in a space given by $T = kxyz^2$. Where k is constant. Find the height temperature on the surface of the sphere $x^2 + y^2 + z^2 = a^2$
- 3. Find the dimension of the rectangular box without a top of maximum capacity, whose surface area 108 sq.cm
- whose surface area 108 sq.cm
 4. Find the shortest and longest distance from the point (1, 2, -1) to the sphere $x^2 + y^2 + z^2 = 24$
- 5. Discuss the maxima and minima of $f(x,y) = x^3y^2(1-x-y)$.
- 6. Find the maximum value of $x^m y^n z^p$ when x + y + z = a.
- 7. Find the Taylors series expansion of $e^x siny$ at the point $(-1, \frac{\pi}{2})$ up to second degree terms.
- 8. Find the extreme value of $x^2 + y^2 + z^2$ subject to the condition x + y + z = 3a.
- 9. Expand e^{xy} in powers of (x-1) and (y-1) upto second degree term by Taylors series.
- 10. Examine $f(x,y) = x^3 + 3xy^2 15x^2 + 72x$ for extreme values.
- 11. Expand $\tan^{-1} \frac{y}{x}$ in the (1, 1) as Taylors series up to second degree term.
- 12. If u = f(2x 3y, 3y 4z, 4z 2x), then, find $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z}$.
- 13. Find the extreme values of $f(x, y) = x^3 + y^3 3x 12y = 20$.
- 14. Expand $e^x \log(1+y)$ in powers of x & y upto terms of 3^{rd} degree using Taylors series.
- 15. Find the shortest distance from the origin to the hyperbola $x^2 + 8xy + 7y^2 = 225$.

Notes Syllabus **Question Papers** Results and Many more...

www.binils.com

Available @

UNIT-IV INTEDRAL CALCULUS

- State the fundamental theorem of calculus.
- Prove that the following integral by interpreting each in terms of areas $\int_a^b x dx = \frac{b^2 - a^2}{2}$
- 3. Evaluate $\int_0^1 \sqrt{1-x^2} dx$ in terms of areas?
- 4. If f is continuous and $\int_0^4 f(x) dx = 10$, find $\int_0^2 f(2x) dx$.
- 5. Evaluate the integral $\int_a^b x dx$ by using Riemann sum method
- 6. Calculate $\int \frac{x^3}{\sqrt{4+x^2}} dx$
- 7. Calculate $\int \sqrt{1+x^2x^5} dx$
- 8. Find $\int \sqrt{2x+1} \ dx$.
- 9. Find $\int \frac{x}{\sqrt{1-4x^2}} dx$
- 10. Find $\int_{2}^{5} \frac{dx}{\sqrt{x-2}}$.

- 2. Calculate $\int \frac{1}{\sqrt{a^2-x^2}} dx$ by using trigonometric substitution.
- 3. Find $\int x^3 \sqrt{9-x^2} dx$ by trigonometric substitution
- 4. Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^2 x + 3\cos x + 2} dx$
- 5. Evaluate $\int e^{ax} \cos bx \, dx$, a > 0 using integration by parts
- 6. Evaluate $\int e^{ax} \sinh x \, dx$, a > 0 using integration by parts
- 7. Find $\int \frac{sec^2x}{tan^2x+3tsnx+2} dx$
- 8. Evaluate $\int x \tan^{-1} x \, dx$.
- 9. Calculate by partial fraction $\int \frac{x^2+1}{(x-3)(x-2)^2} dx$.
- 10. Evaluate $\int \frac{tanx}{secx + cosx} dx$
- 11. Evaluate $\int \frac{xe^{2x}}{(1+2x)^2} dx$
- 12. Calculate using the partial fraction $\int \frac{10}{(x-1)(x^2+9)} dx$
- 13. Evaluate $\int \sin^6 x \cos^3 x \, dx$
- 14. The region enclosed by the circle $x^2 + y^2 = a^2$ is divided into two segments by the line x=h. Find the area of smaller segment

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

15. Find the area of the region bounded between the parabola $y^2 = 4ax$ and its latus rectum.

UNIT-V MULTIPLE INTEGRALS

2-Marks

- 1. Evaluate $\int_2^3 \int_1^2 \frac{dxdy}{xy}$
- 2. Evaluate $\int_0^{\pi} \int_0^{\sin \theta} r dr d\theta$
- 3. Find the area bounded by the lines x = 0, y = 0 amd y = x
- 4. Evaluate $\int_0^{\pi} \int_0^a r dr d\theta$
- 5. Evaluate $\int_0^5 \int_0^2 (x^2 + y^2) dx dy$
- 6. Evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} dy dx$
- 7. Evaluate $\int_0^{\pi} \int_0^5 r^4 \sin\theta dr d\theta$
- 8. Change the order of integration $\int_0^1 \int_{y^2}^y f(x, y) dx dy$
- 9. Change the order of integration $\int_0^\infty \int_x^\infty f(x,y) dx dy$
- 10. Evaluate $\int \int dxdy$ over the region bounded by x = 0, x = 2, and y = 0, y = 2

- 1. Evaluate $\iint xydxdy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$
- 2. Using double integral find the area of the Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
- 3. Find the area bounded by parabola $y = x^2$ and straight line 2x y + 3 = 0
- 4. Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
- 5. Find the volume of finite region of space (tetra-hardon) bounded by the planes x = 0, y = 0, z = 0 and 2x + 3y + 4z = 12
- 6. Find the volume of the sphere bounded by $x^2 + y^2 + z^2 = a^2$
- 7. Find the area of which is inside the circle $r = 3a \cos\theta$ and outside the cardioid $r = (1 + \cos\theta)$
- 8. Evaluate $\int_0^a \int_0^b \int_0^c (x^2 + y^2 + z^2) dx dy dz$
- 9. Find the volume bounded by the cylinder $x^2 + y^2 = 1$ and the planes x + y + z = 3, z = 0
- 10. Find the value of $\iiint xyz \ dxdydz$ through the positive spherical octant for which $x^2 + y^2 + z^2 < a^2$
- 11. Find the areas common to the cardioids $r = a(1 + cos\theta)$ and $r = a(1 cos\theta)$

Notes
Syllabus
Question Papers
Results and Many more...

www.binils.com

Available @

- 12. Find the volume of the tetrahedron bounded by the coordinate planes and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
- 13. By change the order of integration and evaluate $\int_0^2 \int_{x^2}^{2-x} xy \, dy dx$
- 14. Find the areas included between the curves $y^2 = 4x$ and $x^2 = 4y$
- 15. Evaluate $\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{ex} \log z \, dz dy dx$

www.binils.com