AllAbtEngg.com
 For Questions, Notes, Syllabus \& Results

 MA 8352 Linear Algebra and Partial Differential Equations

 MA 8352 Linear Algebra and Partial Differential Equations

 Important 2mark questions

 Important 2mark questions}

Unit I

1. Determine whether the vectors $v_{1}=(1,2,1), v_{2}=(2,1,0)$ and $v_{3}=(1,-1,2)$ form a linearly independent or linearly dependent in $v_{3}(\mathrm{R})$.
2. What are the possible subspace of R ?
3. If $\mathrm{V}=\mathrm{A}+\mathrm{B}$, then show that $\operatorname{dim} \mathrm{V}=\operatorname{dim} \mathrm{A}+\operatorname{dim} \mathrm{B}$.

Unit II

1. Define Kernal of T.
2. State the dimension theorem for matrices.
3. Verify that $\mathrm{T}: R^{3}->\mathrm{R}$, and $\mathrm{T}(\mathrm{u})=|\mathrm{u}|$ is a linear transformation or not.

Unit III

1. Define Adjoint matrix.
2. Let R^{2} have the weighed Euclidean inner product defined as $\langle u, u\rangle=2 u_{1} v_{1}+3 u_{2} v_{2}$ and let $u=(1,1), v=(3,2), w=(0,-1)$. Compute the value of $\langle u+v, 3 w\rangle$.
3. Let P_{2} have the inner product $\langle\mathrm{p}, \mathrm{q}\rangle=\int_{-1}^{1} p(x) q(x) d x$. Find the angle between p and q , where $\mathrm{p}=\mathrm{x}$ and $\mathrm{q}=x^{2}$ with respect to the inner product on P_{2}.

Unit IV

1. How the second order partial differential equations are classified?
2. Solve $\mathrm{pq}+\mathrm{p}+\mathrm{q}=0$.
3. Find the differential equation of all spheres whose centres lie on the Z-axis.

Unit V

1. Write the formula for Half range Fourier sine series.
2. State giving reasons whether the function $f(x)=\tan x$ can be expanded in Fourier series in the interval of $(-\pi, \pi)$.
3. A slightly stretched string of length l has its ends fastened at $\mathrm{x}=0$ and $\mathrm{x}=l$ is initially in a position given by $y(x, 0)=y_{0} \sin \frac{3 \pi x}{l}$. If it is released from rest from this position, write the boundary conditions.
