AllAbtEngg.com
 For Questions, Notes, Syllabus \& Results
 MA 8352 Linear Algebra and Partial Differential Equations

 Important 13mark questions

 Important 13mark questions}

Unit I

1. Determine the basis and dimension of the solution space of the linear homogeneous system $x+y-z=0 ;-2 x-y+2 z=0 ;-x+z=0$.
2. Determine whether the set of all 2×2 matrix of the form $\left[\begin{array}{cc}a & a+b \\ a+b & b\end{array}\right], a, b € R$, with respect to standard matrix addition and scalar multiplication is a vector space or not? If nor, list all the axioms that fail to hold.

Unit II

1. Let L be a linear transformation from R^{3} to R^{3} whose matrix representation A with respect to the standard basis is given below. Find the Eigen values of L and a basis of Eigen vectors $\mathbf{A}=\left|\begin{array}{ccc}1 & 3 & -3 \\ 3 & 1 & -3 \\ -3 & -3 & 1\end{array}\right|$.
2. If A is an $m \times n$ matrix, then prove that $N(A)$ is a sub space of R^{n}.

Unit III

1. State and prove Gram-Schmidh orthogonalization process.
2. Find the orthogonal basis containing the vector $(1,3,4)$ for $V_{3}(R)$ with the standard inner product.

Unit IV

1. Solve $p^{2}+q^{2}=x^{2}+y^{2}$.
2. From the partial differential equation by eliminating the arbitrary functions f and øfrom $Z=x f(y / x)+y \emptyset(x)$.

Unit V

1. Express $f(x)=(\pi-x)^{2}$ as a Fourier series of period 2π in the interval $0<x<2 \pi$.
2. Show that in $0 \leq x \leq \pi, x(\pi-x)=\frac{\pi^{2}}{6}-\left(\frac{\cos 2 x}{1^{2}}+\frac{\cos 4 x}{2^{2}}+\frac{\operatorname{cox} 6 x}{3^{2}}+\cdots\right)$.
