
1

GOVERNMENT OF TAMILNADU
DIRECTORATE OF TECHNICAL EDUCATION

CHENNAI – 600 025

STATE PROJECT COORDINATION UNIT

Diploma in Electronics and Communication Engineering

Course Code: 1040

M – Scheme

e-TEXTBOOK

for

VERY LARGE SCALE INTEGRATION
for

V Semester DECE

Convener for ECE Discipline:

Dr.M.JeganMohan M.E., MBA., Ph.D.,(Management), Ph.D.,(Engg)., M.I.S.T.E.,
Principal,

138, Government Polytechnic College,
Uthappanaickanoor,

Usilampatti, Madurai – 625 537.

Team Members for Very Large Scale Integration:

Er. M. K. Srinivasan, M.E., M.I.S.T.E.,
HOD / ECE,

Pattukkottai Polytechnic College,
Pattukkottai - 614 601.

Mrs. S. Kalaivani, M.E.,

Lecturer / ECE,
Government Polytechnic College,

Kottur, Theni.

Mrs. A. Amalorpava Selvi, M.E.,
Lecturer / ECE,

Pattukkottai Polytechnic College,
Pattukkottai - 614 601.

Validated By

 Dr. S. Rajaram, M.E., Ph.D.,
 Assistant Professor / ECE,

Thiagarajar College of Engineering,

Madurai – 625 015.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

2

VERY LARGE SCALE INTEGRATION

DETAILED SYLLABUS

UNIT I

1.1 COMBINATIONAL CIRCUIT DESIGN: NMOS and CMOS logic

implementation of Switch, NOT, AND, OR, NAND, and NOR Gates CMOS Transmission Gate.

Digital logic variable, functions, inversion, gate/circuits, Boolean algebra and circuit synthesis

using gates (Up to 4 variables).

1.2 COMBINATIONAL CIRCUIT BUILDING BLOCKS:

Circuit synthesis using Multiplexer, Demultiplexer, Encoders and Decoders, Arithmetic adder,

Sub tractor and Comparator circuits. Hazards and races.

UNIT II

2.1 VHDL FOR COMBINATIONAL CIRCUIT: Introduction to VLSI and its design process.

Introduction to CAD tool and VHDL: Design Entry, Synthesis, and Simulation. Introduction to

HDL and different level of abstractions. HDL Statements and Assignments

2.2 VHDL CODE: AND, OR, NAND, NOR gates, Implementation of Mux, Demux, Encoder,

decoder. Four bit Arithmetic adder, sub tractor and comparator in VHDL

UNIT III

3.1 SEQUENTIAL CIRCUIT DESIGN: Introduction/Refreshing to Flip- flops and its excitation

table, counters and Shift registers

3.2 DESIGN STEPS: State diagram, State table, state assignment. Example for moore and mealy

machines. Design of modulo counter (upto 3 bit) with only D flip-flops through state diagram

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

3

UNIT IV

4.1 VHDL FOR SEQUENTIAL CIRCUIT: VHDL constructs for storage elements. VHDL code

for D Latch / D, JK and T Flip-flops withorwithout reset input.

4.2 VHDL EXAMPLES: Counters :Synchronous counters-2 bit &3 bit up counter. 3 bit up/down

counter Decade counter, Johnson Counter

UNIT V

 PLDS AND FPGA: Introduction to PROM, PLA and PAL. Implementation of combinational

circuits with PROM, PAL and PLA (up to 4 variables). Comparison between PROM, PAL and

PLA. Introduction to Complex Programmable Logic device, Field Programmable Gate Array.

Introduction to ASIC. Types Of ASIC

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

4

CONTENT

UNIT I COMBINATIONAL CIRCUIT DESIGN 5 - 52

UNIT II VHDL FOR COMBINATIONAL CIRCUIT 53 - 92

UNIT III SEQUENTIAL CIRCUIT DESIGN 93 - 138

UNIT IV VHDL FOR SEQUENTIAL CIRCUIT 139 - 156

UNIT V PLDS AND FPGA 157 -183

 REVIEW QUESTIONS 184 - 188

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

5

UNIT – 1

COMBINATIONAL CIRCUIT DESIGN:

NMOS IMPLEMENTATION OF SWITCH

 For the purpose of understanding how logic circuits are built, we can assume that a

transistor operates as a simple switch. figure 1.1a shows a switch controlled by a logic signal , x

when x is low, the switch is open, and when x is high, the switch is closed. The most popular

type of transistor field-effect transistor (MOSFET) There are two different types of MOSFERs,

Known as n-channel, abbreviated NMOS, and p-channel, denoted PMOS.

Figure 1.1 NMOS transistor as a switch

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

6

Figure 1.1b gives a graphical symbol for an NMOS transistor. it has four electrical

terminals, called the source, drain, gate, and substrate. in logic circuits the substrate (also called

body) terminal is connected to Gns. we will use the simplified graphical symbol in figure 1.1c,

which omits the source and train terminals. They are distinguished in practice by the voltage

levels applied to the transistor. The terminal with the lower voltage level is assumed as source.

 If Vg is low, Then there is no connection between the source and drain, the transistor is

turnetoff.If Vg is high, then the transistor is turned on and acts as a closed switch that connects

the source and train terminals.

 PMOS transistors have the opposite behavior of NMOS transistors. the type of switch is

open when the control input x is high and closed when x is low . A symbol is shown in figure

1.2b.

(a) A Switch with the opposite behavior of Figure 1.2a

1.2 (b) PMOS transistor

1.2 (c) Simplified symbol for an PMOS transistor

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

7

 In logic circuits the substrate of the PMOS transistor is always connected to VDD leading

to the simplified symbol in figure 1.2c. if Vg is high, then the PMOS transistor is turned on and

acts as a closed switch that connect the source and drain. In the PMOS transistor the source is

the node with the higher voltage.

 Figure 1.3 summarizes the typical use of NMOS and PMOS transistor in logic circuits.

An NMOS transistor is turned on when its gate terminal is high.

 A PMOS transistor is turned on when the NMOS transistor is turned on, its drain is

pulled down to Gns, and when the PMOS transistor is turned on its drain is pulled up to VDD.

Figure 1.3 NMOS and PMOS transistor in logic circuits.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

8

NMOS Implementation of NOT Gate

NMOS Implementation of NOT Gate in the circuit in figure 1.4a, when Vx = 0v, the

NMOS transistor is turned of f. No current flows through the resistor R, and Vf to a low voltage

level

 If Vf is viewed as a function of Vx then the the circuit is an NMOS implementation of a

NOT gate. in logic terms this circuit implements the function f = x Figure 1.4b gives a

simplified circuit diagram in which the connection to the positive terminal on the power supply

is indicated by an arrow labeled Vdd and the connection to the negative power supply terminal

is indicated by the Gnd symbol.

 Figure 1.4c presents the graphical symbols for a NOT gate. The left symbol shows the

input, output, power, and ground terminals, and the right the symbol shows only the input and

output terminals. In practice only the simplified symbol is used. another name often used for

the NOT gate is inverter.

Figure 1.4 A NOT gate built using NMOS technology

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

9

NMOS Implementation of NAND Gate

 Using NMOS transistor, we can implement the series connection as depicted in figure

1.5a. If Vx1 = Vx2 = 5V, both transistors will be on and Vf will be close to 0V. But if either Vx1

or Vx2 is 0, then no current will flow through the series – connected transistors and Vf will be

pulled up to 5V. The resulting truth table for f, provided in terms of logic values, is given in

figure 1.5b. Its graphical symbols are shown in figure 15c.

(b).Truth table

Figure 1.5 NMOS realization of a NAND Gate.

NMOS Implementation of NOR Gate :

 The parallel connection of NMOS transistors is given in Figure 1.6a. Here, if either Vx1

= 5 or Vx2 =5 V, then Vx2 will be close to 0 V. Only if both Vx1 and Vx2 are 0 will Vf be pulled

up to 5V . A corresponding truth table is given in Figure 1.6b. The graphical symbols for the

NOR gate appear in Figure 1.6c.

 f

0 0 1

0 1 1

1 0 1

1 1 0

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

10

 (b).Truth table

Figure 1.6 NMOS realization of a NOR gate.

NMOS implementation of AND Gate

 Figure 1.7 indicates how an AND gate is built in NMOS technology by following a

NAND gate with an inverter. Node A realizes the NAND of inputs x1 and x2 and f represents

the AND function.

 (b).Truth table

Figure 1.7 NMOS realization of an AND gate.

 f

0 0 1

0 1 0

1 0 0

1 1 0

 F

0 0 0

0 1 0

1 0 0

1 1 1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

11

NMOS implementation of OR Gate

 Figure 1.52 indicates how an or gate is built in NMOS technology by following NOR

Gate with an inverter

 (b) Truth Table

 f

0 0 0

0 1 1

1 0 1

1 1 1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

12

CMOS OR Gate

 A CMOS OR gate is built with a NOR gate followed by a NOT gate.

 Figure 1.8a Circuit 1.8 b.Truth Table

CMOS NOT Gate:

 The simplest example of a CMOS circuit, a NOT gate, is shown in figure 1.9. whenVx =

0 v, transistor T2 is off and transistor T1 is on This makes Vf = 5v, and since T2 is off and no

current flows through the transistor. When Vx = 5V, T2 is on and T1 is off ThusVf = 0v, and

no current flows because T1 is off

 Figure 1.9a Circuit 1.9b Truth table and transistor states

 f

0 0 0

0 1 1

1 0 1

1 1 1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

13

CMOS NAND Gate

 Figure 1.10 shows a circuit diagram of CMOS NAND gate. The truth table in the figure

specifies the state of each of the four transistors for each logic valuation of inputs X1 and X2

The circuit properly implements the NAND function Under static conditions no patch exists for

current flow from Vdd to Gnd.

 (b).Truth Table

Figure 1.10 CMOS realization of a NAND gate.

CMOS NOR Gate

 The circuit for a CMOS NOR gate is shown in Fig. 1.11. This Circuit functions as per

the truth table.

 (b).Truth Table

Figure 1.11 CMOS realization of a NOR gate.

 f

0 0 on on off off 1

0 1 on off off on 1

1 0 off on on off 1

1 1 off off on on 0

 f

0 0 on on off off 1

0 1 on off off on 0

1 0 off on on off 0

1 1 off off on on 0

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

14

CMOS AND Gate

 A CMOS AND gate is built by connecting a NAND gate to an inverter, as illustrated in

figure 1.12. Similarly, an OR gate is constructed with a NOR gate followed by a NOT gate.

(b).1.12 b Truth Table

 Figure 1.12a CMOS realization of a AND gate.

CMOS TRANSMISSION GATE

Basic Operation

A transmission gate, or analog switch, is defined as an electronic element that

will selectively block or pass a signal level from the input to the output. This solid-state

switch is comprised of a pMOS transistor and nMOS transistor. The control gates are

biased in a complementary manner so that both transistors are either on or off.

When the voltage on node A is a Logic 1, the complementary Logic 0 is applied

to node active-low A, allowing both transistors to conduct and pass the signal at IN to

OUT. When the voltage on node active-low A is a Logic 0, the complementary Logic 1

is applied to node A, turning both transistors off and forcing a high-impedance

condition on both the IN and OUT nodes. This high-impedance condition represents

the third "state" (high, low, or high-Z) that the DS3690 channel may reflect

downstream.

 f

0 0 0

0 1 Ο

1 0 Ο

1 1 1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

15

The schematic diagram (Figure 1) includes the arbitrary labels for IN and OUT,

as the circuit will operate in an identical manner if those labels were reversed. This

design provides true bidirectional connectivity without degradation of the input signal.

Figure 1. Schematic representation of a transmission gate.

The common circuit symbol for a transmission gate depicts the

bidirectionalnature of the circuit's operation (Figure 2).

Figure 2. Circuit symbol.

Digital Logic Variables & Functions

 In digital systems, binary circuits are used because the binary element is switch that has

two states if a given switch is controlled by an input variable x, then we will say that the switch

is open if x = o and closed if x=1, as illustrated in figure 1.13a. The graphical symbol in figure

1.13b

to represent such switches in the diagrams that follow Note that the control input x is shown

explicitly in the symbol.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

16

(b) Symbol for a switch

Figure 1.13b binary switch

Consider a simple application of a switch turns a small light bulb on or off this action is

accomplished with the circuit in figure 1.14a. A battery provides the power source The current

flows when the switch is closed, that is, when x = 1. In this example the input that causes

changes in the behavior of the circuit is the switch control x.

Figure1.14 A light controlled by a switch

The output is defined as the state (or condition) the light, which we will denote by the letter L.

if the light is on, we will say that L=1.if the light is off, L=0. using this convention, we can

describe the state of the light as a function of the input variable x. since L=1 if x=1 and l=0 if

x=0, we can say that

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

17

L(x) = x

 We say that L(x) = x is a logic function and that x is an input variable.

The circuit in figure 1.14a in an ordinary flashlight, where the switch is a simple

mechanical device. in an electronic circuit the switch is implement as a transistor and the light

may be a light-emitting diode (LED). An electronic circuit is powered by a power supply of a

certain voltage, like 5 volts, One side of the power supply is connected to ground, as shown in

figure 1.14b. the ground connection is used as the return path for current, to close the loop. This

is achieved by connecting one side of the light to ground as indicated in the figure.

Consider now the possibility of the using two switches to control the state of the light let

x1 and x2 be the control inputs for these switches the switches can be connected either in series

or in parallel as shown in figure 1.15. using a series connection, the light will be turned on only

if both switches are closed. if either switches are closed if either switch is open the light will be

off. this behavior can be described by the expression

 L(x1, x2) =x1.x2

 Where L = 1 if x1 = 1 and x2 = 1,

 L = 0 otherwise.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

18

Figure 1.15 Two basic functions.

The “.” symbol is called the AND operator, and the circuit in figure 1.15a is said to

implement a logical AND function

The parallel connection of two switches is given in figure 1.15b. in this case the light

will also be off only if both switches are open. This behavior can be on if either x1 or x2 switch

is closed. The light will also be on if both switches are open . This behavior can be stated as

L(x1, x2)=x1+x2

Where L=1 if x1=1 or if x1=x2=1,

 L=0 if x1=x2=0.

The + symbol is called the OR operator, and the circuit in Figure 1.15b is said to

implement a logical of function

In the above expressions for AND and OR, the output L(x1,x2) is a logic function with

input variables x1 and x2 the AND and OR functions are two of the most important logic

functions. Together with some other simple function they can be used as building blocks for the

implementation of all logic circuits. figure 1.16 illustrates how there switches can be used

control the light in a more complex way. This series-parallel connection of switches realizes the

logic function

 L(x1, x2, x3)=(x1+x2.x3)

The light is on if x2, = 1 and, at the same time, at least one of the x1 or x2 inputs is equal

to 1.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

19

Inversion

 A positive action takes place when a switch is opened. Suppose that we connect the light

as shown in Figure 1.17. in this case the switch is connected in parallel with the light, rather

than I series. Consequently, a closed switch will short-circuit the light and prevent the current

from following through it. an extra resistor in this circuit dose not short-circuit the power

supply. The light will be turned on when the switch is opened. formally, we express this

functional behavior as

 L(x)= x

Where L=1 if x=0,

 L=0 if x = 1

 The value of this function is the inverse of the value of the input variable instead of

using the word inverse, it is more common to use the term complement. thus we say that L(x) is

a complement of x in this example another frequently used term for the same operation is the

NOT operation.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

20

Logic Gates and Networks

 Each logic operation can be implemented with transistors, resulting In a circuit element

called logic gate a logic gate has one or more inputs and output that is a function of its inputs. A

logic circuit diagram, consisting of graphical symbols representing the logic gates. the

graphical symbols for the AND, OR, and NOT gates are shown in Figure 1.18. The figure

indicates on the left side how the AND and OR gates are drawn when there are only a few

inputs. On the right side it shows how the symbols are enlarged to accommodate a greater

number of inputs.

 A larger circuit is implemented by a network of gates for example, the logic function

from figure 1.19. A given logic function can be implemented with a number of different

networks.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

21

BOOLEAN ALGEBRA

 In 1849 George Boole published a scheme for the algebraic description of processes. it

involved in logical thought and reasoning this scheme and its further refinements became

known as Boolean algebra provides It was almost 100 years later that this algebra found

application in the engineering sense. in the late 1930s claude Shannon showed that Boolean

algebra provides an effective means of describing circuits built with switches. The algebra can,

therefore, be used to describe logic circuits This algebra is a powerful tool that can be used for

designing and analyzing logic circuits

Axioms of Boolean Algebra

 Like any algebra, Boolean algebra is based on a set rules that are derived from a small

number of basic assumptions are called axiom let us assume that Boolean algebra values, 0 and

1. Assume that the following axioms are true

 1a 0.0=0

 1b 1+1=2

 2a 1.1=1

 2b 0+0=0

 3a 0.1=1.0=0

 3b 1+0=0+1=1

 4a If x = 0, then x = 1

 4b If x= 1, then x=0

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

22

Single-Variable Theorems

 From the axiom we can define some rules for single variables. these rules are often

called theorems if x is variables in B, the n the following thermos hold:

5a. x.o=0

 5b. x+1=1

 6a. x.1=x

 6b. x+0=x

 7a. x.x=x

 7b. x+x=x

8a. x.x=0

 8b. x+x=1

 9. x=x

 it is easy to prove the validity of these theorems by substituting the values x=o and x=1

into the expressions and using the axioms given above. for example, in theorem 5a, if x = 0,

then the theorem states that that 0.0 =0, which is true according to axiom la similarly, if x = 1,

then theorem 5a status that 1.0 = 0, which is also true according to axiam 3a.

Duality

Given a logic expression, its dual is obtained by replacing all+ operators, and vice versa, and by

the replacing all 0s with 1s, and vice versa. The dual of any true statement (axiom or theorem)

in Boolean algebra is also a true statement.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

23

Two-and Three – variable Properties

 If x,y, and z are the variables in B, then the following properties hold:

10a. x.y = y.x Commutative

10b. x+y = y+x

11a. x.(y.z) = (x.y).z Associative

11b. x+(y+z) = (x+y) +z

12a. x.(y+z) =x.y + x.z Distributive

12b. x+y.z = (x+y). (x+z)

13a. x+x.y = x Absorption

13b. x. (x+y) = x

14a. x.y + x.y = x Combining

14b. (x+y). (x+y) = x

15a. x.y. = x+y De Morgan’s theorem

15b. x+y = x .y

16a. x+x .y = x+y

16b. x. (x+y) = x.y

17a. x. y+y. z+x . z=x .y+x.z Consensus

17b. (x+y). (y+z). (x+z) = (x+y). (x+z)

INPUT LHS RHS

x y +

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

Figure 1.20 Proof of Demorgan’s theorem in 15a.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

24

 Again, we can prove the validity of these properties either by perfect induction or by

performing algebraic manipulation. figure 1.20 illustrates how perfect induction of a truth table.

The evaluation of left-hand and right-hand sides of the identity in 15 a gives the same result

1.2. COMBINATIONAL CIRCUIT BUILDING BLOCKS

MULTIPLEXERS

 A multiplexer circuit has a number of data inputs, one or more select inputs, and one

output. it passes the signal value on one of the data inputs to the output. the data input is

selected by the values of the select inputs figure1.21shows a 2-to1 multiplexer

 part 1.21(a) gives the symbol commonly used the select input,s, chooses as the output of

the multiplexer either input W0 or W1. the multiplexer’s functionality can be described in the

form of a truth table as shown in part 1.21b of the figure part 1.21(c) gives a sum-of-products

implementation of the 2 to 1 multiplexer and part 1.21(d) illustrates haw can be constructed

with transmission gates.

 Figure 1.22a shows a – larger multiplexer with four data inputs , w0, ….., w3 and two

select inputs, s1 and s0. As shown in the truth table in part (b) of the figure, the two-bit number

represented by s1s0 selects one of the data inputs as the output of the multiplexer.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

25

Figure 1.2 A 2-to-1 MULTIPLEXER

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

26

(C) CIRCUIT

Figure 1.22 1 A 4-to-1 MULTIPLEXER

A sum – of – products implementation of the 4 to multiplexer appears in figure 1.22c. It

realizes the multiplexer function.

 F = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

 It is possible to build larger multiplexers using the same approach. Usually, the number

of data inputs, n is a integer power of two. A multiplexer that has n data inputs w0, ….., wn-1,

requires [log2n] select inputs. Larger multiplexer can also be constructed from smaller

multiplexers. For examples , the 4 to 1 multiplexer can be built using three 2 to -1 multiplexers

as illustrated in figure 1.23.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

27

FIGURE 1.23 USING 2-to-1 MULTIPLEXER TO BUILD A 4-to-1 MULTIPLEXER

Figure 1.24 shows how a16 to 1 multiplexer is constructed with five 4 to 1 multiplexer

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

28

DEMULTIPLEXERS

 The purpose of the multiplexer circuit is to multiplex then n data inputs onto the single

data output under control of the select inputs

 A circuit that performs the opposite function, namely, placing the value of a single data

input onto multiple data outputs is called a demultiplexer. Thedemultiplexer can be

implemented using a decoder circuit.

DECODERS

 Decoders circuits are used to decode encoded information A binary decoder shown in

the figure 1.25 is a logic circuit with n inputs and 2n outputs Only one outputs is asserted at a

time, and each output corresponds to one valuation of the inputs .

The decoder also has an enable input. En, that is used to disable the outputs; if En = 1,

the valuation of wn-1….. w1w0 determines which of the outputs Is asserted

1 0 0 1 0 0 0

1 0 1 0 1 0 0

 1 1 0 0 0 1 0

1 1 1 0 0 0 1

0 X X 0 0 0 0

(a) Truth Table

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

29

Figure 1.26 A-2-to-decoder

For example, the 2-to4 decoder in Figure 1.26 can be used as a 2-to4 Demultiplexer in

this case the en input serves as the data input for the Demultiplexer, and they y0 to y3 outputs

are the data input the valuation of w1 w0 determines which of the outputs is set to the value of

En.

 To see how the circuit works, consider the truth table in figure 1.26a. when En=0, all the

outputs are set to 0, including the one selected by the valuation of w1w0 sets the appropriate to

1.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

30

ENCODERS

 An encoder performs the opposite function of a decoder in encodes given information

into a more compact from.

BINARY ENCODERS

 A binary encoder encodes information from 2n inputs into an n-bit code, as indicated in

figure 1.27. exactly one of the input signals should have a value of 1, and the outputs present

the binary number that identifies which input is equal to 1.

 The truth table for a 4 to 2 encoder is provided in figure 1.27b. observe that the output

y0 is 1 when either input y0 is 1 when either input w1 or w3 Is 1, and output y1 is 1 when input

w2 or w3 is 1. Hence these outputs can be generate by the circuit Figure 1.27c

Encoders are used to reduce the number of the bits needed to represent given

information A practical use of encoders is for transmitting information in a digital system.

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

(b) Truth Table

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

31

BINNARY ADDER – SUBTRACTOR

 A combinational circuit that performs the addition of three bits (two significant bits and

a previous carry) is a full adder Two half adders can be employed to implement a full adder.

 A binary adder subtractor is combinational circuit that performs the arithmetic operation

of addition and subtraction with binary numbers the helf adder designs carried out first, from

which we developthe full adder for two n bit numbers the subtraction circuit is included a

complementing circuit

HALF ADDER

 A half adder, needs two binary inputs and two binary outputs. the input variables

designate the augends and addend bits; the output variables produce the sum and carry we

assign symbols x and y to the two inputs and s (for sum) and C (for carry) to the outputs the

block diagram of a half adder is shown in fig. 1.28. the truth table for the half adder is listed in

Table 4.1. The c output represents the least significant bit of the sum.

 The simplified Boolean functions for the two outputs can be obtained directly from the

truth table the simplified sum of products expressions are the logic diagram of the half adder

implemented in sum of products is shown in fig. 1.29(a) it can be also implemented with an

exclusive OR and an AND gate as shown in fig 1.29(b). This from is used to show that two half

adders can be used to construct a full adder.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

32

Truth Table of Half Adder

FULL ADDER

 A full adder is a combinational circuit that forms the arithmetic sum of three bits it

consists of three inputs and two output. two of the input variables denoted by x and represents

the two bits to be added the third input, z, represents the carry from the previous lower

significant position

 The block diagram of a full adder is shown in fig.1.30.

 The truth table of the full adder is listed in table 1.2. the eight rows under the input

variables designate all possible combinations of the three variables the output variables are

determined from the arithmetic sum of the input bits.

X Y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

33

 When all input bits are 0, the output is 0. the S output is equal to 1 when only one input

is equal to 1 or when all three inputs are equal to1. The c output has a carry of 1 if two or three

inputs are equal to 1.

X Y Z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

The maps for the outputs of the full adder are shown in fig.1.31 the simplified

expressions are

 S = x’y’z + x’yz’ + xy’z’ + xyz

 C = xy + xz + yz

 The logic diagram for the full adder implemented in sum-of-products form is shown in

fig 1.32. it can also be implemented with two half address and one OR gate, as shown in

fig.1.33. the S output from the second half adder, giving

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

34

 S = z  (xy)

 = z’ (xy’ + x’y) + z(xy’ + xy)’

 = z’ (xy’ +x’y) + z (cy’ + x’y’)

 = xy’z’ + x’yz’ + xyz + x’y’z

The carry output is

 C = z(xy’ + x’y) + xy = xy’z + x’yz + xy

yz

x 00 01 11 10

yz

x 00 01 11 10

0

1

1

 0

1

1
1

1

 1

1

1

1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

35

Binary Adder

 A binary adder is a digital circuit that produces the arithmetic sum of two binary

numbers. it can be constructed with full adders connected in cascade, with the output carry

from each full adders connected to the input carry of the next of four full adder (FA) circuits to

provide a four-bit binary ripple carry adder.

 The input carry to the adder is C0, and it ripples through the full adders to the full adders

to the output carry c4. the S outputs generate the required sum bits.

 To demonstrate with a specific example, consider the two binary numbers A=1011and

B=0011 Their sum S=1110 is formed with the four-bit adder as follows:

Subscript i: 3 2 1 0

Input carry 0 1 1 0

Augends 1 0 1 1

Addend 0 0 1 1

Sum 1 1 1 0

Output carry 0 0 1 1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

36

Half Subtractor

 The block diagram shown in fig 1.35 is a half subtractor and it has two inputs and two

outputs. The two inputs and y form the minuend and the subtrahend D is the difference output

and B is the borrow output. the function table explains the working of the half subtract or (

Table 1.3). The simplified sum of products expressions are

 D = x’y+ xy’

 B= x’y

Table 1.3 Half Subtractor

x y D B

0 0 0 1

0 1 1 1

1 0 1 0

1 1 0 0

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

37

The logic diagram implementation of these two expressions using basic gates is shown

in fig 1.36(a) It can also be implemented using and EX-OR gate and an AND gate as indicated

in Fig.1.36(b).

Full Subtractor

 A full subtractor has three inputs and two outputs x,y and z are the inputs to be

subtracted in which z represents borrow from the next stage. D and B are the outputs. The block

diagrams of a full subtract or is shown in Fig. 1.37. Table 1.4 represents the truth table for a full

subtractor and Fig. 1.38(a,b) shows the maps for outputs.

 D = x’y’z + x’yz’ + xy’z’ + xyz

 B = x’z + x’y + yz

 The simplified expressions for D and B are implemented using basic gates are shown in

fig 1.39.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

38

Table 1.4 Full Substractor

x Y Z D B

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

yz

 x 00 01 11 10

0

1

1

1
1

1

Figure 1.38a Maps for full subtractor

(a) K map for D=x’y’z+x’yz’+xy’z’+xyz

yz

 x 00 01 11 10

0

1

1

1

1

1

Figure 1.38b Maps for full substractor

(b) K map for B=x’z+x’y+yz

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

39

Binary subtractor

 The subtractor of unsigned binary numbers is done by means of complements,

Remember that the subtraction A-B is done by taking the 2’s complement of B and adding it to

A.

 The circuit for subtracting A-B consists of an adder with inverters placed between each

data input B and the corresponding input of the full adder. The input carry C0 must be equal to

1 when subtraction operations can be combined into one circuit with one common binary adder

by including an exclusive – OR gate with each full adder Subtraction can be realized using an

adder by controlling inputs to a parallel adder.

 Fig.1.40(a) shows adder – subractor units using parallel adder

 Considering the table, expressions for x and y can be obtained using K-map. The

resulting expressions are

 x1 = A1

 y1 = B1 M and

 C1 = M

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

40

These equations are implemented to obtain an adder. Subtractor logic diagram circuit

and is shown in Fig. 1.40b.

M

0 0

1 1

M

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 0

1 1 1 1 1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

41

MAGNITUDE COMPARATOR

 The comparison of two numbers is an operation that determines whether one number is

greater than, less than, or equalto the other number.

 A magnitude comparator is a combinational circuit that compares two numbers A and B

and determines their relative magnitudes The outcome of the comparison is specified by three

binary variables that indicate whether A>B,A=B or a<B

 Digital function designed by means of an algorithm-a procedure which specifies a finite

set of steps that, if followed, give the solution to a problem we illustrate this method here by

driving an algorithm for the design of a four –bit magnitude comparator.

 The algorithm is a direct application of the procedure a person uses to compare the

relative magnitudes of two numbers. consider two numbers, A and B, with four digits each.

write the coefficients of the numbers in descending order of significance:

 A = A3A2A1A0

 B = B3B2B1B0

 Each subscripted letter represents one of the digital the number are equal if all pairs of

significant digits are equal: A3=B3, A2=B2, A1=B1, and A0=B0. When the numbers are

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

42

binary, the digits are either 1 or 0, and the equality of each pair of bits can be expressed

logically with an exclusive – NOR functions as

 Xi = Ai Bi + Ai’Bi’ for I = 0,1,3

Where xi=1 only if the pair of bits in position I are equal (i.e., if both are 0)

 The binary variable (A=B) is equal if all pairs of significant digits of the two numbers

are equal.

 To determine whether A is greatest or less than B, we inspect the relative magnitudes of

pairs of significant digits starting from the most significant position if the two digit of a pair are

equal, we compare the next lower significant pair of digits the comparison continues until a pair

of unequal digits is reached. if the corresponding digit of A is 1 and that of B is 0, we conclude

that corresponding digit of A is 0 and that B is 1, we have A<B. the sequential comparison can

be expressed logically by the two Boolean function.

 (A >B) = A3 B3’ + x3A2B2’ +x3A2B2’ +x3x2A1B1’ +x3x2x1A0B0’

 (A<B) = A3’B3 + x3A2’B2 +x2x2A1’B1 +x3x2x1A0’B0

 The symbols (A>B) and (A<B) are binary output variables that are equal to 1 when A>B

and A<B, respectively.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

43

The logic diagram of the four-bit magnitude comparator is shown in fig. 1.41. The four x

outputs are generated with exclusive NOR circuits and are applied to an AND gate to give the

output binary variables (A=B).

HAZARDS

 In asynchronous sequential circuit it is important that undesirable glitches on signals

should not occur. the glitches on signals should not occur. The glitches caused by the structure

of a given circuit and propagation delays in the circuit are referred to as hazards. Two types of

hazards are illustrated in Figure 1.42

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

44

A static hazard exists if a signal is supposed to remain at a particular logic value, As

shown in figure 1.42 a, one type of static hazard is when the signal at level 1 is supposed to

remain at 1 but dips to 0 for a short time Another type is when the signal is supposed to remain

at level 0 but rises momentarily to1, thus producing a glitch

 A different type of hazard may occur when a signal is supposed to change involves a

short oscillation before the signal settles into its new level, as illustrated in figure 1.42b, then a

dynamic hazard is said to exits.

Critical and non-critical race conditions:

 A critical race occurs when the order in which internal variables are changed determines

the eventual state that the state machine will end up in.

 A non-critical race occurs when the order in which internal variables are changed does

not alter the eventual state.

Static, dynamic, and essential race conditions:

Static race conditions

 These are caused when a signal and its complement are combined together.

Dynamic race Conditions:

 These result in multiple transitions when only one is intended. they are due to interaction

between gates

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

45

CIRCUIT SYNTHEIS USING GATES

Example : 1

 Implement the function F =  m {0,2,3,7} with minimal gates

SOULTION

Step II

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

46

Example : 2

 Implement the function F =  {0,2,3,7} with do not care 4 & 6 with minimal gates.

SOLUTION

Step II

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

47

Example : 3 Implement the function

F(A,B,C,D) =  m {4,5,6,7,8,12} + d{1,2,3,9,11,14} with only NAND gates

SOLUTION

Step I

Step II

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

48

SYNTHESIS OF LOGIC FUNCTION USING MULTIPLEXER

Example : 1

 Implement the function f = m{ 1,2,3,5,7,10,13} multiplexer

SOLUTION

Step I

Step II

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

49

Example 2 : Implement the function F = m{1,2,3,5,7,10,13} with don’t care of 4 & 6 with

multiplexer

SOLUTION Consider 4 & 6

Step II

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

50

Example 3 : Implement the function F = m {0,2,3,7} with mux

SOLUTION

Step II

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

51

Example 4 : Implement the function F =  m {0,2,3,7} with don’t care 4 & 6 with mux

SOLUTION

StepII

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

52

Example 5 :

 Implement the following function using 4:1 mux F (A,B,C,D) =  {0,1,2,4,6,9,12,14}

SOLUTION :

 The function has four variables to implement this function, we require two 4:1 mux.

Step II

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

53

UNIT II

2.1 VHDL FOR COMBINATIONAL CIRCUIT

Introduction to VLSI and its Design Process.

Introduction to CAD Tool and VHDL

 logic circuits found in complex system’s such as today’s computers cannot be designed

by manually They are designed using sophisticated CAD tools that automatically implement

the synthesis techniques.

 To design a logic circuit, a number of CAD tools are needed they are usually packaged

together into a CAD system Cad system includes tools for the following tasks Design Entry

Synthesis and Optimization, simulation and physical Design.

DESIGN ENTRY

 The starting point in the process of designing a logic circuit is forming an idea of what

the circuit is supposed to do and formulation of its general structure This is done manually by

the designer the first step of this process involves entering into the CAD Systems. CAD is the

description of the circuit being designed this stage is called design entry There are two design

entry methods.

1. Using Schematic

2. Writing Source Code in a HDL

Schematic Capture

 A logic circuit can be defined by drawing logic gates and interconnecting them with

wires.

 A CAD tool for entering a designed circuit in this way is called a “Schematic Capture”

tool. The word Schematic refers to a diagram of a circuit elements such as logic gates are

depicted as graphical symbols and connection between circuit elements are drawn as lines.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

54

 A schematic capture tool uses the graphic symbols that represent gates of various types

with different numbers of inputs from a library and the tool provides a graphical way of

interconnecting the gates to create a logic network.

Writing Code in a HDL

 A hardware Description Language (HDL) is similar to a computer programming

language expect that an (HDL) is similar to describe hardware rather than a program to be

executed on a computer

 Two HDLs are IEEE Standards: VHDL (very High Speed integrated Circuit Hardware

Description languages are mostly used in industry.

 Design entry of a logic circuit is done by writing VHDL Code. Similar to the way in

which large circuits are handled in schematic capture, VHDL code can be written in a modular

way that facilitates hierarchical design VHDL design entry can be combined with other

methods. for example, a schematic is described using VHDL

SYNTHESIS

 Synthesis is the process of generating a logic circuit from an initial specification that

may be given in the form of a schematic diagram or code written in a HDL. Synthesis CAD

tools generate efficient implementation of circuits from such specifications.

 The process of translating or compiling, VHDL Code into a network of logic

expressions that describe the logic functions needed to realize the circuit

 The performance of a synthesized circuit can be assessed by physically constructing the

circuit and testing it But, its behavior can also be evaluated by means of simulation.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

55

FUNCTIONAL SIMULATION

 A circuit represented in the form of logic expressions can be simulated to verify that it

will function as expected. The tool that performs this task is called a functional simulator. it

uses the logic expressions generated during synthesis and assumes that these expressions will

be implemented with perfect gates through which signals propagate instantaneously the results

of simulation are usually provided in the form of a timing diagram. The users can examine to

Verify that the circuit operates as required

PHYSICAL DESIGN

 After logic synthesis he the next step in the design flow is to determine exactly how to

implement the circuits on a given chip. This step is often called Physical design. toolmap a

circuit specified in the form of logic expressions into a realization

TIMING SIMULATION

 A timing simulator evaluates the expected delays. of a designed logic circuit Its results

can be used to determine if the generated circuit meets the timing requirements of the

specification for the design.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

56

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

57

CHIP CONFIGURATION

 When the designed circuit meets all requirements of the specification then the circuit is

implemented on an actual chip this step is called chip configuration programming.

 The CAD tool are the essential parts of a CAD system The complete design flow is

shown in figure 2.1

INTRODUCTION TO VHDL

 VHDL stands for very high-speed integrated circuit hardware description language used

to model a digital system by dataflow, behavioral and structural style of modeling This

language was first introduced in 1981 for the department of defense (DOD) under the VHSIC

program In 1983 IBM, Texas instruments and Inter metrics started to develop this IEEE

standardized the language

Describing a design

 In VHDL an entity Is used to describe a hardware module

 An entity can be described using,

1. Entity declaration

2. Architecture

3. Configuration

4. Package declaration

5. Package body

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

58

Let’s see what are these?

1. Entity declaration

 It defines the names, input signals and modes of a hardware module.

2. Architecture

 It describes the internal description of design. each entity has least one

architecture and an entity has at least one architecture and an entity can have many architecture

can be described using structural, dataflow, behavioral or mixed style Architecture can be used

to described a design at different levels of abstraction like gate level, register transfer level

(RTL) or behavior level.

3. Configuration

 If an entity contains many architectures and any one of the possible architecture

binding with its entity is done using configuration it is used to bind the architecture body to its

entity and a component with an entity

4. Package declaration

 Package declaration is used to declare components, types, constants function and

so on.

5. Package body:

 Package body is used to declare the definitions and procedures that are

procedures that are declared in corresponding package values can be assigned to constants

declared in package body.

DIFFERENT LEVELS OF ABSTRACTIONS

 The internal working of an entity can be defined using different modeling styles inside

architecture body. They are

1. Dataflow modeling

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

59

2. Behavioral modeling (RTL Modeling)

3. Structural modeling

Structure of an entity

DATA FLOW MODELING

 In this style of modeling, the internal working of an entity is implement using concurrent

signal assignment

Let’s take half adder example which is having one XOR gate and a AND gate.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

60

 Library IEEE ;

 use IEEE. STD_LOGIC _1164. All ;

 entity ha_en is

 port (A, B : in bit ; S, C : out bit) ;

 end ha _en ;

architecture ha_ar of ha_en is

 begin

 S<=A xor B ;

 C<=A and B;

end ha_ar

Here STD_LOGIC_ is IEEE standard. This defines a nine-value logic type, called

STD_ULOGIC use is a keyword, which imports all the declarations from this package. the

architecture body consist of concurrent signal assignments, which describes the functionality of

the design whenever there is change is RHS, the expressions is evaluated and the value is

assigned to LHS.

BEHAVIORAL MODELING

 In this style of modeling, the internal working of an entity can be implemented using set

of statements

It contains:

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

61

 Process statements

 Sequential statements

 Signal assignment statements

 Wait statements

Process statement is the primary mechanism used to model the behavior of an entity. it contains

sequential statement, variable assignment (:=) statements or signal assignment (<=) statements

etc. it may or may not contain sensitivity list If there is an event occurs on any of the signals in

the sensitivitylist, the statements within the process is executed.

 Inside the process the execution of statements will be sequential and if one entity is

having two processes will be concurrent. At the end it waits for another event to occur.

 Library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity ha_beha_en is

 Port (

 A: in BIT;

 B: in BIT;

 S: out BIT;

 C: out BIT

);

end ha_beha__en;

architecture ha_beha_ar of ha_beha_en is begain

process_beh:process(A,B)

begain

 S<=A xor B;

 C<=A and B:

 end process process_beh:

end ha_beha_ar;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

62

 Here whenever there is a change in the value of A or B the process statements are

executed.

Structural modeling:

 The implementation of an entity is done through set of interconnected components.

If contains:

 Signal declaration

 Component instance

 Port maps

 Wait statements

Component declaration

Syntax

 Component component_name [is]

List_of_interface ports;

end componets_name;

 Before starting the component it should be declared using component declaration

as shown above. component

 Let’s try to understand this by taking the example of full adder using 2 half adder and 1

OR gate.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

63

Library IEEE;

USE IEEE.STD_LOGIC_1164. all;

entityfa_en is

port (A,B, Cin:inbit;SUM, CARRY: out bit);

endfa_en;

architecturefa_ar of fa_en is

componentha_en

port (A,B: in bit S,C: out bit);

end component

signal C1,C2,S1: bit;

begain

HA1: ha_en port map (A, B, SI, C1);

HA2: ha_en port map (S1, Cin, SUM, C2);

CARRY<=C1 or C2;

endfa_ar;

 The program we have written for half adder in dataflow modeling is instantiated as

shown above.ha_en is the name of the entity in data flow modeling. C1, C2, S1 are the signals

used for internal connections of the component which are the declared using the keyword

signal. Port map is used to connect different components as well as connect components to

ports of the entity.

 Component instantiation is done as follows.

 component _label: component port map (signals_list)

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

64

 Signal_list is the architecture signals which we are connecting to component ports. this

can be done in different ways. What declared above is positional binding. One more type is the

named binding The above can be written as,

HA1: ha_en port map (A=> A,B=>B,S=>S1, C=>C1);

HA2: ha_en port map (A=S1, B=> SUM, C=>C2);

VHDL STATEMENTS & ASSIGNMENTS

ASSIGNMENTS SATEMENTS

 Assignments statements, which are called selected signal assignments, conditionals

signal assignments, generate statements, if-then –else statements, and case statements.

SELECTED SIGNAL ASSIGNMENT

 A selected signal assignments allows a signal to be assigned one of several values, based

on a selection criterion Figure 2.2 shows how it can be used to describe a 2-to1 multiplexer. the

entity named mux2to1, has the input w0,

W1, and s and the output f. the selected signal assignments begins with the key word

WITH, which specifies that’s is to be used for the selection criterion. the two WHEN clause

State that if assigned the value of w1. WHEN clause that selects w1 uses the word OTHERS,

instead of the value 1. This is required because the VHDL syntax specifies that a WHEN clause

must be included for every possible value of the selection signals s.

LIBRARY ieee;

USE iee.std_logic_1164.all;

ENITY mux2to1 IS

PORT (w0, w1, s : IN STD_LOGIC;

 f : OUT STD_LOGIC);

END mux2to1;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

65

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

WITH s SELECT

 f<w0 when ‘0’,

 w1 WHEN OTHERS;

END Behavior;

Figure 2.2 VHDL code for a 2-to 1 multiplexer

 Since it has the STD_LOGIC type, s can take the values 0,1,z, and other the keyword

Others provides a convenient way of accounting for all logic values that are not explicitly listed

in a WHEN clause.

CONDITIONAL SIGNAL ASSIGNMENT

 Similar to the selected signal assignment, a conditional signal assignment allows a signal

to be a set to one of several values Figure 2.3 shows the 2-to 1 multiplexer entity. it uses a

conditional signal assignment to specify that f is assigned the value of wo when s=0, or else f is

assigned the value of w1.

LIBRARY ieee;

USE ieee.std_logic_1164 all;

ENITY mux2to1 IS

PORT (w0, w1,s : IN STD_LOGIC;

ff : OUT STD_LOGIC);

END mux 2 to 1;

ARCHITECTURE Behavior OF mux2 to 1 IS

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

66

BEGIN

 f<= WO EHEN S=’0’ ELSE W1;

END Behavior

Figure 2.3 Specification of a 2-to-1 multiplexer using a conditional signal assignment

In this small example the conditional signal assignment has only one WHEN clause

GENERATE STATEMENTS

 VHDL Provides a feature called the FOR GENERATE statements. the generate

statement must have a label, so we have used the label G1 in the code. the loop instantiates four

copies of mux4to1 component, using the loop index I in the range from 0 to 3 the variable I is

not explicitly declared in the code; it is automatically defined as a loop variable whose scope is

limited to the FOR GENERATE statement.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE work. mux4to1_package.all;

ENITITY mux16to1,

PORT (w: IN STD_LOGIC_VECTOR (0 TO15);

 s : IN STD_LOGIC_VECTOR (3DOWN TO 0);

 f : (OUT_STD_LOGIC);

END mux16to1,

ARCHITECTURE Structure OF mux 16 to 1 IS

SIGNAL m: STD_LOGIC_VECTOR(0TO3);

BEGAIN

G1: FOR in 0 TO 3 GENERATE

Muxes: mux 4 to 1 PORT MAP(

w(4*1), w(4*i+3), s(1 DOWNTO 0), m(i));

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

67

END GENERATE;

mux5; mux4 to 1 PORT MAP (m(0), m(1), m(2), m(3), s(3 DOWNTO 2);

END structure;

Figure 2.3 code for a 16-to1 multiplexer using a generate statement

In addition to the FOR GENERATE statement, VHDL provides another type of generate

statement called IF GENARATE Figure 2.4 illustrates the use of both types of generate

statements the decoder inputs are the four-bit signals w, the enable is En, and the outputs are

the 16-bit signal y.

Following the component declaration for the dec2to4 sub circuit, the architecture defines

the signal m, which represents the outputs of the 2-to4 decoder component are instantiated by

the FOR GENERATE statement in each iteration of the loop, the statement labeled Dec_ri

instantiates a dec2to4 component that corresponds to one of the dec2to4 component with data

inputs w1 and w0, enable input m0, and outputs y0,y1,y3,. the other loop iterations also use

data inputs w1w0, but use different bits of m and y.

The IF GENERATE statement, labeled G2, instantiates a dec2to4 component in the last

loop iteration, for which the condition i=3 is true. this component represents the 2-to4 decoder

where it has the two-bit data inputs w3 and w2, the enable En, and*the

LIBBRARY ieee;

USE ieee.std_logic_1164 all;

ENTITY dec4to16 IS

PORT (w : IN STD_LOGIC_VECTOR(3DOWNTO 0);

En : IN STD_LOGIC;

y : OUT STD_LOGIC_VECTOR (0 TO 15);

END dec4to16 IS

ARCHITECTURE Structure OFdec4to16 IS

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

68

 COMPONENT dec2to4

PORT (w : IN STD_LOGIC_VECTOR(1DOWNTO 0);

En : IN STD_LOGIC;

y : OUT STD_LOGIC_VECTOR (0 TO 3));

END COMPONENT;

SIGNAL m: STD_LOGIC_VECTOR (0 TO3);

BEGIN

G1:FOR 1 IN 0 TO 3 GENERATE

Dec_ri:dec2to4 PORT MAP (W(1 DOWNTO 0, M(i),y(4*Ito4*i+3);

G2: IF I=3 GENERATE

Dec_left; dec2to4 PORT MAP w (idowntoi-1), En, m);

END GENERATE;

END GENERATE;

END Structure;

 Figure 2.4 Hierarchical code for 0 4-to-16 binary decoder

*The outputs m0,m1,m2, and m3

The generate statements in figures 2.9 and 2.10 are used to instantiate components. Another use

of generate statements is to generate a set of logic equations.

CONCURRENT AND SEQUENTIAL ASSIGNMENT STATEMENTS

 We have introduced several types of assignment statement; logic or arithmetic

expressions, selected assignment statements, and conditional assignment statements. All of

these statements share the property, that the order in which they appear in VHDL code does not

affect the meaning of the code Because of this property, these statements are called the

concurrent assignment statements.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

69

 VHDL also provides a second category of statements, called sequential assignment

statements, for which the ordering of the statements, may affect the meaning of the code we

will discuss two types of sequential assignment statements, called if-then—else statements and

case statements VHDL requires that the sequential assignments statements placed inside

another type of statement, called a process statement.

PROCESS STATEMENT

 Figures 2.2 & Fig.2.3 show two ways of describing a 2-to-1 multiplexer, using the

selected and conditional signal assignments the same circuit can also be described using an if-

then-else statement, but this statement must be placed inside a process statement figure 2.5

shows the code using process statement the process statement, or simply process, begins with

the PROCESS keyword, followed by a sensitivity list. for a combinational circuit like the

multiplexer, the sensitivity list includes all input signals that are used inside the process the

process statement is translated by the VHDL compiler into logic equations in the figure the

process consists of the single if-then-else statement that describes the multiplexer function. thus

the sensitivity list comprises the data inputs, w0, and w1, and the select input s.

 In general, there is a number of statement inside a process Using VHDL, when there is a

change in the value of any signal in the value of any signal in the process’s sensitivity list, then

the process becomes active.

 Once active, the statements inside the process are evaluated in sequential order. Any

assignments made to signals inside the process evaluated if there are multiple assignment to the

same signal, only the last one has any visible effect.

LIBRARY ieee;

USE ieee.std_logic-1164 all;

ENITITY mux2to 1 IS

 PORT (w0, w1, s :IN STD_LOGIC

 f :OUT STD_LOGIC);

END mux2to1;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

70

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

 IF=’0’ THEN

 f<w0;

ELSE

 F<w1;

END IF;

END PROCESS;

Figure 2.5 A2to1 multiplexer specified using the if-then-else statement

CASE STATEMENT

 A case statement is similar to a selected signal assignment the case statement has a

selection signal and includes WHEN clauses for various valuations of this selection signal.

figure 2.6 shows how the case statement can be used for describing the 2-to1 multiplexer circuit

the CASE keyword, which specifies that s to be used as the selection signal. the first WHEN

clause specifies, following the=> symbol, the statements that should be evaluated when s=0. in

this example only statement evaluated when s=0 is f<=w0 The case statement must include a

WHEN clause for all possible valuation of the selection signal. hence the second WHEN

clause, which contains f<=w1, uses the OTHERS keyword.

LIBRARY ieee;

USE ieee.std_logic_1164 all;

ENTITY mux2to1 IS

 PORT (w0, w1, s : IN STD_LOGIC

 f : OUT STD_LOGIC);

END mux2to1;

ARCHITECTURE Behavior OF mux2to1 IS

BEGIN

 PROCESS (w0, w1, s)

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

71

 BEGIN

 CASE s IS

 WHEN ‘0’=>

 f<=w1;

 END CASE;

 END PROCESS;

END Behavior;

 Figure 2.6 A case statement that represents a 2-to-1multiplexer.

VHDL OPERATERS

 In this section we discuss the VHDL operators, that are useful for synthesizing logic

circuits. Table lists these operators in groups that reflect the type of operations performed.

Operator category Operator symbol Operation performs

Logical And

OR

NAND

NOR

XOR

XNOR

NOT

AND

OR

Not AND

Not OR

XOR

Not XOR

NOT

Relational =

/=

>

<

>=

<=

Equality

Inequality

Greater than

Less than

Greater than or equal to

Less than or equal to

Arithmetic +

-

*

/

Additional

Subtraction

Multiplication

Division

Shift and Rotate SLL

SRL

SLA

ROL

ROR

Shift left logical

Shift right logical

Shift left arithmetic

Rotate left

Rotate Right

 To illustrate the results produced by the various operators, we will use three-bit vectors

A(2DOWNTO 0),B(2DOWNTO 0), and C(2DOWNTO 0).

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

72

LOGICAL OPERATORS

 The logical operators can be used with bit and Boolean types of operands. the operands

can be either signal-bit scalars or inultibit vectors for example, the statement

C<=NOT A;

 Produces the result c2=a2. c1=a1 and c0 = a0where a and c are bits of the vectors A and

C.

 The statement

 C< A AND B;

 Generates c2=a2. c2, c1=a1.b1, and c0=a0.b0. the other operators lead to similar

evaluations.

RELATIONAL OPERATORS

 The relational operators are used to compare expressions. The results of the comparison

is TRUE or FALSE. The expressions that are compared must be of the same type For example,

if A=010 the A>B evaluates to TRUE, AND B/=”010 evaluates to FALES.

ARITHMETIC OPERATORS

 Arithmetic Operators perform standard arithmetic operations Thus

 c<A+B;

 Puts the three-bit sum of A plus B into C. The operation

CONCATENATE OPERATOR

 This operator concatenates two or more vectors to create a large vector. For example,

D<= A & B ;

Defines the six – bit vector D = a2a1 a0b2b1b0. Similarly , the concatenation

E < = “ 111” & A &”00”

 Produces the eight – bit vector E = 111a2a1a000.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

73

SHIFT AND ROTATE OPERATORS

 A vector operand can be shifted to the right or left by a number of bits specified as a

constant. When bits are shifted ; the vacant bit positions are filled with 0s. For example,

B< = A SLL 1 ;

 Results in b2 = a1, b1 = a0 and b0 =0. Similarly,

B < = A SRL 2 ;

 Yields b2 = b1 = 0 and b0 = a2

 The arithmetic shift left, SLA, has the same effect as SLL. But, the arithmetic shift right,

SRA, performs the sign extension by replicating the sign bit into the positions left vacant after

shifting . Hence.

B < = A SRA 1 ;

 Gives b2 = a2, b1 =a2, and b0 =a1.

 An operand can also be rotated, in which case the bits shifted out from one end are

placed into the vacated positions at the other end. For example.

B<=A ROR 2 ;

 Produces b2 = a1, b1 = a0 and b0 = a2 .

OPERATOR PRECEDENCE :

 Operators in different categories have different precedence. Operators in the same

category have the same precedence, and are evaluated from left to right in a given expression. It

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

74

is a good practice to use parentheses to indicate the desired order of operations in the

expression. To illustrate this point, consider the statement.

 S<=A+B+C+D;

Which defines the addition of four vector operands. The VHDL complier will synthesize a

circuit as if the expression was written in the form (A+B)+C)+D, which gives a cascade of

three adders so that the final sum will be available after a propagation delay through three

adders. By writing the statement as.

S<=(A+B)+(C+D) ;

 They synthesized circuit will still have three adders, but since the sums A+B and C+D

are generated in parallel, the final sum will be available after a propagation delay through only

two adders.

 Table groups the operators according to their functionality. It shows only those operators

that are used to synthesize logic circuits. The VHDL Standard specifies additional operators,

which are useful for simulation and documentation purposes. All operators are grouped into

different classes.

2.2 VHDL CODE

VHDL CODE FOR AND GATE :

Library ieee ;

Use ieee. Std _logic_1164.all ;

Entity and Gate is

 Port (A,B ; in std_logic)

 F : out std_logic) ;

End and Gate ;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

75

Architecture func of and Gate is begin

 F<= A and B ;

End func ;

VHDL CODE FOR OR GATE :

Library ieee ;

Use ieee. Std _logic_1164 all ;

Entity or Gate is

 Port (A, B : in std_logic ;

 F : out std _logic);

end or Gate ;

architecture func of orGate is

begin

 F< = A or B ;

end func ;

VHDL CODE FOR NAND GATE :

Library ieee ;

Use ieee.std_logic_1164 all ;

Entity nandGate is

 Port (A, B : in std_logic ;

 F : out std_logic) ;

end nand Gate ;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

76

architecture func of nandGate is

begin

 F < = A nand B ;

end func ;

VHDL CODE FOR NOR GATE :

Library ieee ;

use ieee. Std_logic _11164. All ;

entity norGate is

 port (A, B : in std_logic ;

 F : out std_logic) ;

end nor Gate :

architecture func of norGate is

begin

 F < = A nor B ;

End Func;

VHDL CODE FOR 8:1 MUX

library IEEE ;

use IEEE. STD_LOGIC _1164. ALL ;

use IEEE. STD_ LOGIC _ARITH. ALL ;

use IEEE. STD_LOGIC _UNSIGNED. ALL ;

Entity mux IS

Port(s: in _ std_logic _ vector (2 downto 0);

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

77

 inp: in _ std_logic _ vector (7 downto 0);

op:out std_ logic);

END Entity mux;

Architecture mux OF mux IS

BEGIN

PROCESS (s,inp)

BEGIN

CASE s IS

WHEN “000”=>OP<=INP(0);

WHEN “001”=>OP<=INP(1);

WHEN “010”=>OP<=INP(2);

WHEN “011”=>OP<=INP(3);

WHEN “100”=>OP<=INP(4);

WHEN “101”=>OP<=INP(5);

WHEN “110”=>OP<=INP(6);

WHEN others =>op<=inp(7);

END case;

END PROCESS;

END ARCHITECTURE mux;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

78

VHDL CODE FOR 4:1 MUX

library IEEE ;

use IEEE. STD_LOGIC _1164. ALL ;

use IEEE. STD_ LOGIC _ARITH. ALL ;

use IEEE. STD_LOGIC _UNSIGNED. ALL ;

Entity mux1 IS

Port (I;in std_Logic _ vector 3 downto 0);

 Y: out std_ logic);

END mux1;

ARCHITECTURE Behavioral OF mux1 IS

BEGIN

PROCESS (I,S0,S1)

BEGIN

IF (S1=”0” and S0 =’0’) THEN

Y<=I0;

ELSIF (S1=”0” and S0 =’1’) THEN

Y<=I1;

ELSIF (S1=”1” and S0 =’1’) THEN

Y<=I2;

ELSIF (S1=”1” and S0 =’1’) THEN

Y<=I3;

END If;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

79

END PROCESS;

END Behavioral;

VHDL Code for Encoder (4 ; 2)

library IEEE ;

use IEEE. STD_LOGIC _1164. ALL ;

use IEEE. STD_ LOGIC _ARITH. ALL ;

use IEEE. STD_LOGIC _UNSIGNED. ALL ;

entity encod is

Port (a : in STD_LOGIC _VECTOR (3 downto 0) ;

B : out STD_LOGIC_VECTOR (1 down to 0)) ;

end encod ;

architecture Behavioral of encod is

begin

process(a)

begin

if (a(0) = ‘1’) then

b<= “00”;

elsif (a(1) = ‘1’) then

b<=”01”;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

80

elsif (a(2) = ‘1’) then

b<=”10” ;

elsif (a(3) = ‘1’) then

b<=”11” ;

end if ;

end process ;

end Behavioral ;

VHDL CODE for 1 to 4 DEMULTIPLEXER

library IEEE ;

use IEEE. STD_LOGIC _1164. ALL ;

use IEEE. STD_ LOGIC _ARITH. ALL ;

use IEEE. STD_LOGIC _UNSIGNED. ALL ;

entity DeMUX is

port(X: in std_logic;

sel:in std_logic_vector (1 downto 0);

A: out std_logic;

B: out std_logic;

C: out std_logic;

D: out std_logic;

end DeMUX;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

81

architecture behaviour of DeMUX is

begin

process(sel, X)

begin

case sel is

when “00”=>

A <=X;

B <=’0’;

C <=’0’;

D <=’0’;

When “01” =>

B <=X;

A <=0;

C <=’0’;

D <=’0’;

When “10”=>

C <=X;

A <=’0’;

B <=’0’;

D <=’0’;

When others=>

D <=X;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

82

A <=’0’;

B <=’0’;

C <=’0’;

end case;

end process;

end behaviour;

VHDL code for 8:3 ENCODER Logic Program

VHDL program for “8:3 Encoder” behavioral design

library IEEE ;

use IEEE STD_LOGIC _1164. ALL ;

use IEEE.STD_LOGIC_ARITH.ALL ;

use IEEE> STD_LOGIC_USIGNED.ALL ;

entity ENC2 is

 Port (S : in std_logic ;

 T : in std_logic ;

 U : in std_logic ;

 V : in std_logic ;

 W : in std_logic ;

 Y : in std_logic ;

 Z : in std_logic ;

 OUT0 : out std_logic ;

 OUT1 : out std_logic ;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

83

 OUT 2 : out std_logic) ;

end ENC2 ;

architecture Behavioral of ENC2 is begin

 process (S,T, U, V, W, X, Y, Z)

 begin

 OUT0<=T OR V OR X OR Z ;

 OUT1 < = U OR V OR Y OR Z ;

 OUT 2 < = W OR X OR Y OR Z ;

 end process ;

end Behavioral ;

VHDL CODE FOR DECODER (2:4)

library IEEE ;

use IEEE. STD_LOGIC_1164.ALL ;

use IEEE. STD_LOGIC_ARITH.ALL ;

use IEEE.STD_LOGIC_UNSIGNED. ALL ;

entity decod 1 is

Port (10 : in STD_LOGIC)

I1: in STD_LOGIC

En : in STD_LOGIC ;

Y : out STD_LOGIC_VECTOR (3 downto 0)) ;

end decod 1 ;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

84

architecture Behavioral of decod 1 is

begin

process (I0, I1, En)

begin

if(En = ‘1’)

then

Y(0) < = (not I0) and (not I1) ;

Y(1)<= (not I0) and I1 ;

Y(2)<= I0 and (not I1) ;

Y(3) <=I0 and I 1 ;

else

Y < = “0000” ;

end if ‘

end process ;

end Behavioral ;

VHDL CODE 3:8 DECORDER :

Entity decorder 3 x 8 is

Port (ctrl : in std_logic_vector (2 downto 0) ;

z : out std_logic_vector (7 downto 0) ;

end decoder 3x8 ;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

85

architecture dec3x8_Dflow of decoder 3x8 is

begin

z<= “0000001” when ctrl = “000” else

“00000010” when ctrl = “010” else

“000000100” when ctrl = “010” else

“00001000” when ctrl = “011” else

“00010000” when ctrl = “100” else

“00100000” when ctrl = “101” else

“01000000” when ctrl = “110” else

“10000000” ;

end dec 3x8 Dflow ;

VHDL CODE FOUR BIT ADDER / SUBTRACTOR --

-- This is the XOR gate

library ieee ;

use ieee. Std_logic_1164. All ;

--

entity xorGate is

 port (A, B ; in std_logic) ;

 F : out std_logic) ;

end xorGate ;

--

Architecture func of xorGate is

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

86

Begin

 F <=A xor B ;

end func ;

--

-- Now we build the four bit Adder Subtractor

Library ieee ;

use ieee. Std_logic_1164.all ;

entity adder Subtract or us

 port (mode : in std_logic ;

 A3, A2, A1, A0 : in std_logic ;

 B3, B2, B1, B0 : in std_logic ;

 S3, S2, S1, S0 : out std_logic ;

 Court , V : out std_logic) ;

end adder Subtractor ;

-- Structural architecture

architecture struct of adder Subtractor is

 component xorGate is -XOR component

 port (A, B : in std_logic ;

 F : out std_logic) ;

end component ;

component Full_Adder is - FULL ADDER

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

87

component

 port (X, Y, Cin : in std_logic ;

 sum, Cout : out std_logic) ;

 end component ;

-- interconnecting wires

 signal C1, C2, C3, C4 ; std_logic – intermediate carries

 signal xor 0, xor1, xor2, xor3, : std_logic ; - xor outputs

begin

 GX0 : xorGate port map (mode, B0, xor 0) ;

 GX1 : xorGate port map(mode, B1, xor 1) ;

 GX2 : xorGate port map(mode, B2, xor 2) ;

 GX3 : xorGate port map (mode, B3 , xor 3) ;

 FA0 : Full_Adder port map (A0, xor 0, mode, S0, C1) ; - S0

 FA1: Full_Adder port map (A1, xor 1, C1, S1, C2) ; - S1

 FA2: Full_Adder port map (A2, xor 2, C2, S2, C3) ; - S2

 FA3: Full_Adder port map (A13, xor 3, C3, S3, C4) ; - S3

 Vouut : xorGate port map (C3, C4, V) ; - V

 Cout <=C4 - Cout

End struct :

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

88

VHDL CODE FOR FOUR BIT ADDER

LIBRARY ieee ;

USE ieee. Std_logic _1164. all ; Output of adder 4

 Network is shown here

ENTITY adder 4 IS

PORT (Cin : IN STD LOGIC ;

 X3, X2, X1, X0 : IN STD_LOGIC

 Y3, Y2, Y1, Y0 : IN STD_LOGIC ;

 S3, S2, S1, S0 : OUT STD _ LOGIC ;

 Cout : OUT STD _ LOGIC

END adder 4 ;

ARCHITECTURE Structure OF adder 4 IS

 SIGNAL c1, c2, c3 : STD_LOGIC ;

 COMPONENT fulladd

 PORT (Cin, x,y : IN STD_LOGIC ;

 S, Cout : OUT STD _LOGIC) ;

END COMPONENT ;

BEGIN

Stage 0 : Fulladd PORT MAP (Cin, x0, y0, s0, c1) ;

Stage 1 : Fulladd PORT MAP (C1, x1, y1, s1, c2) ;

Stage 2 : Fulladd PORT MAP (C2, x2, y2, s2, c3) ;

Stage 3 : Fulladd PORT MAP (C3, x3, y3, s3, c4) ;

Cin = > c3, Cout => Cout , x = >x3, y=>y3, s=>s3) ;

END Structure ;

 Figure 2.9. VHDL Code for a four – bit adder

Intermediate Signals

Shown Here-these are

signal used in the

logic circuit

Intermediate

outputs

are

Specified

in the

Architecture

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

89

VHDL CODE FOR COMPARATOR

LIBRARY ieee ;

USE ieee. Std_logic_1164.all ;

USE work. Fulladd_package.all ;

ENTITY comparator IS

 PORT (X, Y : IN STD _LOGIC _VECTOR (3DOWNTO 0) ;

 V, N, Z : OUT STD_LOGIC

END comparator ;

ARCHITECTURE Structure OF comparator IS

 SIGNAL S : STD_LOGIC _VECTOR (3 DOWNTO 0) ;

 SIGNAL C : STD_LOGIC_VECTOR (1 TO 4) ;

BEGIN

 Stage 0 : fulladd PORT MAP (‘1’, X(0), NOT Y(0) , S(0), C(1) ;

 Stage 1 : fulladd PORT MAP (C(1), X(1), NOT Y(1), S(1), C(2)) ;

 Stage 2 : fulladd PORT MAP (C(2), X(2), NOT Y(2),S(2), C(3)) ;

 Stage 3 : fulladd PORT MAP (C(3), X(3), NOT Y(3), S(3), C(4)) ;

 V<=C(4) XORC (3) ;

 N<=S(3) ;

 Z<=’1’ WHEN S (3 DOWN TO0) = “0000” ELSE ‘0’

END Structure ;

 Figure 2.7 Structure VHDL code for the comparator circuit.

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_signed.all ;

ENTITY comparator IS

 PORT (X, Y : IN STD_LOGIC _VECTOR (3 DO

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

90

 V, N, Z : OUT STD_LOGIC) ;

END comparator ;

ARCHITECTURE Behavior of comparator IS

 SIGNAL S : STD _LOGIC_VECTOR (4DOWNTO 0) ;

BEGIN

 S<=(‘0’ & X) – Y ;

 V<=S(4) XOR X(3) XOR Y(3) XOR S(3) ;

 N<=S(3) ;

 Z<=’1’ WHEN S(3 DOWNTO 0) = 0ELSE ‘0’ ;

END Behavior ;

Figure 2.8 Behavioral VHDL code for the comparator circuit.

VHDL Code for 3 bit subs tractor

 (This VHDL code use for 3 bit comparator by using full subtractor)

1. library ieee ;

 Use ieee. Std_logic_1164. All ;

 entity comp_3 bit is

 port (a:in std_logic_vector (2 downto 0) ;

 b:in std_logic_vector (2 downto 0) ;

 agb, aeb, alb : inout std_logic) ;

 end comp_3bit ;

 architecture dataflow of comp_3 bit is

 component fullsub is

 port (a,b,c : in std_logic) ;

 end component ;

 signal s, c:std_logic_vector (2 down to 0) ;

 begin

 a1 : fullsub port map (a(0), b(0), ‘0’, s(0), c(0));

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

91

 a2 : fullsub port map (a(1), b(1), c(0), s(1), c(1));

 a3 : fullsub port map (a(2), b(2), c(1), s(2), c(2));

 agb<=aeb nor alb ;

 aeb<=not (s(0) or s(1) or s(2)) ;

 alb < = c (2) ;

 end dataflow ;

Subtractor Code

 library ieee ;

 use ieee. Std_logic _1164.all ;

 entity fullsub is

 port (a,b, c:instd_logic ;

 s, cout : out std_logic) ;

 end fullsub ;

 architecture dataflow of fullsub is

 begin

 s<=a xorb xor c ;

 cout < = (not a and (b or c) or (b and c) ;

 end dataflow ;

4X4 – Bit Multiplier VHDL Code

Library IEEE ;

use IEEE. STD_LOGIC_1164.ALL ;

use IEEE.MUMERIC_STD.ALL ;

entity Multiplier_VHEL is

 port

 (

 Nibblel, Nibble2 : in std_logic _vector (3 downto 0);

 Result : out std_logic_vector (7 downto 0)

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

92

);

end entity Multiplier_VHDL ;

architecture Behavioral of Multiplier _VHEL is

begin

 Result <=std_logic_vector (unsigned (Nibblel)* unsigned (Nibble 2)* unsigned

(Nibble2));

end architecture Behavioral ;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

93

UNIT – III

3.1. INTRODUCTION / REPRESHING TO FLIP – FLOPS & ITS EXCITATION

TABLE

T flip- flop

 Fig. 3.1 A circuit symbol for a T-type flip-flop

 If the T input is high, the T flip – flop changes state (“toggles”) whenever the clock

input is strobed. If the input is low, the flip-flop holds the previous value. This behavior is

described by the characteristic equation :

 Qnext = TQ = TQ + TQ (expanding the XOR operator) and can be described in a truth

table :

T flip – flop operation

Characteristic table Excitation table

T Q Qnext Comment Q Qnext T Comment

0

0

1

1

0 0

1 1

0 1

1 0

hold state (no clk)

hold state (no clk)

toggle

toggle

 0

1

0

1

0 0

1 0

1 1

0 1

No change

No change

Complement

Complement

T Q

˃ Q

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

94

JK flip – flop

Fig. 3.2. A circuit symbol for a positive – edge – triggered JK flip – flop

JK flip – flop

 The combination J = 1, K = 0 is a command to set the flip – flop; the combination J = 0,

K=1 is a command to reset the flip – flop ; and the combination J = K = 1 is a command to

toggle the flip-flop , i.e. , change its output to the logical complement of its current value.

Setting J = K = 0 does NOT result.

 The characteristic equation of the JK flip – flop is :

 Qnext = JQ + KQ

 and the corresponding truth table is :

JK flip – flop operation

Characteristic table Excitation Table

J K Qnext Comment Q Qnext J K Comment

0 0 Q

0 1 0

1 0 1

1 1 Q

hold state

reset

set

toggle

 0

0

1

1

0

1

0

1

0

1

X

X

X

X

1

0

No change

Set

Reset

No change

J Q

Clk

K Q

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

95

SR NOR latch

R Q

S Q

Fig : 3.3. Circuit symbol for SR latch

An SR latch, constructed from a pair of cross-coupled NOR gates

 While the S and R inputs are both low, feedback maintains the Q and Q outputs in a

constant state. If S (Set) is pulsed high while R (Reset) is held low, then the Q output is forced

high, and stays high when S returns to low ; similarly, if R is pulsed high while S is held low,

then the Q output is forced low, and stays low when R returns to low.

Characteristic table Excitation table

S R Qnext Action Q Qnext S R

0

0

1

1

0

1

0

1

Q

0

1

X

hold state

reset

set

not allowed

 0

0

1

1

0

1

0

1

0

1

0

X

X

0

1

0

Characteristic equation : Q + R’Q + R’S or Q + = R’Q + S.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

96

D – Flip – Flop

 D- flip - flop is a very useful storage element. Its present state-next state table

demonstrates the behavior of a D-flip-flop.

It has the following characteristics :

Characteristic equation : Q(t+1) = D

Characteristic Table Excitation Table

D Q(t+1) Operation

0 0 Reset

1 1 Set

Counters

 A counter is a circuit used to count a repeated set of values, like clock pulses. In this

case, the counter is used to count the number of clock cycles. Since the clock pulses occur at

known intervals, the counter can be used as an instrument for measuring time (and therefore

period or frequency).

 Counters can be classified into two types.

They are

i) Asynchronous (or) ripple (or) serial counter.

ii) Synchronious counter (or) parallel counter

In a serial counter each flip flop is triggered by the previous FF and thus the counter has a

cumulative settling time. In synchronous counters the FFs are triggered by a single clock pulse

simultaneously.

Q(t) Q(t+1) D

0 0 0

0 1 1

1 0 0

1 1 1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

97

Comparison of Asynchronous counter and Synchronous counter

Asynchronous counter Synchronous counter

1. Each FF clocked by previous FF All FFs clocked simultaneously

2. Propagation delay of counter =

Propagation delay of each FF x no.

of FFs. Hence slow speed of

operation.

Propagation delay of counter = Propagation

delay of one FF and the combinational

hardware. Hence high speed of operation.

3. Simple Hardware More complex hardware

 4-Bit Binary Up – Ripple counter (Asynchronous counter)

 Pulse counters are formed by cascading the flip-flops. A4 bit Binary counter using four

JK MS flip-flops is shown fig. 3.4.

 The pulses to be counted are applied to the clock input of FF1. For all stages J and K are

tied to the supply voltage, so that J=K=1, and makes JK MS Flip Flop as a Toggle Flip Flop.

Now the Q1 output toggle in each falling or negative edge of the clock pulse.

 Since Q1 is the clock input for Flip flop FF2, Q2 toggles with each negative edge of Q1.

Similarly Q3 toggles with each negative edge Q2 and Q4 toggles with each negative edge of Q3.

Q4 Q3 Q2 Q1 RES

 Fig 3.4

Q4 S J

 MSB FF4 C

 R K

Q4 S J

 LSB FF1 C

 R K

Q4 S J

 FF2 C

 R K

Q4 S J

 FF3 C

 R K

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

98

Pulse Q4 Q3 Q2 Q1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

4- Bit ripple down counter

 A simple 4 bit Down Counter can be constructed using four JKMS flip flop in the toggle

mode as shown in fig. 3.5. The clock pulse input is given to C1. Q1 is connected to C2, Q2 to C3,

Q3 to C4. The outputs are taken as usual from Q4 Q3 Q2 Q1. When all the flip flops are Reset,

Q4, Q3, Q2, Q1 =0000. In the first negative edge of the clock, Q1 toggles from 0 to 1 . This

means Q1 changes from 1 to 0 since this is a negative transition immediately Q2 also toggles

from 0 to 1 and Q2 from 1 to 0 .

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

99

 Q4 Q3 Q2 Q1 +VCC

RESET

 Fig3.5

R Q4 Q4 Q3 Q3 Q2 Q2 Q1 Q1 Pulse

0 1 0 1 0 1 0 1 0 0

15 0 1 0 1 0 1 0 1 1

14 0 1 0 1 0 1 1 0 2

13 0 1 0 1 1 0 0 1 3

12 0 1 0 1 1 0 1 0 4

 The change in Q2 being a negative edge, Q3 also toggles from 0 to 1 and Q3 from 1 to 0.

So a single clock pulse causes change from 0000 to 1111 by chain reaction.

 In the next negative edge of the clock, Q1 toggles from 1 to 0 and Q1 from 0 to 1. The

change Q1 in now is positive and so no further toggling takes place in the other flip flops. So

the output now is Q4 Q3 Q2Q1 = 1110. For the next negative edge of the clock pulse Q2 toggles

from 1 to 0 Q2 from 0 to 1 . Now the output is Q4 Q3 Q2 Q1 = 1100. In this way the process is

going on and finally Q4Q3Q2Q1 = 0000.

4- Bit binary UP / Down counter

 An Up- Down counter can be constructed by using exclusive OR gates alone with the

JK MS flip flops, as shown in Fig 3.6 (J & K inputs are connected to VCC)

 If the control line is at 0 the output of the gates is Q and so we get up counting.

 On the other hand, if the control line is held at 1, the output of the gates is Q1 and then

we get down counting.

 In the up / down counters, the Flip Flop outputs can be set with the set terminal.

Q4 J

Q4 C4

 R4 K

Q1 J

Q1 C1

 R1 K

Q2 J

Q2 C2

 R2 K

Q3 J

Q3 C3

 R3 K

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

100

Q4 Q3 Q2 Q1

 DOWN +5

 UP 0

 Fig 3.6

Ripple Counters

 In a ripple counter the clock pulses are applied to clock input of first flip flop. The clock

inputs of other flip flop are obtained from the previous Q outputs.

 Let us consider this ripple counter in the state Q4, Q3, Q2, Q1 = 1111 (15).

 When the next clock pulse arrives, all the flip – flops are reset giving Q4, Q3, Q2, Q1 =

0000

 But this does not happen instantaneously because in the trailing edge of the clock pulse,

Q1 changes from 1 to 0, this trailing edge of Q1 causes Q2 to change from 1 to 0, this trailing

edge of Q2 causes Q3 to change from 1 to 0 and similarly for Q4. Though the final result is

0000, the output passes through intermediate states such as 1110, 1100, 1000.

 Thus the output ripples through 4 flips flops and hence it is called as ripple counter. The

ripple counter has a certain propagation delay just a fraction of micro second.

 Also the intermediate state can cause trouble. To void this difficulty synchronous

counters are developed. In synchronous counters output of all flip flop resets simultaneously.

Q4

 C4

 R4

Q1

 C1

 R1

K

Q2

 C2

 R2

Q3

 C3

 R3

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

101

Mod n counter

 A counter, which is reset at the nth clock pulse is called mod ‘n’ counter or divide by ‘n’

counter or divide by ‘n’ counter. An ordinary 3 bit binary up counter is automatically reset at

the 8th clock pulse. Hence it is called “mod 8 counter” or divide by 8 counter”.

 Similarly an ordinary 4 bit binary up counter will reset at the 16th clock pulse, hence it is

called “mod 16 counter” or “divide by 16 counter”.

 A mod -2 counter consists of only the flip-flop, a mod – 4 counter requires two flip-flops

and it cunts through four discrete states. Three flip-flops form a mod -8 counter, while four flip

– flop form a mod -16 counter. Hence the ordinary counters have a natural count of 2, 4, 8, 16,

32, 64 and so on by using proper number of flip – flops.

 It we desire to construct the counters having the mod of other than 2,4,8,16 and so on,

the following points to be remembered.

1. To determine the number of flip – flops required, it is determined by choosing the lowest

natural count that is greater than the desired modified count. For example a mod-7

counter require three flip – flops.

2. Add an extra logic circuit , to reset the flip – flop in a required level.

A Mod – 3 Counter

 The two flip – flops in fig. 3.7 is connected to provide a mod-3 counter. Since two flip-

flops have a natural count of 4, this counter skips one state. The truth table in Fig.3.7(c) Show

that this counter progresses through the count sequence 00, 01, 10 and then back to 00. It

clearly skips count 1.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

102

CLK

+VCC +VCC

 A B

 (a) Logic Diagram

Time

Clock

 A

 B

 (b) Wave forms

 © Truth Table

B A Count

0

0

1

0

0

1

0

0

0

1

2

0

J A

˃

K A̅

J B

˃

K BBAR

BBAR

BBA̅

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

103

 Clock

 (d) Logic block

The two-flip-flop mod-3 counter is considered as a logic building block as shown in fig.

3.7(d). This counter divides the clock frequency by 3.

Mod-10 counter (Decade counter)

 BCD numbers are ranging from 0000 to 1001, which have the decimal values of 0 to 9.

BCD counter means, a counter which will count the values from 0000 to 1001, and also reset

the next (10th) clock pulse.

 Hence a mod 10 or divide by 10 counter is called BCD counter. A BCD needs four flip-

flops and a two input NAND gate. The NAND gate is used to reset all the flip-flop at the 10th

clock clock.

Synchronous counter :

 A 4-bit synchronous counter is shown in Fig. 3.8. Here the clock pulses are fed to each

flip flop simultaneously. So after the 15th clock pulse the state of the Flip Flop Q4 Q3 Q2 Q1 =

1111.

 Q1 toggles if J1 = K1 = 1

 Q2 Toggles if Q1 = q

 Q3 Toggles if Q1 Q2 = 1 (i.e. A1 = 1)

 Q4 Toggles if A2 = 1 (i.e. Q3A1 = 1i.e. Q1Q2Q3 = 1)

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

104

Q4 Q3 Q2 Q1

 ++++

 A2 A1

CLOCK

 +5

 Fig 3.8 Synchronous Counter

 At the arrival of 16th clock pulse Q1 will change to 0. Immediately the states of all the

Flip Flops will b 0000. Thus all the flip flops toggle simultaneously in a single step.

 The maximum frequency of operation for synchronous counter is 34MHz while 16MHz

for the Ripple counters in TTL.

Shift Registers

 A register is simply a group of flip flops that can be used to store binary numbers. Each

flip- flop can be store on bit of binary data.

 A register used to store an 8 bit binary number must have eight flip – flops.

 Naturally, the flip flops must be connected in cascaded manner, such that the binary

numbers can be entered (shifted) into the register and possibly shifted out.

 A group of flip flops connected to provide for entering and shifting the binary data is

called shift registers.

 The bits in a binary number can be moved from one place to another’s in to ways,

namely serial shifting and parallel shifting.

 In serial shifting, the data bits are shifted in serial fashion beginning with either the MSB

side or LSB side. In parallel shifting, all data bit are shifted simultaneously.

 There are two ways to shift data into a register, (serial or parallel) and also two ways to

shift the data out of the register.

 This leads to the construction of four basic register types as shown the Fig. 3.9 they are :

Q3 J3

FF3 C3

 K3

Q4 J4

FF4 C4

 R4 K4

Q1 J1

FF1 C1

 K1

Q2 J2

FF2 C2

 R2 K2

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

105

Fig. 3.9 Shift register types

1. Serial in – Serial out (SISO)

2. Serial in – Parallel Out (SISO)

3. Parallel in – Serial Out (PISO)

4. Parallel in – Parallel Out (PIPO)

We now need to consider the methods for shifting data in either a serial or parallel fashion.

Data shifting techniques and methods for constructing the four different types of registers are

discussed in the following sections.

1. Serial in & Serial out

 Fig . 3.10 shows serial in serial out shift left register.

 We will illustrate the entry of the four bit binary number 1111 into the register,

beginning with the left-most bit.

 Initially, register is cleared , So QA QB QCQD = 0000

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

106

Dout

 Din

CP

 Fig 3.10

(a) When data 1111 is applied serial, i.e.

 Left – most 1 is applied as Din

 Din = 1, QA QB QC QD = 0000

 The arrival of the first falling clock edge sets the right - most flip – flop, and the stored

word becomes,

 QA QB QC QD = 0001

(b) When the next negative clock edge hits, the QC flip – flop sets and the register contents

become.

(c) The third negative clock edge results in ,

 QA QB QC QD = 0111

(d) The fourth falling clock edge results in ,

 QA QB QC QD = 1111

Fig. 3.11 shows serial in serial out shift right register

 We will illustrate the entry of the four bit binary number 1111 into the register,

beginning with the left-most bit.

 Initially, register is cleared. So QA QB QC QD = 0000

(a) When data 1111 is applied serially, i.e. left – most 1 is applied as Din.

 Din = 1 QA QBQCQD = 0011

D C B A

QD DD

QC DC

QB DB

QA DA

A B C D

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

107

Din Dout

cp

 Fig3.11

 The arrival of the first falling clock edge sets the left – most flip-flop, and the stored

word becomes,

 QA QB QC QD = 1000

(b) When the next falling clock edge hits, the QB flip – flop sets and the register contents

become,

 QA QB QC QD=1100

(c) The third falling clock edge results in,

 QA QB QC QD=1110

(d) The fourth falling clock edge gives,

 QA QB QC QD=1111

Serial in parallel out shift register

 In this case, the data bits are entered into the register in the same manner as discussed in

the last section, i.e. serially.

 But the output is taken in parallel. Once the data are stored, each bit appears on its

respective output line and all bits are available simultaneously, instead of a bit-bybit basis as

with the serial output.

D C A

QB DB

QC DC

QD DD

QA DA

A D C B

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

108

Din

CP

 QA QB QC QD

 Fig3.12

Parallel in serial out shift register

SHIFT/LOAD

 A B C D

 CP Serial out

 Fig3.13

 In this type , the bits are entered in parallel i.e. simultaneously into their respective

stages on parallel lines.

B C B A

QD DD

QC DC

QB DB

QA DA

A B C D

G4 G1 G5

G2

G6

G3

QA DA

QD DD

QC DC

QB DB

A B D C

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

109

 Fig. 3.13 illustrates a four - bit parallel in serial out register. There are four input lines

XA, XB, XC , XD for entering data in parallel into the register.

 SHIFT / LOAD is the control input which allows shift or loading data operation of the

register.

 When SHIFT / LOAD is low, gates G1, G2, G3 are enabled, allowing each input data bit

to be applied to D input of its respective flip-flop.

 When a clock pulse is applied, the flip-flip with D=1 will SET and those with D=0 will

RESET. Thus all four bits are stored simultaneously.

 When SHIFT / LOAD is high gates G1, G2, G3 are disabled and gates G4 G5, G6 are

enabled. This allows the data bits to shift left from one stage to the next.

Parallel in parallel out register

 Parallel Data Input

A B C D

CP

 QA QB QC QD

 Parallel Data Outputs

 Fig3.14

QA DA

QD DD

QC DC

QB DB

A B D C

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

110

 From the third and second types of registers, it is cleared that how to enter the data in

parallel i.e. all bits simultaneously into the register and how to take data out in parallel from the

register.

 In parallel in parallel out register, there is simultaneous entry of all data bits and the bits

appear on parallel outputs simultaneously. Fig. 3.14 shows this type of register.

SEQUENTIAL CIRCUIT DESIGN

3.2. DESIGN STEPS

 Sequential circuits are also called finite state machines (FSMs), The name derives from

the fact that the functional behavior of these circuits can be represented using a finite, number

of states. We will often use the term finite state machine, or simply machine, when referring to

sequential circuits.

W

 Z

 Q

CLK

 Fig3.15 The General Form of a Sequential Circuit

STATE DIAGRAM

 The first step in designing a finite state machine is to determine how many state are

needed and which transitions are possible from one state to another. A good way to begin is to

select one particular state as a starting state; this is the state that the circuit should enter when

power is first turned on or when a reset signal is applied.

 The starting state is called state A. As long as the input w is 0, the circuit need not do

anything, and so each active clock edge should result in the circuit remaining in state A. When

w becomes equal to 1, the machine should recognize this, and move tot a different state, which

Combinational

Circuit

Combinational

Circuit

Flip

Flop www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

111

we will call state B. This transition takes places on the next active clock edge after w has

become equal to 1.

 In state B, as in state A, the circuit should keep the value of output z at 0, because it has

not yet seen w= 1 for two consecutive clock cycles. When in state G, if w is 0 at the next active

clock edge, the circuit should move back to state A. However, if w = 1 when in state B, the

circuit should change to a third state, called C, and it should then generate on output z=1. The

circuit should remain in state C as long as w= 1 and should continue to maintain z = 1.

 When w becomes 0, the machine should move back to state A. Since the preceding

description handles all possible values of input w that the , machine can encounter in its various

state. Hence we conclude that three states are needed to implement the desired machine.

 Behavior of a sequential circuit is described in several different ways. The simplest

method is to use a pictorial representation in the form of a state diagram. The state diagram is a

graph that depicts states of the circuit as nodes (circles) and transitions between states as

directed arcs. The state diagram in Figure 3.16 defines the behavior that corresponds to our

specification. States A, B and C appear as nodes in the diagram.

 Node A presents the starting state, and it is also the state that the circuit will reach after

an input w=0 is applied. In this state the output z should be 0, which is indicated as A/z=0 in

the node.

 The circuit should remain in state A as long as w = 0, which is indicated by an arc with a

label w = 0 that originates and terminates at this mode. The first occurrence of w=1 (following

the condition w= 0) is recorded by moving from state A to state B. This transition is indicated

on the graph by an arc originating at A and terminating at B.

 The label w =1 on this arc denotes the input value that causes the transition. In state B

the output remains at 0, which is indicated as B/z =0 in the node.

 When the circuit is in state B, it will change to state C if w is still equal to 1 at the next

active clock edge. In state C the output z becomes equal to 1. If w stays at 1 during subsequent

clock cycles, the circuit will remain in state C maintaining z =1. However, if w becomes 0

when the circuit is either in state B or in state C, the next active clock edge will cause a

transition to state A to take place.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

112

 Reset

 W=1

W=0

 W=0

 W=0 W=1

 W=1

Figure 3.16 State diagram of a simple sequential circuit.

STATE TABLE :

 Although the state diagram provides a description of the behavior of a sequential circuit

that is easy to understand, to proceed with the implementation of the circuit, it is convenient to

translate the information contained in the state diagram into a tabular form. Figure 3.17 shows

the state table for our sequential circuit. The table indicates all transitions from each present

state to the next state for different values of the input signal. Note that the output z is specified

with respect to the present state.

Present

state

Next State
Output

z

 = 0 =1

A

B

C

A

A

A

B

C

C

0

0

1

Figure 3.17 State table for the sequential circuit in figure 3.3

A/Z=0

C/Z=0

B/Z=0

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

113

STATE ASSIGNMENT

 The state table in Figure 3.4 defines the three states in terms of letters A, B and C. When

implemented in a logic circuit, each state is represented by a particular valuation (combination

of values) of state variables. Each state variable may be implemented in the form of a flip-flop.

Since three states have to be realized, it is sufficient to use two state variables. Let these

variables by y1 and y2.

W Y1 Y1

Z

 Y2 Y2

CLK

Figure 3.18 A general sequential circuit with input w, output z, and two state flip-flops

 Figure 3.18 shows to indicate the structure of the circuit that implements the required

finite state machine. Two flip-flops represent the state variables.

 From the specification in Figures 3.16 and 3.17, the output z is dertermined only by the

present state of the circuit.

 Thus the block diagram in Figure 3.18 shows that z is a function of only y1 and y2; our

design is of Moore type.

Combinatio

-nal Circuit

Combinatio

-nal Circuit

˃

˃

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

114

SUMMARY OF DESIGN STEPS

 We can summarize the steps involved in designing a synchronous sequential circuit as

follows :

1. Obtain the specification of the desired circuit.

2. Derive the states for the machine by first selecting starting state.

 Then, given the specification of the circuit, consider all valuations of the inputs to the

circuit and create new states as needed for the machine to respond to these inputs.

 To keep track of the states as they are visited create a state diagram. When completed,

the state diagram shows all states in the machine and gives the conditions under which the

circuit moves from one state to another.

3. Create a state table from the state diagram.

4. In our sequential circuit example, there were only three states ; hence it was a simple

matter to create the state table. However, in practice it is common to deal with circuits

that have a large number of states.

 In such cases it is unlikely that the first attempt at deriving a state table will produce

optimal results. Almost we will have more states than is really necessary. This can be

corrected by a procedure that minimizes the number of states.

5. Decide on the number of state variables needed to represent all states and perform the

state assignment.

 There are many different state assignments possible for a given sequential circuit. Some

assignments may be better than others.

6. Choose the type of flip-flops to be used in the circuit Derive the next – stage logic

expressions to control the inputs to all flip-flops and then derive logic expressions for

the outputs of the circuit.

7. Implement the circuit as indicated by the logic expression.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

115

EXAMPLES FOR Mealy and Moore Type Finite State Machines

Objectives

 There are two basic ways to design clocked sequential circuits. These are using :

1. Mealy Machine,

2. Moore Machine.

Mealy Machine

 In a Mealy machine, the outputs are a function of the present state and the value of the

inputs as shown in Figure 3.19

Accordingly, the outputs may change asynchronously in response to any change in the

inputs.

Inputs X Z Outputs

 Y

Present

State

 Fig3.19 Mealy Type Machine

Combinational Logic

Memory Element

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

116

Moore Machine

 In a Moore machine the outputs depend only on the present state as shown in Figure

3.20

 The outputs change synchronously with the state transition triggered by the active

clock edge.

 Inputs X

 Z Y

 Outputs Present State

 Fig3.20 Moore type machine

Mealy State Machine

 The Mealy machine state diagram is shown in Figure 3.21.

 Note that there is no reset condition in the state machine that employs two flip-flops.

This means that the state machine can enter its unused state ‘11’ on start up.

Combinational

Logic

Memory

Element

Combinational

Logic

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

117

 0/0

 0/0

 0/0 1/0 1/1

 1/0

 Figure 3.21 Mealy State Machine for ‘111’ Sequence Detector

 To make sure that machine gets resetted to a valid state, we use a ‘Reset’ signal.

 The logic diagram for this state machine is shown in Figure 3.22. Note that negative

triggered flip-flops are used.

Intial

State

AB=00

GOT-11

AB=10

GOT- 1

AB=01

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

118

Figure 3.22 : Mealy State Machine Circuit Implementation

Figure 3.23: Timing Diagram for Mealy Model Sequence Detector

 Timing Diagram for the circuit is shown in Figure 3.23.

 Since the output in Mealy model is a combination of present state and input values, an

unsynchronized input with triggering clock may result in invalid output, as in the present

case.

 Consider the present case where input ‘x’ remains high for sometime after state ‘AB=10’

is reached. This results in ‘False Output’, also known as ‘Output Glitch’.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

119

Moore State Machine

 The Moore machine state diagram for ‘111’ sequence detector is shown in Figure 3.24

 The state diagram is converted into its equivalent state table (See Table 1).

 The states are next encoded with binary values and we achieve a state transition table

(See Table 2).

 0

0 1

 0 0

 1

 Figure 3.24: Moore Machine State Diagram

Initial /

 0

 ‘1’/0

 ‘11’/0

‘111’/1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

120

Table 1 : State Table

Present
Next

State
 Output

Present State
Next State Output

Z x =0 x =1

Initial

Got – 1

Got – 11

Got – 111

Initial

Initial

Initial

Initial

Got – 1

Got – 11

Got – 111

Got – 111

0

0

0

1

Table 2 : State Transition Table and Output Table

Present
Next

State
 Output

Present State
Next State Output

Z x =0 x =1

Initial

Got – 1

Got – 11

Got – 111

Initial

Initial

Initial

Initial

Got – 1

Got – 11

Got – 111

Got – 111

0

0

0

1

 We will use JK and D flip – flops for the Moore circuit implementation. The excitation

tables for JK and D flip-flops (Table 3 & 4) are referenced to tabulated excitation table

(See Table 5)

Table 3 : Excitation Table for JK flip-flop

Q (t) Q(t+1) J K

0

0

1

1

0

1

0

1

0

1

X

X

X

X

1

0

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

121

Table 4: Excitation Table for D flip – flop

Q (t) Q(t+1) J

0

0

1

1

0

1

0

1

0

1

0

1

Table 5 : Excitation Table for the Moore Implementation

Inputs of Comb.

Circuits Next State

Outputs of Comb.

Circuit Output

Present State Input Flip-flop Inputs

A B X A B JA KA DB Z

0

0

0

0

1

1

1

1

1

0

0

1

1

0

0

1

1

1

0

1

0

1

0

1

0

1

1

0

0

0

1

0

1

0

1

1

0

1

0

0

0

1

0

1

1

0

0

0

1

X

X

X

X

X

X

X

X

X

1

0

1

0

0

0

1

0

0

0

1

0

1

1

0

0

0

0

0

0

1

1

1

 Simplifying Table 5 using maps, we get the following equations :

 JA = X.B

 KA = X’

 DB = X (A+B)

 Z = A.B

 Note that the output is a function of present state values only.

 The circuit diagram for Moore machine circuit implementation is shown in Figure 3.25

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

122

 The timing diagram for Moore machine model is also shown in Figure 3.26

 There is no false output in a Moore model, since the output depends only on the state of

the flop flops, which are synchronized with clock. The outputs remain valid throughout

the logic state in Moore model.

Fig3.25 Moore Machine Implementation for Sequence detector

Figure 3.26 : Timing Diagram for Moore Model Sequence Detector.

DESIGN OF MODULO COUNTER (UPTO 3 BIT) WITH ONLY D FLIP FLOPS

THROUGH STATE DIAGRAM

 The counting sequence is 0, 1, 2,……., 6, 7,0,1,……

 There exists an input signal w. The value of this signal is considered during each clock

cycle. If w =0, the present count remains the same ; if w =1, the count is incremented.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

123

STATE DIAGRAM AND STATE TABLE FOR A MODULO – 8 COUNTER

 Figure 3.27 gives a state diagram for the desired counter. There is a state associated with

each count. In the diagram state A corresponds to count 0, state B to count 1, and so on. We

show the transitions between the states needed to implement the counting sequence. Note that

the output signals are specified as depending only on the State of the counter at a given time,

which is the Moore model of sequential circuits.

 The state diagram may be represented in the state-table form as shown in figure 3.28

 W=0 W=0 W=0 W=0

 W=1 W=1 W=1

W=1 W=1

 W=1 W=1 W=1

W=0 W=0 W=0 W=0

Fig3.27 State Diagram

 A/0 B/1 D/3 C/2

H/7 E/4 G/6 F/5 www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

124

Present

 State

Next State
Output

 =0  =1

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

B

C

D

E

F

G

H

A

0

1

2

3

4

5

6

7

Figure . 3.28 State table for the counter

STATE ASSIGNMENT

 Three state variable s are needed to represent the eight states. Let these variables,

denoting the present state, be called y2, y1, and y0. Let Y2, Y1, and Y0 denote the corresponding

next – state functions. The most convenient (and simplest) state assignment is to encode each

state with the binary number that the counter should give as output in the state. Then the

required output signals will be the same as the signals that represent the state variables. This

leads to the state – assigned table in Figure 3.29

 The final step in the design is to choose the type of flip-flops and derive the expressions

that control the flip – flip-flop inputs. The most straight forward choice is to use d-type flip-

flops.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

125

 Present

 State

y2y1y0

Next State
Output

z2z1z0
  =0

Y2Y1Y0

 =1

Y2Y1Y0

A

B

C

D

E

F

G

H

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

001

010

011

100

101

110

111

000

000

001

010

011

100

101

110

111

Figure 3.29 State – assigned table for the counter

IMPLEMENTATION USING D - TYPE FLIP – FLOPS

 When using d-type flip-flops to realize the finite state machine, each next – state

function, Yi, is connected to the D input of the flip-flop that implements the state variable yi.

 The next-state functions are derived from the information in Figure 3.12 Using

Karnaugh maps in figure 3.13, we obtain the following implementation.

 Do = Y0 + wy0 + wy0

 D1 = Y1 = wy1 + y1y0 + wy0y1

 D2 = Y2 = wy2 + y0y2+y1y2 + wy0y1y2

 The resulting circuit is given in Figure 3.14. It is not obvious how to extend this circuit

to implement a larger counter, because no clear pattern is not found in the expressions for D0,

D1 and D2. However, we can rewrite these expressions as follows.

 D0 = wy0 + wy0

 = wy0

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

126

 D1 = wy1 + y1y0 +wy0y1

 = (w+y0) y1 + wy0y1

 = wy0y1 + wy0y1

 = wy0 y1

Figure 3.13 Karnaugh maps for D Flip – flops for the counter

 D2 = wy2 +y0y2 + y1y2 + wy0y1y2

 = (w+y0+y1)y2 + wy0y1y2

 = wy0y1y2 + wy0y1y2

 = wy0y1 y2

 Y2 = w. y2 +y0. y1 + y1.y2 + w. y0 . y2

Figure 3.13 Karnaugh maps for D Flip – flops for the counter

 D2 = wy2 +y0y2 + y1y2 + wy0y1y2

 = (w+y0+y1)y2 + wy0y1y2

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

127

 = wy0y1y2 + wy0y1y2

 = wy0y1 y2

EXAMPLES :

 Design a modulo 6 counter using D Flip Flops use proper excitation table & State

diagram

SOLUTION :

Step : 1

 Count Sequence : 0 1 2 3 4 5

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

128

Step 2 :

 State Diagram

 W=0 w=0 w=0

 W=1 w=1

 W=1 W=1

A/0

C/2

B/1

D/3

E/4

F/5

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

129

Step 3 :

 State Table

Present

 State

Next State
Output

 =0  =1

A

B

C

D

E

F

A

B

C

D

E

F

B

C

D

E

F

A

0

1

2

3

4

5

Step : 4

 State Assigned Table

 Present

 State

y2y1y0

Next State
Output

z2z1z0
  =0

Y2Y1Y0

 =1

Y2Y1Y0

A

B

C

D

E

F

000

001

010

011

100

101

000

001

010

011

100

101

001

010

011

100

101

000

000

001

010

011

100

101

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

130

Step 5 :

 K map implication

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

131

Step 6 : Logic diagram

EXAMPLE:

Design a modulo 5 counter using D Flip Flops use proper excitation table & State

diagram

SOLUTION

Step 1 : Count Sequence : 0 1 2 3 4

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

132

Step 2 : State Diagram

 W=0 w=0 w=0

 W=1 w=1

 W=1 w=1

 W=1

 W=0 w=0

Step 3 :

 State Table

Present

 State

Next State
Output

 =0  =1

A

B

C

D

E

A

B

C

D

E

B

C

D

E

F

0

1

2

3

4

A/0

D/3

E/4

B/1

C/2

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

133

Step 4 :

 State Assigned Table

 Present

 State

y1y0

Next State
Output

z1z0
  =0

Y1Y0

 =1

Y1Y0

A

B

C

D

E

000

001

010

011

100

000

001

010

011

100

001

010

011

100

000

000

001

010

011

100

Step 5

 K map simplification

 00 01 11 10 00 01 11 10

00 00

01 01

11 11

10 10

 K map for y0 K map for y1

 Y0= wy2y0 + wy2y0 Y1=wy2y1 + wy2

D0= Y0= wy2y0 + wy2y0 D1= Y1=wy2y1 + wy2

0 0

0 d d d

0 d d d

1 0 0

0 0

0 d d d

0 D d d

0 0
1

1 1

1 1

1

1 1

1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

134

 00 01 11 10

 00

 01

 11

 10

K map for y2

 Y2=wy2y1y0 + wy2y1y0

 D2= Y2=wy2y1y0 + wy2y1y0

0 0 0 0

1 D d d

0 d d d

0 0 0
1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

135

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

136

EXAMPLE:

Design a modulo 4 counter using D Flip Flops use proper excitation table & State diagram

Solution :

Step : 1 : Count Sequence 0 1 2 3

Step : 2 : State Diagram

 W=0 W=0

 W=1

 W=1 w=1

 W=1

 W=0 W=0

A/0

C/2

D/3

B/1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

137

Step 3 :

 State Table

Present

 State

Next State
Output

 =0  =1

A

B

C

D

A

B

C

D

B

C

D

E

0

1

2

3

Step 4 :

 State Assigned Table

 Present

 State

y1y0

Next State
Output

z1z0
  =0

Y1Y0

 =1

Y1Y0

A

B

C

D

00

01

10

11

00

01

10

11

01

10

11

00

00

01

10

11

Step 5

 K map simplification

 00 01 11 10 00 01 11 10

0 0

1 1

 K Map For Y0 K Map For Y1

Y0=w y0 Y1=wy1 + wy1y0 + wy1y0

D0= Y0= w Y0 D1= wy1 + wy1y0 + wy1y0

0 0

0 0

0 0

1 0 0 1
1 1

1 1 1 1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

138

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

139

UNIT – IV

4.1 VHDL CODE FOR SEQUENTIAL CIRCUIT

VHDL Constructs for storage elements with reset input

VHDL code for a Gated D Latch

LIBRARY ieee;

USE ieee.std_logic-1164.all;

 ENTITY latch is PORT (D, clk : IN STD – LOGIC;

 Q : OUT STD – LOGIC;

END latch;

ARCHITECTURE Behavior OF latch IS BEGIN

 PROCESS (D, clk)

 BEGIN

 IF clk = ‘1’ THEN

 Q<=D;

 END PROCESS;

 END Behavior;

VHDL code for D flip with Reset input

library IEEE;

use IEEE.std_logic_1664.all;

entity d_ff_srss is

port (

d,clk,reset,set : in STD_LOGIC;

q : out STD_LOGIC);

end d_ff_

ARCHITECTURE Behavior OF srss of d_ff_

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

140

begin

process(clk)

begin

if clk’event and clk=’1’ then

if reset=’1’ then

q <= ‘0’;

elsif set =’1’ then

q <= ‘0’;

elsif set =’1’ then

q <= ‘1’;

else

q <=d;

end if;

end if;

end process;

end d_ff_srss;

q <=d;

end if;

end if;

end process;

end d_ff_srss;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

141

VHDL Code for D.. Flip Flop Without reset Input

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity DFF1 is

Port (D : in std_logi;

 CLK : in std_logic;

 Q : out std_logic;

 QN : out std_logic;

end DFF1;

architecture Behavioral of DFF1 is

begin

 process (CLK)

 begin

 if CLK = ‘1’ then

 Q <= D;

 QN <=NOT D;

 end if;

 end process;

end Behavioral;

VHDL Code for JK Flip flop with reset Input

Library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

142

entity JKFF3 IS

 Port (CLOCK : in std_logic;

 J : in std_logic;

 K : in std_logic;

 REST : in std_logic;

 Q : out std_logic;

 QBAR : out std_logic);

end JKFF3;

architecture Behavioral of JKFF3 is

signal state : std_logic;

signal input : std_logic_vector (1 downto 0);

begin

 input < = J & K;

 p:procees (CLOCK, RESET) is

 begin

 if RESET =’1’ then

 state<=’0’

 elsif (rising_edge (CLOCK) then

 case(input) is

 when”11”=>

 state<=not state;

 when “10” =>

 state<=’1’;

 when “01”=>

 state<=’0’;

 when other=>null;

 end case;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

143

 end if;

 end process;

 end Behavioral;

VHDL Code for JK Flip flop without reset Input

Library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity JKFLIPELOP1 is

Port (J : in std_logic;

 K : in std_logic;

 CLK : in std_logic;

 Q : inout std_logic;

 QN : inout std_logic);

end JKFLIPFLOP1;

architecture Behaviroral of JKFLIPFLOP1 is

begin

 process (CLK,J,K)

 begin

 if (CLK=’1’ and CLK’ event) then

 if (J=’0’ and K=’0’) then

 Q <=Q

 QN <+QN;

 elsif(J=’0’ and K=’1’) then

 Q<= ‘1’;

 QN <= ‘0’;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

144

 elsif(J=’1’ and K=’0’) then

 Q <= ‘0’;

 QN <= ‘1’;

 elsif (J=’1’ and K=’0’) then

 Q <=’0’;

 QN <= ‘1’;

 elsif(J=’1’ and K=’1’) then

 Q <= NOT Q;

 QN <= NOT QN’

 end if;

 end if’

 end process;

end Behaviroal;

VHDL code for T FF with reset input

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity tff is

Port (clk : in STD_LOGIC;

reset : in STD_LOGIC;

t : in STD_LOGIC;

q : out STD_LOGIC;

end tff;

architecture Behavioral of tff is

signal q_reg: std_logic;

signal q_next: std_logic;

begin

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

145

process(clk)

begin

if (reset = ‘1’) then

q_reg <= ‘0’; elsif (clk’ event and clk = ‘1’) then

 q_reg <= q_next;

end if;

end process;

q_next <= q_reg

when t = ‘0’ else not (q_reg);

q <= q_reg;

end Behaviroal;

VHDL Program for T Flip-Flop without Reset input

Library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSINED.ALL;

entity tflip is

port (T, CLK:in bit;

Q : inout bit;

QN : out bit);

end tflip;

architecture Behaviroal of tflip is

begin

process (CLK)

begin

if CLK =’0’ and CLK’ event then

Q <= (T and not Q) or (not T and Q) after 10 ns;

end if;

QN<=NOT Q;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

146

END PROCESS;

END BEHAVIORAL;

4.2 VHDL EXAMPLES

Counters (up to 3 bits)

(i) Three – bit up – Counter with synchronous reset

 LIBRARY ieee ;

 USE ieee.std_logic_1164.all;

 USE ieee.std_logic_unsigend.all;

 ENTITY upcounter IS

 PORT (clock : IN STD_LOGIC ;

 clear : IN STD_LOGIC ;

 q : OUT STD_LOGIC_VECTOR

 (2 DOWNTO 0)) ;

 END upcounter ;

 ARCHITECTURE behavior OF upcounter IS

 SIGNAL count :STD_LOGIC_VECTOR (2 DOWN TO 0);

 BEGIN

 IF clock’EVENT AND clock = ‘1’ THEN

 IF clear = ‘1’ THEN

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

147

 count< = “000” ;

 ELSE

 count<= count + ‘1’ ;

 END IF ;

 END IF ;

 END PROCESS ;

 q <= count ;

 END behavior ;

3- bit up counter with reset

Truth Table

Clock Count (2) Count (1) Count (0)

Clear 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

148

NOTE :

If we want to design 2 bit up counter the only change is the width of q is changed as 2

bit as shown

[q : OUT STD_LOGIC_VECTOR (1 DOWNTO 0)) ;]

(ii) Three – bit down – counter with synchronous reset

 LIBRARY ieee ;

 USE ieee.std_logic_1164.all;

 USE ieee.std_logic_unsigned.all;

 ENTITY downcounter IS

 PORT (clock : IN STD_LOGIC ;

 clear : IN STD_LOGIC ;

 q : OUT STD_LOGIC_VECTOR

 (2 DOWNTO 0));

 END downcounter ;

 ARCHITECTURE behavior OF downcounter IS

 SIGNAL count :STD_LOGIC_VECTOR (2 DOWNTO 0);

 BEGIN

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

149

 downcounter : PROCESS (clock)

 BEGIN

 IF clock’EVENT AND clock = ‘1’ THEN

 IF clear = ‘1’ THEN

 count< = “000” ;

 ELSE

 count< = count – ‘1’ ;

 END IF ;

 END IF ;

 END PROCESS ;

 q < = count ;

 END behavior ;

3-bit down counter with reset :Truth Table

Clock Count (2) Count (1) Count (0)

Clear 0 0 0

1 1 1 1

2 1 1 0

3 1 0 1

4 1 0 0

5 0 1 1

6 0 1 0

7 0 0 1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

150

Note :

 If we want to design 2 bit downcounter the only change is the width of q is

changed as 2 bit as shown.

 [q : OUT STD_LOGIC_VECTOR (1 DOWNTO 0));]

VHDL Program for decade counter

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

ENTITY modcounter IS

PORT (clock : IN STD_LOGIC ;

 clear : IN STD_LOGIC ;

q : OUT STD_LOGIC_VECTOR (3 DOWNTO 0)) ;

END modcounter ;

ARCHITECTURE behavior OF mod counter IS

SIGNAL count: STD_LOGIC_VECTOR (3 DOWNTO 0);

BEGIN

modcounter: PROCESS (clock)

 BEGIN

 IF clock ‘EVENT AND clock = ‘1’ THEN

 IF (clear = ‘1’ OR count = “1001”) THEN

 count < = “0000”;

 ELSE

 count <= count + ‘1’;

 END IF;

 END IF;

 END PROCESS

 q < = count;

 END behavior;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

151

Modulo 5 up counter

Truth Table

Clock Count (3) Count (2) Count (1) Count (0)

Clear 0 0 0 0

1 0 0 0 0

2 0 0 0 1

3 0 0 1 0

4 0 0 1 1

5 0 1 0 0

6 0 1 0 1

7 0 1 1 0

8 0 1 1 1

9 1 0 0 0

10 1 0 0 1

11 0 0 0 0

12 0 0 0 1

Note:

 If we want to design modulo 6 counter it means that it has to count up to 5 [101]

and for the next clock the value is 000. So the only change in the program is line number

‘15’ the change is mentioned below.

 IF (clear = ‘1’ OR count = “101”) THEN

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

152

(iv) 3 bit up / down counter with synchronous reset

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

ENTITY modcounter IS

PORT (clock: IN STD_LOGIC;

 clear: IN STD_LOGIC;

 select: IN STD_LOGIC;

q: OUT STD_LOGIC_VECTOR (2DOWNTO 0)) ;

END updowncounter;

ARCHITECTURE behavior OF updowncounter IS

SIGNAL count: STD_LOGIC_VECTOR (2DOWNTO 0);

BEGIN

updowncounter: PROCESS (clock)

 BEGIN

 IF clock ‘EVENT AND clock = ‘1’ THEN

 IF clear = ‘1’ THEN

 count < = “000” ;

ELSIF select = ‘1’

 count <= count + ‘1’;

 ELSE

 count <= count – ‘1’;

 END IF;

 END IF

 END PROCESS

 q < = count;

 END behavior;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

153

3-bit up / down counter

Clock Count (2) Count (1) Count (0)

Clear 1 0 0

1 1 0 1

2 1 0 0

3 1 0 1

4 1 1 0

5 1 1 1

6 1 1 0

7 1 1 1

8 0 1 0

9 0 1 1

10 0 1 0

11 0 1 1

12 0 0 0

13 0 0 1

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

154

Explanation:

 The code defines an entity named up-down counter.

 It has the inputs clock, select, clear (synchronous reset input) and the output q.

 The process sensitivity list includes clock. Because the value of q depends on the

changes in the value of this signal.

 During positive clock edge (if clock ‘EVENT AND clock = ‘1’) only the output q

is changed. If clear input is equal to 1, the output count = 000. Else it will check

the condition select input, if select = 1 count = count + 1. Else the output count =

count-1, and it is assigned to q.

Johnson Counter

 In a Johnson counter, inverted output of the last stage flip-flop is fed back to the

input of the first stage flip flop.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

155

Clock L Q0 Q0 Q0 Q0

0 1 0 0 0 0

1 0 1 0 0 0

2 0 1 1 0 0

3 0 1 1 1 0

4 0 1 1 1 1

5 0 0 1 1 1

6 0 0 0 1 1

7 0 0 0 0 1

8 0 0 0 0 0

9 0 1 0 0 0

Table Counting sequence of 4 bit Johnson Counter

Program

 LIBRARY ieee;

 USE ieee.std_logic_1164.911

 USE ieee.std_logic_unsigend.all;

 ENTITY Johnson IS

 PORT (clock : IN STD_LOGIC;

 C : IN STD_LOGIC;

 Q : BUFFERSTD_LOGIC_VECTOR

 (3 DOWNTO 0));

 END Johnson;

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

156

 ARCHITECTURE Behavior of Johnson IS

 BEGIN

 PROCESS (clock, C)

 BEGIN

 WAIT UNTIL clock ‘EVENT AND clock = ‘1’;

 IF C = ‘1’ THEN

 Q < = “0000”

 ELSE

 Q (3) < = Q (2);

 Q (2) < = Q (1);

 Q (1) < = Q (0);

 Q (0) <= Q (3);

 END IF;

 END PROCESS;

 q <= count;

 END behavior;
www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

157

 UNIT – V

INTRODUCTION TO PROM, PLA & PAL

Programmable Read Only Memory (PROM)

 A programmable read only memory (PROM) is a device that includes both the decoder

and the OR gates within a single IC package. The Fig. no 5.1 shows the block diagram of

PROM. It consists of n input lines and m output lines. Each bit combination of the input

variables is called as an address. Each bit combination that comes out of the output lines is

called as a word. The number of bits per word is equal to the number of output lines, m. The

address specified in binary number denotes one of the minterms of n variables. The number of

distinct addresses possible with n input variables is 2n distinct addresses in PROM, there are 2n

distinct words in the PROM. The words available on the output lines at any given time depends

on the address value applied to the input lines.

Fig.N0:5.1 Block diagram of PROM

 Let us consider 64 x 4 PROM. The PROM consists of 64 words which consists of 4-bits

each. This indicates that there are four output lines and particular word from 64 words presently

available on the output lines is determined from the six input lines. There are only six inputs in

a 64x4 PROM because 26 = 64 and with six variables, it can specify 64 addresses or minterms.

For each address input, there is a unique selected word. Thus, if the input address is 000000,

word number 0 is selected and applied to the output lines. If the input address is 111111, word

number 63 is selected and applied to the output lines.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

158

 The Fig.no 5.2 shows the internal logic construction of a 64 x 4 PROM. The six input

variables are decoded in 64 lines by means of 64 AND gates and 6 inverters. Each output of the

decoder represents one of the minterms function of six variables. The 64 outputs of the decoder

are connected through fuses to each OR gate. Only four of these fuses are shown in the

diagram, but actually each OR gate has 64 inputs and each input goes through a fuse that can be

shown as desired.

Fig.N0:5.2 Logic construction of 64 x4 PROM

Combinational Logic Implementation using PROM

 By Looking, at the logic diagram of the PROM, each output provides the sum of all the

minterms of n input variables. (i.e., any Boolean function can be expressed in sum of

minterms). By breaking the links of those minterms not included in the function, each PROM

output can be made to represent the Boolean function of one of the output variables in the

combinational circuit. For an n-input, m-output combinational circuit, it needs a 2nx m PROM.

Example:

 Using PROM realize the following expressions.

 F1 (a,b,c) =  m (0,1,3,5,7)

 F2 (a,b,c) =  m (1,2,5,6)

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

159

Solution:

The given functions have three inputs. They generate 23 = 8 minterms and since there are two

functions, there are two outputs. The functions can be realized as shown in Fig no 5.3

Fig.No:5.3 2nx m PROM

Example:

 Design a combination circuit using a PROM. The circuit accepts 3-bit binary number

and generates its equivalent Excess – 3 codes.

Solution:

 Let us derive the truth table for the given combinational circuit. Table shows the truth

table.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

160

Table No: 5.1 : Truth table for 3-bit binary to Excess -3 converter

Inputs Outputs

A2 A1 A0 B3 B2 B1 B0

0 0 0 0 0 1 1

0 0 1 0 1 0 0

0 1 0 0 1 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 1

1 0 1 1 0 0 0

1 1 0 1 0 0 1

1 1 1 1 0 1 0

 In practice while the process of designing combinational circuits with PROM, it is not

necessary to show the internal gate connections of fuses inside the unit, as shown in the Fig

no.5.3. This was shown for demonstration purpose only. The designer has to specify only the

PROM (inputs and outputs) and its truth table, as shown in the fig.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

161

Fig.N0:5.4 combinational circuits with PROM

Fig.No:5.5 BLOCK DIAGRAM OF PROM

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

162

Table No: 5.2 PROM truth table

A2 A1 A0 F3 F2 F1 F0

0 0 0 0 0 1 1

0 0 1 0 1 0 0

0 1 0 0 1 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 1

1 0 1 1 0 0 0

1 1 0 1 0 0 1

1 1 1 1 0 1 0

PROGRAMMABLE LOGIC ARRAY (PLA)

Several types of PLDs are commercially available. The first developed was the

programmable logic array (PLA). The general structure of a PLA is shown in Figure no 5.6.

Based on the idea that logic functions can be realized in sum-of-products form, a PLA consists

of a collection of AND gates that feeds a set of OR gates. As shown in the figure, the PLA’s

inputs x1,................ xn pass through a set of buffers (which provide both the true value and the

complement of each input) into a circuit block called an, AND plane, or AND array.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

163

Fig.No:5.6 BLOCK DIAGRAM OF PLA

The AND plane produces a set of product terms P1.........Pk. Each output can be

configured to realize any sum of P1,..........,Pk and hence any sum-of-products function as the

PLA inputs.

 A more detailed diagram of a small PLA is given in Figure no 5.7, which shows a PLA

with three inputs, four product terms, and two outputs. Each AND gate in the AND plane has

six inputs, corresponding to the true and complementing versions of the three input signals.

 Each connection to an AND gate is programmable; a signal that is connected to an AND

gate is indicated with a wavy line, and a signal that is not connected to the gate is shown with a

broken line. The circuitry is designed in such a way that any unconnected AND – gate inputs

do not affect the output of the AND gate.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

164

 x1 x2 x3 programmable

 connections

 p1 OR plane

 p2

 p3

 p4

 AND Plane

 f1 f2

 Fig 5.7 Gate Level Diagram of a PLA

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

165

 In Figure no.5.8 the AND gate that produces P1 is shown connected to the inputs x1 and

x2. Hence P1 = x1x2 Similarly, P2 = x1x3, P3 = x1x2x3 and P4 = x1x3. Programmable connections

also exist for the OR plane. Output f1 is connected to product terms P1, P2, and P3. It is therefore

realizes the function f1 = x1x2+x1x3+x1x2x3 Similarly, output f2 = x1x2+ x1x2x3+ x1x3 Although

shows the PLA programmed to implement the functions described above, by programming the

AND and OR planes differently, in which each of the output f1 and f2 could implement various

functions of x1, x2, and x3. The only constraint on the function is that can be implemented is the

size of the AND plane because it products only four product terms.

 Although Figure no.5.7 illustrates clearly the functional structure of a PLA, this style of

drawing is not suitable for larger chips. Instead it has become customary in technical literature

to use the style shown in Figure no 5.8. Each AND gate is depicted as a single horizontal line

attached to an AND –gate symbol. The possible inputs to the AND gate are drawn as vertical

lines that cross the horizontal line. At any crossing of a vertical and horizontal line, a

programmable connection indicated by an x. Figure 5.8 shows the programmable connections

needed to implement the product terms in Figure no 5.7. Each OR gate is drawn in a similar

manner, with a vertical line attached to an OR-gate symbol. The AND gate outputs cross these

lines, and corresponding programmable connections can be formed. The figure illustrates the

programmable connections that produce the functions f1 and f2 from figure 5.7. www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

166

Fig.No:5.8 Customary Schematic for the PLA in figure 5.7

PROGRAMMABLE ARRAY LOGIC (PAL)

 In a PLA both the AND and OR planes are programmable. The programmable switches

presented two difficulties for manufacturers of these devices;

(i) They were hard to fabricate correctly and (ii) they reduced the speed performance of

circuits implemented in PLAs. These drawbacks led to the development of a similar device in

which the AND plane is programmable, but the OR plane is fixed. Such a chip is known as a

Programmable Array Logic (PAL) device.

 Because they are simpler to manufacture, and thus less expensive than PLAs, and offer better

performance. PALs have become popular in practical applications.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

167

 x1 x2 x3

 P1

 1 f1

 P2

 P3

 f2

 P4

 AND Plane

Fig 5.9 An Example of a PAL

 An example of a PAL with three inputs, four product terms and two outputs is given in figure

5.9. The product terms P1 and P2 are hardwired to one OR gate, and P3 and P4 are hardwired to

the other OR gate. The PAL is shown programmed to realize the two logic functions

 f1 = x1x2x3 + x1x2x3 and f2= x1x2 + x1x2x3. In comparison to the PLA in figure 5.3, the PAL

offers less flexibility

 The PLA allows up to four product terms per OR gate, whereas the OR gates in the PAL

have only two inputs. To compensate for the reduced flexibility, PALs are manufactured in a

range of sizes, with various numbers of inputs and outputs, and different numbers of inputs to

the OR gates.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

168

 So far we have assumed that the OR gates in a PAL, as in a PLA, connect directly to

the output pins of the chip. In many PALs extra circuitry is added at the output of each OR gate

to provide additional flexibility. It is customary to use the term macro cell to refer to the OR

gate combined with the extra circuitry.

 An example for the flexibility that may be provided in a macro cell is given in Figure

5.10. The symbol labeled flip-flop represents a memory element. It stores the value produced

by the OR gate output at a particular point in time and can hold that value as indefinite. The

flip-flop is controlled by the signal called clock. When clock makes a transition from logic

value 0 to 1, flip-flop stores the value at its D input at that time and this value appears at the

flip-flop’s Q output. Flip-flops are used for implementing many types of logic circuits.

Fig. No: 5.10 2-to-1 multiplexer

In Figure no. 5.10, a 2-to-1 multiplexer selects as an output from the PAL either the OR-

gate output or the flip-flop output. The multiplexer’s select line can be programmed to be either

0 or 1. Figure no. 5.8 shows another logic gate, called a tri-state buffer, connected between the

multiplexer and the PAL output.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

169

 Finally, the multiplexer’s output is “feed back” to the AND plane in the PAL. This

feedback connection allows the logic function produced by the multiplexer to be used internally

in the PAL. This allows the implementation of circuits that have multiple stages or levels, of

logic gates.

Comparison between PROM, PLA and PAL

Sr. No PROM PLA PAL

1

AND array is fixed and

OR array is programmable

Both AND and OR

arrays are

programmable

OR array is fixed and

AND array is

programmable

2
Cheaper and simple to use. Costliest and complex

than PAL and PROMs.

Cheaper and simpler

3

All minterms are decoded AND array can be

programmed to get

desired minterms

AND array can be

programmed to get

desired minterms.

4

Only Boolean functions in

standard SOP form can be

implemented using PROM

Any Boolean functions

in SOP form can be

implemented using

PLA

Any Boolean

functions in SOP

form can be

implemented using

PAL.

COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLDs)

 PLAs and PALs are useful for implementing a wide variety of small digital circuits.

Each device can be used to implement circuits that do not require more than number of inputs,

product terms, and outputs that are provided in the particular chip.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

170

 These chips are limited to a number of inputs plus outputs of not more than 32. For

implementation of circuits that require more inputs and outputs, either multiple PLAs or PALs

can be employed or else a more sophisticated type of chip, called a complex programmable

logic device (CPLD), can be used.

 A CPLD comprises of multiple circuit blocks on a single chip, with internal wiring

resources to connect the circuit blocks. Each circuit block is similar to a PLA or a PAL; which

refers to the circuit blocks as PAL-like blocks. An example of a CPLD is given in Figure. No

5.11. It includes four PAL-like blocks that are connected to a set of interconnected wires Each

PAL-like block is also connected to a sub circuit labeled I/O block, which is attached to a

number of the chip’s input and output pins.

Figure No.5.12 shows an example of the wiring structure and the connections to PAL-like

block in a CPLD. The PAL-like block includes 3 macro cells, each consisting of a four – input

OR gate.

Fig.No:5.11 BLOCK DIAGRAM OF PAL

The OR-gate output is connected to another type of logic gate. It is called an exclusive –

OR (XOR) gate. The behavior of an XOR gate is same as for an OR gate except that, if both of

the inputs are 1, XOR gate produces a 0. One input to the XOR gate in Figure 5.10 can be

programmable connected to 1 or 0: if 1, then the XOR gate complements the OR-gate output,

and if 0 then XOR gate has no effect.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

171

The macro cell also includes a flip-flop, a multiplexer, and a tri-state buffer. The flip-

flop is used to store the output value produced by the OR gate. Each tri-state buffer is

connected to a pin on the CPLD package. The tri-state buffer acts as a switch that allows each

pin to be used either as an output from the CPLD or as an input.

Fig.No:5.12 PAL BLOCK DETAILS

FIELD: PROGRAMMABLE GATE ARRAYS

 A filed – programmable gate array (FPGA) is a programmable logic device. It supports

implementation of large logic circuits. FPGAs are quite different from SPLDs and CPLDs

because FPGAs do not contain AND or OR planes.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

172

 Instead, FPGAs provide logic blocks for implementation of the required functions. The

general structure of an FPGA is illustrated in Figure no 5.13. It contains three main types of

resources: logic blocks, I/O blocks for connecting to the pins of the package, and

interconnected wires and switches.

Fig.No:5.13 LOGIC BLOCK DIAGRAM OF FPGA

Fig.No:5.14 PIN DIAGRAM OF FPGA

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

173

The logic blocks are arranged in a two-dimensional array, and the interconnected wires

are organized as horizontal and vertical routing channels between rows and columns of logic

blocks. The routing channels consist of wires and programmable switches that allow the logic

blocks to be interconnected in many ways.

 Figure no .5.12 shows two locations for programmable switches; the dark boxes adjacent

to logic blocks hold switches that connect the logic block input and output terminals to the

interconnected wires, and the dark boxes that are diagonally between logic blocks connect one

interconnected wire to another (such as a vertical wire to a horizontal wire). Programmable

connections also exist between the I/O blocks and the interconnected wires. The actual number

of programmable switches and wires in an FPGA varies in commercial chips.

 FPGAs can be used to implement logic circuits of more than a million equivalent gates

in size. FPGA chips are available in a variety of packages, including the PLCC and QFP

package described earlier. Figure no 5.12 depicts another type of package, called a pin gird

array (PGA), APGA package may contain up to a hundreds of pins in total, which extend

straight outward from the bottom of the package, in gird pattern. Another packaging technology

that has emerged is known as the Ball gird array (BGA). The BGA is similar to the PGA except

that the pins are small round balls.

INTRODUCTION TO ASIC

 When the chip designer does not need complete flexibility for the layout of each

individual transistor in a custom chip, some of the design effort can be avoided by using a

technology known as standard cells. Chips are made by using this technology are often called

application – specific integrated circuits (ASICs). This technology is illustrated in Figure no.

5.15, which allow a small portion of a chip. The rows of logic gates may be connected by wires

that are created in the routing channels between the rows of gates.

 In general, many types of logic gates may be used in such type of a chip. The available

gates are prebuilt and are stored in a library that can be accessed by the designer. In Figure no

5.13, the wires are drawn in two fashions. This scheme is used because metal wires can be

created on integrated circuits in multiple layers, which makes it possible for two wires to cross

one another without creating a short circuit.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

174

Fig.No:5.15 TWO ROW STANDARD CELL CHIP

The thin black wires represent one layer of metal wires, and the thick black wires are a

different layer. Each dark square represent a hard-wired connection (called a via) between a

wire on one layer and a wire on the other layer. In current technology it is possible to have

eight or more layers of metal wiring. Some of the metal layers can be placed on top of the

transistors in the logic gates, resulting in a more efficient chip layout.

 Like a custom chip, a standard-cell chip is created from scratch according to a user’s

specifications.

TYPES OF ASIC

1. Full custom ASICs

2. Semi custom ASICs

 i. Standard cell based ASICs

 ii. Gate Array based ASICs

 a. Channeled Gate array

 b. Channel-less Gate Array

 c. Embedded Gate array

Full Custom ASICs

 In full custom ASICs, an Engineer designs all the logic cells, circuits and layout even

interconnects are customized. These ICs are expensive to manufacture and design

Semi Custom ASICs

 In semi custom ASICs, some of the logic cells are predesigned and some of the

interconnects are customized.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

175

Standard cell based ASICs

 It uses predesigned AND gates, OR gates, Multiplexers, Flip Flops known as standard cells.

These standard cells are placed in standard cell area. When implementing the design, the

standard cells are combined with the fixed blocks that are placed below the standard cell area.

So, designer only defines the placement of standard cells.

Gate array based ASICs

 In gate array based ASICs, predesigned and pre-characterized logic cells are arranged in a

gate array library. So, the designer can choose the gate array to implement the design.

Channeled Gate Array

 Rows of logic cells are separated by channels that are used for making interconnection

between the rows of logic cells. The space allotted for interconnect is fixed.

Structured Gate Array

 Certain areas in the chip are dedicated to implement specific function.

Channel-Less Gate Array

 No space is provided for interconnection instead the interconnection is done over the top of

gate array devices

Advantages

1. Reducing system cost

2. Low power consumption

3. Improve speed

4. Space saving

5. Full custom Capability

Applications

1. Low noise audio circuit

2. DC-Dc converters

3. Linear regulators

4. Interface circuit for bar code readers

5. Timer Electronics

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

176

Implementation of Combinational circuits with PAL & PAL (up to 4 variables)

PLA Implementation

Example 1

Implement the function f =  {1,2,3,5,7} in PLA

SOLUTION

Step 1

Step 2

 PLA Implementation

Example 2: Illustrate how a PLA will be used for Combinational Logic for the functions:

 f1 (a,b,c) = m (0,1,3,4)

 f2 (a,b,c) = m (1,2,3,5,7)

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

177

SOLUTION

Step 1 K map Simplification

Step 2

 PLA Implementation

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

178

Example: 3

A combinational circuit is defined by the function F =  {1,3,5,7,10,11} Implement the

function in PLA

SOLUTION

Step 1

 K Map Simplification

Step 2

 PLA Implementation

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

179

PAL IMPLEMENTATION

Example: 1

 Implement the function F ={1,2,3,5,7} in PAL.

SOLUTION

Step: 1

 K map Simplification

Step 2

PLA Implementation

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

180

Example: 2

 Implement the function F = {0,1,2,3,5} in PAL

SOLUTION

Step 1

 K map Simplification

Step 2

 PAL Implementation

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

181

Example: 3

Implement the function in F =  {1,3,4,6} PAL

SOULTION

Step 1

 K map Simplification

Step 2

PAL Implementation

Example: 4

 Implement the function F =  m {0,1,6,7} in PAL

SOLUTION

Step: 1

 K map Simplification

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

182

Step: 2

 PAL Implementation

Example: 5

A combinational circuit is defined by the function Implement the function F =  m

{0,2,6,7,8,9,12,13,14}in PAL

SOLUTION

Step 1

 K Map Simplification

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

183

Step 2

 PAL Implementation

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

184

REVIEW QUESTIONS

UNIT-I

Part-A

1. Draw the Transistor level implementation of NAND Gate using CMOS logic

2. Draw the Transistor level implementation of NOR Gate using CMOS logic

3. What are the universal Gates?

4. Why NAND & NOR Gates are said to be universal gates?

5. Distinguish between combinational & sequential circuits

6. List few combinational circuits

Part-B

1. Draw the circuit of Half Adder.

2. Draw the circuit of full adder.

3. What do you meant by Hazards? List the types of Hazards.

4. What are the types of races? Define Critical Race.

Part-C

1. Implement the function with f=0,2,3,7 minimal gates

2. Implement the above function f=0,2,3,7 with 4:1 mux

3. Implement the function with do not care conditions of 4&6 with minimal

 gates

4. Implement the function with minimal gates with 4:1mux

5. Implement the function f={1,2,3,5,7,10,13} with minimal gates

6. Implement the above function with 4:1mux

7. Implement the function f={1,2,3,5,7,10,13}

8. Implement the above function with 4:1 mux

9. Draw the circuit of NMOs, NAND, NOR, AND, OR,

10. Draw the circuit of CMOS NAND, NOR, AND, OR

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

185

UNIT-II

Part-A

1. Define Synthesis

2. Define Timing Simulation

3. Expand VHDL

4. What are the different levels of abstractions?

5. Define selected signal assignment.

Part-B

1. What are assignment statements?

2. Define for Generate statement?

3. Distinguish between concurrent assignment & sequential assignment & sequential assignment

statement.

4. List any Two VHDL operators & Explain

5. Define data flow modeling.

6. Write the VHDL code for OR Gate

7. Write the VHDL code for AND Gate

8. Write the VHDL code for NOT Gate

Part C

1. Explain in detail about different levels of obstructions.

2. Explain in detail about assignment statements.

3. Write a VHDL Code four bit adder.

4. Write a VHDL Code for four bit Comparator

5. Write a VHDL Code for four bit Multiplier

6. Write a VHDL Code for AND, OR , NOR Gates

7. Write a VHDL Code for 4:1 mux

8. Write a VHDL Code for four bit multiplier

9. Write a VHDL Code for Demux

10. Write a VHDL Code for mux.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

186

UNIT-III

Part – A

1. What is the main element in the sequential circuit?

2. Write the excitation Table for T Flip Flop.

3. What do you mean by SISO & PISO?

4. Are Latch & Flip Flop Same?

5. Distinguish between combinational circuit & Sequential circuit.

6. Write the excitation table for D Flip Flop

7. List the various shift Registers present in digital circuit.

Part – B

1 Distinguish between Latch & Flip Flop .What are the types of Flip-Flops

2. Write down the count sequence for Modulo 8 Counter. & Draw the state diagram

3. Write down the count sequence for Modulo 6 Counter. & Draw the state diagram

4. Distinguish between synchronous & Asynchronous Counter.

5. Define state Table.

6. Define state diagram.

7. Write down the excitation Table for JK Flip Flop.

Part – C

1. Design a modulo 8 bit counter using D Flip Flop. Use proper excitation table & State diagram.

2. Design a modulo 6 bit counter using D Flip Flop. Use proper excitation table & State diagram.

3. Design a modulo 5 bit counter using D Flip Flop. Use proper excitation table & State diagram.

4. Design a modulo 4 bit counter using D Flip Flop. Use proper excitation Table & State diagram.

5. Write down the summary of Design Steps

6. Give out the examples for Moore & Mealy Machine

7. Define Mealy & Moore Machines.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

187

UNIT-IV

Part – A

1. What do you meant by storage elements?

2. Write the importance of D FF

3. Write the importance of T FF

4. Write the importance of JK FF

Part – B

1. Write the VHDL code for T FF

2. Write the VHDL code for D FF

3. Write the VHDL code for JK FF

PART C

1. Write a VHDL code for 2 bit up counter

2 Write a VHDL code for 3 bit up/down counter.

3. Write a VHDL code for Decade counter.

4. Write a VHDL code for Johnson Counter.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

188

UNIT-V

Part – A

1. Define PLA

2. Draw the simple circuit of PLA structure

3. Define PAL

4. Expand PLA & PAL

Part – B

1. Draw the General Structure of CPLD

2. Draw the General Structure of FPGA

3. Define ASIC. Write the types of ASICs

4. . Draw the simple circuit of PAL structure

5. Bring out comparison between PROM, PLA & PAL

Part – C

1. (a) Write short notes on PLA

 (b) Implement the following functions in PLA

 f1(a,b,c) =  m{0,1,3,4}

 f2(a,b,c) = {0,2,6,7,8,9,12,13,14}

2. Implement the following function in PAL

 f=m{0,2,6,7,8,9,12,13,14}

3. (a) Write short notes on PAL

 (b) Implement the function F =  m(0,1,2,3,5) in PAL

4. (a) Explain about GPLD in detail

 (b) Explain about FPGA in detail

5. Design a combination circuit using a PROM. The circuit accepts 3-bit binary number and

generates its equivalent Excess – 3 codes.

www.binils.com

Anna University, Polytechnic & Schools
 www.binils.com

	CMOS TRANSMISSION GATE
	Basic Operation

