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VERY LARGE SCALE INTEGRATION  

DETAILED SYLLABUS  

UNIT I   

1.1 COMBINATIONAL CIRCUIT DESIGN: NMOS and CMOS logic 

implementation of Switch, NOT, AND, OR, NAND, and NOR Gates CMOS Transmission Gate. 

Digital logic variable, functions, inversion, gate/circuits, Boolean algebra and circuit synthesis 

using gates (Up to 4 variables).  

1.2 COMBINATIONAL CIRCUIT BUILDING BLOCKS:   

Circuit synthesis using Multiplexer, Demultiplexer, Encoders and Decoders, Arithmetic adder, 

Sub tractor and Comparator circuits. Hazards and races. 

UNIT II   

2.1 VHDL FOR COMBINATIONAL CIRCUIT: Introduction to VLSI and its design process. 

Introduction to CAD tool and VHDL: Design Entry, Synthesis, and Simulation. Introduction to 

HDL and different level of abstractions. HDL Statements and Assignments  

2.2 VHDL CODE: AND, OR, NAND, NOR gates, Implementation of Mux, Demux, Encoder, 

decoder. Four bit Arithmetic adder, sub tractor and comparator in VHDL  

UNIT III   

3.1 SEQUENTIAL CIRCUIT DESIGN: Introduction/Refreshing to Flip- flops and its excitation 

table, counters and Shift registers   

3.2 DESIGN STEPS: State diagram, State table, state assignment. Example for moore and mealy 

machines. Design of modulo counter (upto 3 bit) with only D flip-flops through state diagram  
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UNIT IV   

4.1 VHDL FOR SEQUENTIAL CIRCUIT: VHDL constructs for storage elements. VHDL code 

for D Latch / D, JK and T Flip-flops withorwithout  reset input.  

4.2 VHDL EXAMPLES: Counters :Synchronous counters-2 bit &3 bit up counter. 3 bit up/down 

counter Decade counter, Johnson Counter  

 

UNIT V   

 PLDS AND FPGA: Introduction to PROM, PLA and PAL. Implementation of combinational 

circuits with PROM, PAL and PLA (up to 4 variables). Comparison between PROM, PAL and 

PLA. Introduction to Complex Programmable Logic device, Field Programmable Gate Array.  

Introduction to ASIC. Types Of ASIC  
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UNIT – 1 

COMBINATIONAL CIRCUIT DESIGN: 

NMOS IMPLEMENTATION OF SWITCH 

 For the purpose of understanding how logic circuits are built, we can assume that a 

transistor operates as a simple switch. figure 1.1a shows a switch controlled by a logic signal , x 

when x is low, the switch is open, and when x is high, the switch is closed. The most popular 

type of transistor field-effect transistor (MOSFET) There are two different types of MOSFERs, 

Known as n-channel, abbreviated NMOS, and p-channel, denoted PMOS. 

 

Figure 1.1 NMOS transistor as a switch 
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Figure 1.1b gives a graphical symbol for an NMOS transistor. it has four electrical 

terminals, called the source, drain, gate, and substrate. in logic circuits the substrate (also called 

body) terminal is connected to Gns. we will use the simplified graphical symbol in figure 1.1c, 

which omits the source and train terminals. They are distinguished in practice by the voltage 

levels applied to the transistor. The terminal with the lower voltage level is assumed as source.  

 If Vg is low, Then there is no connection between the source and drain, the transistor is 

turnetoff.If Vg is high, then the transistor is turned on and acts as a closed switch that connects 

the source and train terminals. 

 PMOS transistors have the opposite behavior of NMOS transistors. the type of switch is 

open when the control input x is high and closed when x is low . A symbol is shown in figure 

1.2b. 

 

(a) A Switch with the opposite behavior of Figure 1.2a 

 

1.2 (b) PMOS transistor 

 

1.2 (c) Simplified symbol for an PMOS transistor 
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 In logic circuits the substrate of the PMOS transistor is always connected to VDD leading 

to the simplified symbol in figure 1.2c. if Vg is high, then the PMOS transistor is turned on and 

acts as a closed switch that connect the source and drain. In the PMOS transistor the source is 

the node with the higher voltage. 

 Figure 1.3 summarizes the typical use of NMOS and PMOS transistor in logic circuits. 

An NMOS transistor is turned on when its gate terminal is high. 

 A PMOS transistor is turned on when the NMOS transistor is turned on, its drain is 

pulled down to Gns, and when the PMOS transistor is turned on its drain is pulled up to VDD. 

 

 

Figure 1.3 NMOS and PMOS transistor in logic circuits. 
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NMOS Implementation of NOT Gate  

NMOS Implementation of NOT Gate in the circuit in figure 1.4a, when Vx = 0v, the 

NMOS transistor is turned of f. No current flows through the resistor R, and Vf to a low voltage 

level 

 If Vf is viewed as a function of Vx then the the circuit is an NMOS implementation of a 

NOT gate. in logic terms this circuit implements the function f = x Figure 1.4b gives a 

simplified circuit diagram in which the connection to the positive terminal on the power supply 

is indicated by an arrow labeled Vdd and the connection to the negative power supply terminal 

is indicated by the Gnd symbol. 

 Figure 1.4c presents the graphical symbols for a NOT gate. The left symbol shows the 

input, output, power, and ground terminals, and the right the symbol shows only the input and 

output terminals. In practice only the simplified symbol is used. another name often used for 

the NOT gate is inverter. 

 

Figure 1.4 A NOT gate built using NMOS technology 
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NMOS Implementation of NAND Gate  

 Using NMOS transistor, we can implement the series connection as depicted in figure 

1.5a. If Vx1 = Vx2 = 5V, both transistors will be on and Vf will be close to 0V. But if either Vx1 

or Vx2 is 0, then no current will flow through the series – connected transistors and Vf will be 

pulled up to 5V. The resulting  truth table for f, provided in terms of logic values, is given in 

figure 1.5b. Its graphical symbols are shown in figure 15c. 

 

 

 

 

(b).Truth table   

 

 

 

Figure 1.5 NMOS realization of a NAND Gate. 

NMOS Implementation of NOR Gate : 

 The parallel connection of NMOS transistors is given in Figure 1.6a. Here, if either Vx1 

= 5 or Vx2 =5  V, then Vx2 will be close to 0 V. Only if both Vx1 and Vx2 are 0 will Vf be pulled 

up to 5V . A corresponding truth table is given in Figure 1.6b. The graphical symbols for the 

NOR gate appear in Figure 1.6c. 

 

 

 

  f 

0 0 1 

0 1 1 

1 0 1 

1 1 0 
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              (b).Truth table 

 

Figure 1.6 NMOS realization of a NOR gate. 

NMOS implementation of AND Gate 

 Figure 1.7 indicates how an AND gate is built in NMOS technology by following a 

NAND gate with an inverter. Node A realizes the NAND of inputs x1 and x2 and f represents 

the AND function.  

 

 

 

 

 (b).Truth table 

 

 

 

 

Figure 1.7 NMOS realization of an AND gate. 

 

  f 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

  F 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
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NMOS implementation of OR Gate 

 Figure 1.52 indicates how an or gate is built in NMOS technology by following NOR 

Gate with an inverter  

 

 

 

 

 

                                          (b) Truth Table 

 

 

 

 

 

 

 

 

 

  f 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

www.binils.com

Anna University, Polytechnic & Schools
                    www.binils.com



12 
 

 

 

CMOS OR Gate  

 A CMOS OR gate is built with a NOR gate followed by a NOT gate.  

 

 

 

 

 

                                         Figure 1.8a Circuit 1.8  b.Truth Table 

CMOS NOT Gate: 

 The simplest example of a CMOS circuit, a NOT gate, is shown in figure 1.9. whenVx = 

0 v, transistor T2 is off and transistor T1 is on This makes Vf = 5v, and since T2 is off and no 

current flows through the transistor. When Vx = 5V, T2 is on and T1 is off  ThusVf = 0v, and 

no current flows because T1 is off 

 

                  

 

 

 

                      Figure 1.9a Circuit                  1.9b Truth table and transistor states 

                                     

 

  f 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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CMOS NAND Gate  

 Figure 1.10 shows a circuit diagram of CMOS NAND gate. The truth table in the figure 

specifies the state of each of the four transistors for each logic valuation of inputs X1 and X2 

The circuit properly implements the NAND function Under static conditions no patch exists for 

current flow from Vdd to Gnd. 

 

 

 

 (b).Truth Table 

 

Figure 1.10 CMOS realization of a NAND gate. 

CMOS NOR Gate 

 The circuit for a CMOS NOR gate is shown in Fig. 1.11. This Circuit functions as per 

the truth table.  

 

                  (b).Truth Table 

 

Figure 1.11 CMOS realization of a NOR gate. 

 

      f 

0 0 on on off off 1 

0 1 on off off on 1 

1 0 off on on off 1 

1 1 off off on on 0 

      f 

0 0 on on off off 1 

0 1 on off off on 0 

1 0 off on on off 0 

1 1 off off on on 0 
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CMOS AND Gate 

 A CMOS AND gate is built by connecting a NAND gate to an inverter, as illustrated in 

figure 1.12. Similarly, an OR gate is constructed with a NOR gate followed by a NOT gate. 

 

 

 

 

 

 

(b).1.12 b Truth Table 

            Figure 1.12a CMOS realization of a AND gate. 

 

CMOS TRANSMISSION GATE 

Basic Operation 

A transmission gate, or analog switch, is defined as an electronic element that 

will selectively block or pass a signal level from the input to the output. This solid-state 

switch is comprised of a pMOS transistor and nMOS transistor. The control gates are 

biased in a complementary manner so that both transistors are either on or off. 

When the voltage on node A is a Logic 1, the complementary Logic 0 is applied 

to node active-low A, allowing both transistors to conduct and pass the signal at IN to 

OUT. When the voltage on node active-low A is a Logic 0, the complementary Logic 1 

is applied to node A, turning both transistors off and forcing a high-impedance 

condition on both the IN and OUT nodes. This high-impedance condition represents 

the third "state" (high, low, or high-Z) that the DS3690 channel may reflect 

downstream. 

  f 

0 0 0 

0 1 Ο 

1 0 Ο 

1 1 1 

www.binils.com

Anna University, Polytechnic & Schools
                    www.binils.com



15 
 

The schematic diagram (Figure 1) includes the arbitrary labels for IN and OUT, 

as the circuit will operate in an identical manner if those labels were reversed. This 

design provides true bidirectional connectivity without degradation of the input signal. 

 

Figure 1. Schematic representation of a transmission gate. 

The common circuit symbol for a transmission gate depicts the 

bidirectionalnature of the circuit's operation (Figure 2). 

 

Figure 2. Circuit symbol. 

Digital Logic Variables & Functions 

 In digital systems, binary circuits are used because the binary element is switch that has 

two states if a given switch is controlled by an input variable x, then we will say that the switch 

is open if x = o and closed if x=1, as illustrated in figure 1.13a. The graphical symbol in figure 

1.13b  

 

to represent such switches in the diagrams that follow Note that the control input x is shown 

explicitly in the symbol. 
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(b) Symbol for a switch 

Figure 1.13b binary switch 

Consider a simple application of a switch turns a small light bulb on or off this action is 

accomplished with the circuit in figure 1.14a. A battery provides the power source The current 

flows when the switch is closed, that is, when x = 1. In this example the input that causes 

changes in the behavior of the circuit is the switch control x. 

 

 

 

 

 

 

 

 

Figure1.14 A light controlled by a switch 

  

The output is defined as the state (or condition) the light, which we will denote by the letter L. 

if the light is on, we will say that L=1.if the light is off, L=0. using this convention, we can 

describe the state of the light as a function of the input variable x. since L=1 if x=1 and l=0 if 

x=0, we can say that 
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L(x) = x  

 We say that L(x) = x is a logic function and that x is an input variable. 

The circuit in figure 1.14a  in an ordinary flashlight, where the switch is a simple 

mechanical device. in an electronic circuit the switch is implement as a transistor and the light 

may be a light-emitting diode (LED). An electronic circuit is powered by a power supply of a 

certain voltage, like 5 volts, One side of the power supply is connected to ground, as shown in 

figure 1.14b. the ground connection is used as the return path for current, to close the loop. This 

is achieved by connecting one side of the light to ground as indicated in the figure. 

Consider now the possibility of the using two switches to control the state of the light let 

x1 and x2 be the control inputs for these switches the switches can be connected either in series 

or in parallel as shown in figure 1.15. using a series connection, the light will be turned on only 

if both switches are closed. if either switches are closed if either switch is open the light will be 

off. this behavior can be described by the expression 

 L(x1, x2) =x1.x2 

 Where L = 1 if x1 = 1 and x2 = 1,  

  L = 0 otherwise.  
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Figure 1.15 Two basic functions. 

The “.” symbol is called the AND operator, and the circuit in figure 1.15a is said to 

implement a logical AND function  

The parallel connection of two switches is given in figure 1.15b. in this case the light 

will also be off only if both switches are open. This behavior can be on if either x1 or x2 switch 

is closed. The light will also be on if both switches are open . This behavior can be stated as 

L(x1, x2)=x1+x2 

Where    L=1 if x1=1 or if x1=x2=1, 

  L=0 if x1=x2=0. 

The + symbol is called the OR operator, and the circuit in Figure 1.15b is said to 

implement a logical of function 

In the above expressions for AND and OR, the output L(x1,x2) is a logic function with 

input variables x1 and x2 the AND and OR functions are two of the most important logic 

functions. Together with some other simple function they can be used as building blocks for the 

implementation of all logic circuits. figure 1.16 illustrates how there switches can be used 

control the light in a more complex way. This series-parallel connection of switches realizes the 

logic function 

 L(x1, x2, x3)=(x1+x2.x3) 

The light is on if x2, = 1 and, at the same time, at least one of the x1 or x2 inputs is equal 

to 1. 
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Inversion 

 A positive action takes place when a switch is opened. Suppose that we connect the light 

as shown in Figure 1.17. in this case the switch is connected in parallel with the light, rather 

than I series. Consequently, a closed switch will short-circuit the light and prevent the current 

from following through it. an extra resistor in this circuit dose not short-circuit the power 

supply. The light will be turned on when the switch is opened. formally, we express this 

functional behavior as 

  L(x)= x 

Where L=1 if x=0, 

  L=0 if x = 1 

 The value of this function is the inverse of the value of the input variable instead of 

using the word inverse, it is more common to use the term complement. thus we say that L(x) is 

a complement of x in this example another frequently used term for the same operation is the 

NOT operation. 
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Logic Gates and Networks 

 Each logic operation can be implemented with transistors, resulting In a circuit element 

called logic gate a logic gate has one or more inputs and output that is a function of its inputs. A 

logic circuit diagram, consisting of graphical symbols representing the logic gates. the 

graphical symbols for the AND, OR, and NOT gates are shown  in Figure 1.18. The figure 

indicates on the left side how the AND and OR gates are drawn when there are only a few 

inputs. On the right side it shows how the symbols are enlarged to accommodate a greater 

number of inputs. 

 A larger circuit is implemented by a network of gates for example, the logic function 

from figure 1.19. A given logic function can be implemented with a number of different 

networks. 
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BOOLEAN ALGEBRA 

 In 1849 George Boole published a scheme for the algebraic description of processes. it 

involved in logical thought and reasoning this scheme and its further refinements became 

known as Boolean algebra provides It was almost 100 years later that this algebra found 

application in the engineering sense. in the late 1930s claude Shannon showed that Boolean 

algebra provides an effective means of describing circuits built with switches. The algebra can, 

therefore, be used to describe logic circuits This algebra is a powerful tool that can be used for 

designing and analyzing logic circuits 

Axioms of Boolean Algebra 

 Like any algebra, Boolean algebra is based on a set rules that are derived from  a small 

number of basic assumptions are called axiom let us assume that Boolean algebra values, 0 and 

1. Assume that the following axioms are true  

  1a  0.0=0 

  1b  1+1=2 

  2a 1.1=1 

  2b 0+0=0 

  3a 0.1=1.0=0 

  3b 1+0=0+1=1 

  4a If x = 0, then x = 1 

  4b If x= 1, then x=0 
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Single-Variable Theorems 

 From the axiom we can define some rules for single variables. these rules are often 

called theorems if x is variables in B, the n the following thermos hold: 

   

5a.  x.o=0 

  5b. x+1=1 

  6a. x.1=x 

  6b.  x+0=x 

  7a. x.x=x 

  7b. x+x=x 

8a. x.x=0 

  8b. x+x=1 

  9. x=x 

 it is easy to prove the validity of these theorems by substituting the values x=o and x=1 

into the expressions and using the axioms given above. for example, in theorem 5a, if x = 0, 

then the theorem states that that 0.0 =0, which is true according to axiom la similarly, if x = 1, 

then theorem 5a status that 1.0 = 0, which is also true according to axiam 3a. 

 

Duality 

Given a logic expression, its dual is obtained by replacing all+ operators, and vice versa, and by 

the replacing all 0s with 1s, and vice versa. The dual of any true statement (axiom or theorem) 

in Boolean algebra is also a true statement. 
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Two-and Three – variable Properties 

 If x,y, and z are the variables in B, then the following properties hold: 

10a. x.y = y.x   Commutative  

10b. x+y = y+x 

11a. x.(y.z) = (x.y).z  Associative  

11b. x+(y+z) = (x+y) +z  

12a.  x.(y+z) =x.y + x.z  Distributive  

12b. x+y.z  = (x+y).  (x+z) 

13a. x+x.y = x    Absorption  

13b. x. (x+y) = x  

14a. x.y + x.y = x    Combining  

14b. (x+y). (x+y) = x  

15a. x.y. = x+y   De Morgan’s theorem  

15b. x+y = x .y 

16a. x+x .y = x+y 

16b. x. (x+y) = x.y 

17a. x. y+y. z+x . z=x .y+x.z Consensus  

17b. (x+y). (y+z). (x+z) = (x+y). (x+z)  

 

INPUT LHS RHS 

x y      +   

0 0 0 1 1 1 1 

0 1 0 1 1 0 1 

1 0 0 1 0 1 1 

1 1 1 0 0 0 0 

 

Figure 1.20 Proof of Demorgan’s theorem in 15a.  
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 Again, we can prove the validity of these properties either by perfect induction or by 

performing algebraic manipulation. figure 1.20 illustrates how perfect induction of a truth table. 

The evaluation of left-hand and right-hand sides of the identity in 15 a gives the same result 

1.2. COMBINATIONAL CIRCUIT BUILDING BLOCKS 

MULTIPLEXERS 

 A multiplexer circuit has a number of data inputs, one or more select inputs, and one 

output. it passes the signal value on one of the data inputs to the output. the data input is 

selected by the values of the select inputs figure1.21shows a 2-to1 multiplexer 

 part 1.21(a) gives the symbol commonly used the select input,s, chooses as the output of 

the multiplexer either input W0 or W1. the multiplexer’s functionality can be described in the 

form of a truth table as shown in part 1.21b of the figure part 1.21(c)  gives a sum-of-products 

implementation of the 2 to 1 multiplexer and part 1.21(d) illustrates haw can be constructed 

with transmission gates. 

 Figure 1.22a shows a – larger multiplexer with four data inputs , w0, ….., w3 and two 

select inputs, s1 and s0. As shown in the truth table in part (b) of the figure, the two-bit number 

represented by s1s0 selects one of the data inputs as the output of the multiplexer.  
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Figure 1.2 A 2-to-1 MULTIPLEXER 
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(C) CIRCUIT 

Figure 1.22 1  A 4-to-1 MULTIPLEXER 

A sum – of – products implementation of the 4 to multiplexer appears in figure 1.22c. It 

realizes the multiplexer function. 

  F = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3  

 It is possible to build larger multiplexers using the same approach. Usually, the number 

of data inputs, n is a integer power of two. A multiplexer that has n data inputs w0, ….., wn-1, 

requires [log2n] select inputs. Larger multiplexer can also be constructed from smaller 

multiplexers. For examples , the 4 to 1 multiplexer can be built using three 2 to -1 multiplexers 

as illustrated in figure 1.23. 
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FIGURE 1.23 USING 2-to-1 MULTIPLEXER TO BUILD A 4-to-1 MULTIPLEXER 

 

Figure 1.24 shows how a16 to 1 multiplexer is constructed with five 4 to 1 multiplexer  
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DEMULTIPLEXERS 

 The purpose of the multiplexer circuit is to multiplex then n data inputs onto the single 

data output under control of the select inputs 

 A circuit that performs the opposite function, namely, placing the value of a single data 

input onto multiple data outputs is called a demultiplexer. Thedemultiplexer can be 

implemented using a decoder circuit. 

DECODERS 

 Decoders circuits are used to decode encoded information A binary decoder shown in 

the figure 1.25 is a logic circuit with n inputs and 2n outputs Only one outputs is asserted at a 

time, and each output corresponds to one valuation of the inputs . 

 

The decoder also has an enable input. En, that is used to disable the outputs; if En = 1, 

the valuation of wn-1….. w1w0 determines which of the outputs Is asserted 

       

1 0 0 1 0 0 0 

1 0 1 0 1 0 0 

 1 1 0 0 0 1 0 

1 1 1 0 0 0 1 

0 X X 0 0 0 0 

 

(a) Truth Table 
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Figure 1.26 A-2-to-decoder 

For example, the 2-to4 decoder in Figure 1.26 can be used as a 2-to4 Demultiplexer in 

this case the en input serves as the data input for the Demultiplexer, and they y0 to y3 outputs 

are the data input the valuation of w1 w0 determines which of the outputs is set to the value of 

En. 

 To see how the circuit works, consider the truth table in figure 1.26a. when En=0, all the 

outputs are set to 0, including the one selected by the valuation of w1w0 sets the appropriate to 

1. 
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ENCODERS 

 An encoder performs the opposite function of a decoder in encodes given information 

into a more compact from. 

 

BINARY ENCODERS  

 A binary encoder encodes information from 2n inputs into an n-bit code, as indicated in 

figure 1.27. exactly one of the input signals should have a value of 1, and the outputs present 

the binary number that identifies which input is equal to 1. 

 The truth table  for a 4 to 2 encoder is provided in figure 1.27b. observe that the output 

y0 is 1 when either input y0 is 1 when either input w1 or w3 Is 1, and output y1 is 1 when input 

w2 or w3 is 1. Hence these outputs can be generate by the circuit Figure 1.27c 

 

Encoders are used to reduce the number of the bits needed to represent given 

information A practical use of encoders is for transmitting information in a digital system. 

      

0 0 0 1 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 

1 0 0 0 1 1 

 

(b) Truth Table 
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BINNARY ADDER – SUBTRACTOR 

 A combinational circuit that performs the addition of three bits (two significant bits and 

a previous carry) is a full adder Two half adders can be employed to implement a full adder. 

 A binary adder subtractor is combinational circuit that performs the arithmetic operation 

of addition and subtraction with binary numbers the helf adder designs carried out first, from 

which we developthe full adder for two n bit numbers the subtraction circuit is included a 

complementing circuit  

HALF ADDER 

 A half adder, needs two binary inputs and two binary outputs. the input variables 

designate the augends and addend bits; the output variables produce the sum and carry we 

assign symbols x and y to the two inputs and s (for sum) and C (for carry) to the outputs the 

block diagram of a half adder is shown in fig. 1.28. the truth table for the half adder is listed in 

Table 4.1. The c output represents the least significant bit of the sum. 

 The simplified Boolean functions for the two outputs can be obtained directly from the 

truth table the simplified sum of products expressions are the logic diagram of the half adder 

implemented in sum of products is shown in fig. 1.29(a) it can be also implemented with an 

exclusive OR and an AND gate as shown in fig 1.29(b). This from is used to show that two half 

adders can be used to construct a full adder. 
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Truth Table of Half Adder 

 

 

 

 

 

 

 

 

 

 

 

 

 

FULL ADDER 

 A full adder is a combinational circuit that forms the arithmetic sum of three bits it 

consists of three inputs and two output. two  of the input variables  denoted by x and represents 

the two bits to be added the third input, z, represents the carry from the previous lower 

significant position  

 The block diagram of a full adder is shown in fig.1.30. 

 The truth table of the full adder is listed in table 1.2. the eight rows under the input 

variables designate all possible combinations of the three variables the output variables are 

determined from the arithmetic sum of the input bits. 

X Y C S 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 
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 When all input bits are 0, the output is 0. the S output is equal to 1 when only one  input 

is equal to 1 or when all three inputs are equal to1. The c output has a carry of 1 if two or three 

inputs are equal to 1. 

 

X Y Z C S 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 

 

The maps for the outputs of the full adder are shown in fig.1.31 the simplified 

expressions are  

  S = x’y’z + x’yz’ + xy’z’ + xyz  

  C = xy + xz + yz 

 The logic diagram for the full adder implemented in sum-of-products form is shown in 

fig 1.32. it can also be implemented with two half address and one OR gate, as shown in 

fig.1.33. the S output from the second half adder, giving 
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  S  = z  (xy)  

   = z’ (xy’ + x’y) + z(xy’ + xy)’ 

   = z’ (xy’ +x’y) + z (cy’ + x’y’) 

   = xy’z’ + x’yz’ + xyz + x’y’z 

The carry output is  

  C = z(xy’ + x’y) + xy = xy’z + x’yz + xy   

yz 

x      00 01 11 10 
 

yz 

x 00 01 11 10 

0  
 

 
1 

 
 

 
1 

 0  
 

 
 

 
1 

 
 

1  
1 

 
 

 
1 

 
 

 1  
 

 
1 

 
1 

 
1 
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Binary Adder  

 A binary adder is a digital circuit that produces the arithmetic sum of two binary 

numbers. it can be constructed with full adders connected in cascade, with the output carry 

from each full adders connected to the input carry of the next of four full adder (FA) circuits to 

provide a four-bit binary ripple carry adder. 

 The input carry to the adder is C0, and it ripples through the full adders to the full adders 

to the output carry c4. the S outputs generate the required sum bits. 

 

 To demonstrate with a specific example, consider the two binary  numbers A=1011and 

B=0011 Their sum S=1110 is formed with the four-bit adder as follows: 

Subscript i: 3 2 1 0 
 

Input carry 0 1 1 0  

Augends 1 0 1 1  

Addend 0 0 1 1  

Sum 1 1 1 0  

Output carry 0 0 1 1  

 

www.binils.com

Anna University, Polytechnic & Schools
                    www.binils.com



36 
 

Half Subtractor 

 The block diagram shown in  fig 1.35 is a half subtractor and it has two inputs and two 

outputs. The two inputs and y form the minuend and the subtrahend D is the difference output 

and B is the borrow output. the function table explains the working of the half subtract or ( 

Table 1.3). The simplified sum of products expressions are  

   D = x’y+ xy’  

   B= x’y 

                              

Table 1.3 Half Subtractor 

x y D B 

0 0 0 1 

0 1 1 1 

1 0 1 0 

1 1 0 0 
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The logic diagram implementation of these two expressions using basic gates is shown 

in fig 1.36(a) It can also be implemented using and EX-OR gate and an AND gate as indicated 

in Fig.1.36(b). 

Full Subtractor 

 A full subtractor has three inputs and two outputs x,y and z are the inputs to be 

subtracted in which z represents borrow from the next stage. D and B are the outputs. The block 

diagrams of a full subtract or is shown in Fig. 1.37. Table 1.4 represents the truth table for a full 

subtractor and Fig. 1.38(a,b) shows the maps for outputs.  

  

  D  = x’y’z + x’yz’ + xy’z’ + xyz  

  B = x’z + x’y + yz 

 The simplified expressions for D and B are implemented using basic gates are shown in 

fig 1.39. 

 

 

 

 

www.binils.com

Anna University, Polytechnic & Schools
                    www.binils.com



38 
 

Table 1.4 Full Substractor 

x Y Z D B 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 

 

yz 

    x      00 01 11 10 

0  
 

 
1 

 
 

 
1 

1  
1 

 
 

 
1 

 
 

 

Figure 1.38a Maps for full subtractor 

(a) K map for D=x’y’z+x’yz’+xy’z’+xyz 

 

 

yz 

    x 00 01 11 10 

0  
 

 
 

 
1 

 
 

1  
 

 
1 

 
1 

 
1 

 

Figure 1.38b Maps for full substractor 

(b) K map for B=x’z+x’y+yz 
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Binary subtractor 

 The subtractor of unsigned binary numbers is done by means of complements, 

Remember that the subtraction A-B is done by taking the 2’s complement of B and adding it to 

A. 

 The circuit for subtracting A-B consists of an adder with inverters placed between each 

data input B and the corresponding input of the full adder. The input carry C0 must be equal to 

1 when subtraction operations can be combined into one circuit with one common binary adder 

by including an exclusive – OR gate with each full adder Subtraction can be realized using an 

adder by controlling inputs to a parallel adder. 

 Fig.1.40(a) shows adder – subractor units using parallel adder  

 Considering the table, expressions for x and y can be obtained using K-map. The 

resulting expressions are 

  x1 = A1 

  y1 = B1 M and  

  C1 = M  
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These equations are implemented to obtain an adder. Subtractor logic diagram circuit 

and is shown in Fig. 1.40b. 

M    

0   0 

1   1 

 

M     

0 0 0 0 0 

0 0 1 0 1 

0 1 0 1 0 

0 1 1 1 1 

1 0 0 0 0 

1 0 1 0 1 

1 1 0 1 0 

1 1 1 1 1 
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MAGNITUDE COMPARATOR  

 The comparison of two numbers is an operation that determines whether one number is 

greater than, less than, or equalto the other number. 

 A magnitude comparator is a combinational circuit that compares two numbers A and B 

and determines their relative magnitudes The outcome of the comparison is specified by three 

binary variables that indicate whether A>B,A=B or a<B 

 Digital function designed by means of an algorithm-a procedure which specifies a finite 

set of steps that, if followed, give the solution to a problem we illustrate this method here by 

driving an algorithm for the design of a four –bit magnitude comparator. 

 The algorithm is a direct application of the procedure a person uses to compare the 

relative magnitudes of two numbers. consider two numbers, A and B, with four digits each. 

write the coefficients of the numbers in descending order of significance: 

 

  A = A3A2A1A0 

  B = B3B2B1B0 

 Each subscripted letter represents one of the digital the number are equal if all pairs of 

significant digits are equal: A3=B3, A2=B2, A1=B1, and A0=B0. When the numbers are 
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binary, the digits are either 1 or 0, and the equality of each pair of bits can be expressed 

logically with an exclusive – NOR functions as  

  Xi = Ai Bi + Ai’Bi’   for I = 0,1,3 

Where xi=1 only if the pair of bits in position I are equal (i.e., if both are 0) 

 The binary variable (A=B) is equal if all pairs of significant digits of the two numbers 

are equal. 

 To determine whether A is greatest or less than B, we inspect the relative magnitudes of 

pairs of significant digits starting from the most significant position if the two digit of a pair are 

equal, we compare the next lower significant pair of digits the comparison continues until a pair 

of unequal digits is reached. if the corresponding digit of A is 1 and that of B is 0, we conclude 

that corresponding digit of A is 0 and that B is 1, we have A<B. the sequential comparison can 

be expressed logically by the two Boolean function. 

 (A >B ) = A3 B3’ + x3A2B2’  +x3A2B2’ +x3x2A1B1’ +x3x2x1A0B0’ 

 (A<B) = A3’B3 + x3A2’B2 +x2x2A1’B1 +x3x2x1A0’B0 

 The symbols (A>B) and (A<B) are binary output variables that are equal to 1 when A>B 

and A<B, respectively. 
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The logic diagram of the four-bit magnitude comparator is shown in fig. 1.41. The four x 

outputs are generated with exclusive NOR circuits and are applied to an AND gate to give the 

output binary variables (A=B). 

HAZARDS 

 In asynchronous sequential circuit it is important that undesirable glitches on signals 

should not occur. the glitches on signals should not occur. The glitches caused by the structure 

of a given circuit and propagation delays in the circuit are referred to as hazards. Two types of 

hazards are illustrated in Figure 1.42 
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A static hazard exists if a signal is supposed to remain at a particular logic value, As 

shown in figure 1.42 a, one type of static hazard is when the signal at level 1 is supposed to 

remain at 1 but dips to 0 for a short time Another type is when the signal is supposed to remain 

at level 0 but rises momentarily to1, thus producing a glitch  

 A different type of hazard may occur when a signal is supposed to change involves a 

short oscillation before the signal settles into its new level, as illustrated in figure 1.42b, then  a 

dynamic hazard is said to exits. 

Critical and non-critical race conditions: 

 A critical race occurs when the order in which internal variables are changed determines 

the eventual state that the state machine will end up in. 

 A non-critical race occurs when the order in which internal variables are changed does 

not alter the eventual state. 

Static, dynamic, and essential race conditions: 

Static race conditions 

 These are caused when a signal and its complement are combined together. 

Dynamic race Conditions: 

 These result in multiple transitions when only one is intended. they are due to interaction 

between gates 
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CIRCUIT SYNTHEIS USING GATES  

Example : 1 

 Implement the function F =  m {0,2,3,7} with minimal gates  

 

SOULTION  

 

 
 

Step II 
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Example : 2 

 Implement the function F =  {0,2,3,7} with do not care 4 & 6 with minimal gates. 

SOLUTION  

  

Step II 
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Example : 3 Implement the function  

F(A,B,C,D) =  m {4,5,6,7,8,12} + d{1,2,3,9,11,14} with only NAND gates  

 

SOLUTION 

Step I 

 

 

Step II 
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SYNTHESIS OF LOGIC FUNCTION USING MULTIPLEXER  

Example : 1  

 Implement the function f = m{ 1,2,3,5,7,10,13} multiplexer  

 

SOLUTION  

Step I 

 

Step II 
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Example 2 : Implement the function F = m{1,2,3,5,7,10,13} with don’t care of 4 & 6 with 

multiplexer  

SOLUTION  Consider 4 & 6 

 

Step II 
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Example 3 : Implement the function F = m {0,2,3,7} with mux  

 

SOLUTION  

 

 
 

 

Step II 
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Example 4 : Implement the function F =  m {0,2,3,7} with don’t care 4 & 6 with mux  

 

SOLUTION  

 

StepII 
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Example 5 : 

 Implement the following function using 4:1 mux F (A,B,C,D) =  {0,1,2,4,6,9,12,14} 

SOLUTION : 

 The function has four variables to implement this function, we require two 4:1 mux.  

 

Step II 
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UNIT II 

2.1 VHDL FOR COMBINATIONAL CIRCUIT 

Introduction to VLSI and its Design Process. 

Introduction to CAD Tool and VHDL 

 logic circuits found in complex system’s such as today’s computers cannot be designed 

by manually They are designed using sophisticated CAD tools that automatically implement 

the synthesis techniques. 

 To design a logic circuit, a number of CAD tools are needed they are usually packaged 

together into a CAD system Cad system includes tools for the following tasks Design Entry 

Synthesis and Optimization, simulation and physical Design. 

DESIGN ENTRY 

 The starting point in the process of designing a logic circuit is forming an idea of what 

the circuit is supposed to do and formulation of its general structure This is done manually by 

the designer the first step of this process involves entering into the CAD Systems. CAD is the 

description of the circuit being designed this stage is called design entry There are two design 

entry methods. 

1. Using Schematic  

2. Writing Source Code in a HDL 

Schematic Capture  

 A logic circuit can be defined by drawing logic gates and interconnecting them with 

wires. 

 A CAD tool for entering a designed circuit in this way is called a “Schematic Capture” 

tool. The word Schematic refers to a diagram of a circuit elements such as logic gates are 

depicted as graphical symbols and connection between circuit elements are drawn as lines. 
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 A schematic capture tool uses the graphic symbols that represent gates of various types 

with different numbers of inputs from a library and the tool provides a graphical way of 

interconnecting the gates to create a logic network. 

 

Writing Code in a HDL 

 A hardware Description Language (HDL) is similar to a computer programming 

language expect that an (HDL) is similar to describe hardware rather than a program to be 

executed on a computer  

 Two HDLs are IEEE Standards: VHDL (very High Speed integrated Circuit Hardware 

Description languages are mostly used in industry. 

 Design entry of a logic circuit is done by writing VHDL Code. Similar to the way in 

which large circuits are handled in schematic capture, VHDL code can be written in a modular 

way that facilitates hierarchical design VHDL design entry can be combined with other 

methods. for example, a schematic is described using VHDL  

 

SYNTHESIS 

 Synthesis is the process of generating a logic circuit from an initial specification that 

may be given in the form of a schematic diagram or code written in a HDL. Synthesis CAD 

tools generate efficient implementation of circuits from such specifications. 

 The process of translating or compiling, VHDL Code into a network of logic 

expressions that describe the logic functions needed to realize the circuit  

 The performance of a synthesized circuit can be assessed by physically constructing the 

circuit and testing it But, its behavior can also be evaluated by means of simulation. 
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FUNCTIONAL SIMULATION  

 A circuit represented in the form of logic expressions can be simulated to verify that it 

will function as expected. The tool that performs this task is called a functional simulator. it 

uses the logic expressions generated during synthesis and assumes that these expressions will 

be implemented with perfect gates through which signals propagate instantaneously the results 

of simulation are usually provided in the form of a timing diagram. The users can examine to  

Verify that the circuit operates as required 

 

PHYSICAL DESIGN 

 After logic synthesis he the next step in the design flow is to determine exactly how to 

implement the circuits on a given chip. This step is often called Physical design. toolmap a 

circuit specified in the form of logic expressions into a realization 

 

TIMING SIMULATION  

 A timing simulator evaluates the expected delays. of a designed logic circuit Its results 

can be used to determine if the generated circuit meets the timing requirements of the 

specification for the design. 
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CHIP CONFIGURATION 

 When the designed circuit meets all requirements of the specification then the circuit is 

implemented on an actual chip this step is called chip configuration  programming. 

 The CAD tool are the essential parts of a CAD system The complete design flow is 

shown in figure 2.1 

 

INTRODUCTION TO VHDL 

 VHDL stands for very high-speed integrated circuit hardware description language used 

to model a digital system by dataflow, behavioral and structural style of modeling This 

language was first introduced in 1981 for the department of defense (DOD) under the VHSIC 

program In 1983 IBM, Texas instruments and Inter metrics started to develop this IEEE 

standardized the language 

 

Describing a design 

 In VHDL an entity Is used to describe a hardware module  

  An entity can be described using, 

1. Entity declaration  

2. Architecture  

3. Configuration  

4. Package declaration  

5. Package body 
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Let’s see what are these? 

1. Entity declaration 

  It defines the names, input signals and modes of a hardware module. 

2.  Architecture  

  It describes the internal description of design. each entity has least one 

architecture and an entity has at least one architecture and an  entity can have many architecture 

can be described using structural, dataflow, behavioral or mixed style Architecture can be used 

to described a design at different levels of abstraction like gate level, register transfer level 

(RTL) or behavior level. 

3.  Configuration 

  If an entity contains many architectures and any one of the possible architecture 

binding with its entity is done using configuration it is used to bind the architecture body to its 

entity and a component with an entity 

4. Package declaration  

  Package declaration is used to declare components, types, constants function and 

so on. 

5. Package body: 

  Package body is used to declare the definitions and procedures that are 

procedures that are declared in corresponding package values can be assigned to constants 

declared in package body. 

DIFFERENT LEVELS OF ABSTRACTIONS 

 The internal working of an entity can be defined using different modeling styles inside 

architecture body. They are  

 

1. Dataflow modeling  
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2. Behavioral modeling (RTL Modeling) 

3. Structural modeling 

 

Structure of an entity 

 

 

 

 

 

 

 

DATA FLOW MODELING 

 In this style of modeling, the internal working of an entity is implement using concurrent 

signal assignment  

Let’s take half adder example which is having one XOR gate and a AND gate. 
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 Library IEEE ;  

 use  IEEE. STD_LOGIC _1164. All ;  

 entity ha_en is  

  port (A, B : in bit ; S, C : out bit) ;  

 end ha _en ;  

architecture ha_ar of ha_en is  

 begin  

   S<=A xor B ;  

   C<=A and B;  

end ha_ar 

 

  

Here STD_LOGIC_ is IEEE standard. This defines a nine-value logic type, called 

STD_ULOGIC use is a keyword, which imports all the declarations from this package. the 

architecture body consist of concurrent signal assignments, which describes the functionality of 

the design whenever there is change is RHS, the expressions is evaluated and the value is 

assigned to LHS. 

BEHAVIORAL MODELING 

 In this style of modeling, the internal working of an entity can be implemented using set 

of statements  

It contains: 
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  Process statements  

 Sequential statements  

 Signal assignment statements  

 Wait statements  

Process statement is the primary mechanism used to model the behavior of an entity. it contains 

sequential statement, variable assignment (:=) statements or signal assignment (<=) statements 

etc. it may or may not contain sensitivity list If there is an event occurs on any of the signals in 

the sensitivitylist, the statements within the process is executed. 

 Inside the process the execution of statements will be sequential and if one entity is 

having two processes will be concurrent. At the end it waits for another event to occur. 

         Library IEEE; 

use IEEE.STD_LOGIC_1164.all; 

 

entity ha_beha_en is 

             Port ( 

                         A: in BIT; 

                         B: in BIT; 

                         S: out BIT; 

                C: out BIT 

                          ); 

end ha_beha__en; 

architecture ha_beha_ar of ha_beha_en is begain 

process_beh:process(A,B) 

begain 

        S<=A xor B; 

         C<=A and B: 

     end process process_beh: 

end ha_beha_ar;    
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 Here whenever there is a change in the value of A or B the process statements are 

executed. 

Structural modeling: 

 The implementation of an entity is done through set of interconnected components. 

If contains: 

 Signal declaration  

 Component instance 

 Port maps 

 Wait statements 

Component declaration 

Syntax 

 Component component_name [is] 

List_of_interface ports; 

end componets_name; 

  Before starting the component it should be declared using component declaration 

as shown above. component 

 Let’s try to understand this by taking the example of full adder using 2 half adder and 1 

OR gate. 
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Library IEEE; 

USE IEEE.STD_LOGIC_1164. all; 

entityfa_en is  

port (A,B, Cin:inbit;SUM, CARRY: out bit); 

endfa_en; 

architecturefa_ar of fa_en is 

componentha_en 

port (A,B: in bit S,C: out bit); 

end component  

signal C1,C2,S1: bit; 

begain 

HA1: ha_en port map (A, B, SI, C1); 

HA2: ha_en port map (S1, Cin, SUM, C2); 

CARRY<=C1 or C2; 

endfa_ar; 

 The program we have written for half adder in dataflow modeling is instantiated as 

shown above.ha_en is the name of the entity in data flow modeling. C1, C2, S1 are the signals 

used for internal connections of the component which are the declared using the keyword 

signal. Port map is used to connect different components as well as connect components to 

ports of the entity. 

 Component instantiation is done as follows. 

 component _label: component port map (signals_list) 
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 Signal_list is the architecture signals which we are connecting to component ports. this 

can be done in different ways. What declared above is positional binding. One more type is the 

named binding The above can be written as, 

HA1: ha_en port map (A=> A,B=>B,S=>S1, C=>C1); 

HA2: ha_en port map (A=S1, B=> SUM, C=>C2); 

VHDL STATEMENTS & ASSIGNMENTS 

ASSIGNMENTS SATEMENTS 

 Assignments statements, which are called selected signal assignments, conditionals 

signal assignments, generate statements, if-then –else statements, and case statements. 

SELECTED SIGNAL ASSIGNMENT 

 A selected signal assignments allows a signal to be assigned one of several values, based 

on a selection criterion Figure 2.2 shows how it can be used to describe a 2-to1 multiplexer. the 

entity named mux2to1, has the input w0,  

W1, and s and the output f. the selected signal assignments begins with the key word 

WITH, which specifies that’s is to be used for the selection criterion. the two WHEN clause  

State that if assigned the value of w1. WHEN clause that selects w1 uses the word OTHERS, 

instead of the value 1. This is required because the VHDL syntax specifies that a WHEN clause 

must be included for every possible value of the selection signals s. 

LIBRARY ieee; 

USE iee.std_logic_1164.all; 

ENITY mux2to1 IS 

PORT (w0, w1, s  : IN STD_LOGIC; 

 f   : OUT STD_LOGIC); 

END mux2to1; 
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ARCHITECTURE Behavior OF mux2to1 IS 

BEGIN  

WITH s SELECT 

 f<w0 when ‘0’, 

 w1 WHEN OTHERS; 

END Behavior; 

Figure 2.2 VHDL code for a 2-to 1 multiplexer 

 Since it has the STD_LOGIC type, s can take the values 0,1,z, and other  the keyword 

Others provides a convenient way of accounting for all logic values that are not explicitly listed 

in a WHEN clause. 

CONDITIONAL SIGNAL ASSIGNMENT 

 Similar to the selected signal assignment, a conditional signal assignment allows a signal 

to be a set to one of several values Figure 2.3 shows the 2-to 1 multiplexer entity. it uses a 

conditional signal assignment to specify that f is assigned the value of wo when s=0, or else f is 

assigned the value of w1. 

LIBRARY ieee; 

USE ieee.std_logic_1164 all; 

ENITY mux2to1 IS 

PORT (w0, w1,s  : IN STD_LOGIC; 

ff    : OUT STD_LOGIC); 

END mux 2 to 1; 

 

ARCHITECTURE Behavior OF mux2 to 1 IS 
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BEGIN 

 f<= WO EHEN S=’0’ ELSE W1; 

END Behavior  

Figure 2.3 Specification of a 2-to-1 multiplexer using a conditional signal assignment  

In this small example the conditional signal assignment has only one WHEN clause  

GENERATE STATEMENTS 

 VHDL Provides a feature called the FOR GENERATE statements. the generate 

statement must have a label, so we have used the label G1 in the code. the loop instantiates four 

copies of mux4to1 component,   using the loop index I in the range from 0 to 3 the variable I is 

not explicitly declared in the code; it is automatically defined as a loop variable whose scope is 

limited to the FOR GENERATE statement. 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE work. mux4to1_package.all; 

ENITITY mux16to1, 

PORT  (w: IN STD_LOGIC_VECTOR (0 TO15); 

  s   : IN STD_LOGIC_VECTOR (3DOWN TO 0); 

  f   :  (OUT_STD_LOGIC); 

END mux16to1, 

ARCHITECTURE Structure OF mux 16 to 1 IS  

SIGNAL m: STD_LOGIC_VECTOR(0TO3); 

BEGAIN 

G1: FOR in 0 TO 3 GENERATE  

Muxes: mux 4 to 1 PORT MAP( 

w(4*1), w(4*i+3), s(1 DOWNTO 0), m(i)); 
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END GENERATE; 

mux5; mux4 to 1 PORT MAP (m(0), m(1), m(2), m(3), s(3 DOWNTO 2); 

END structure; 

Figure 2.3 code for a 16-to1 multiplexer using a generate statement 

 

In addition to the FOR GENERATE statement, VHDL provides another type of generate 

statement called IF GENARATE Figure 2.4 illustrates the use of both types of generate 

statements the decoder inputs are the four-bit signals w, the enable is En, and the outputs are 

the 16-bit signal y.  

Following the component declaration for the dec2to4 sub circuit, the architecture defines 

the signal m, which represents the outputs of the 2-to4 decoder component are instantiated by 

the FOR GENERATE statement in each iteration of the loop, the statement labeled Dec_ri 

instantiates a dec2to4 component that corresponds to one of the dec2to4 component with data 

inputs w1 and w0, enable input m0, and outputs y0,y1,y3,. the other loop iterations also use 

data inputs w1w0, but use different bits of m and y. 

The IF GENERATE statement, labeled G2, instantiates a dec2to4 component in the last 

loop iteration, for which the condition i=3 is true. this component represents the 2-to4 decoder 

where it has the two-bit data inputs w3 and w2, the enable En, and*the   

LIBBRARY ieee; 

USE ieee.std_logic_1164 all; 

ENTITY dec4to16 IS 

PORT (w : IN STD_LOGIC_VECTOR(3DOWNTO 0); 

En : IN STD_LOGIC; 

y   : OUT STD_LOGIC_VECTOR (0 TO 15); 

END dec4to16 IS 

ARCHITECTURE Structure OFdec4to16 IS 
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 COMPONENT dec2to4 

PORT (w : IN STD_LOGIC_VECTOR(1DOWNTO 0); 

En : IN STD_LOGIC; 

y   : OUT STD_LOGIC_VECTOR (0 TO 3)); 

END COMPONENT; 

SIGNAL m: STD_LOGIC_VECTOR (0 TO3); 

BEGIN 

G1:FOR 1 IN 0 TO 3 GENERATE  

Dec_ri:dec2to4 PORT MAP (W(1 DOWNTO 0, M(i),y(4*Ito4*i+3); 

G2: IF I=3 GENERATE  

Dec_left; dec2to4 PORT MAP w (idowntoi-1), En, m); 

END GENERATE; 

END GENERATE;  

END Structure; 

 Figure  2.4 Hierarchical code for 0 4-to-16 binary decoder  

*The outputs m0,m1,m2, and m3 

The generate statements in figures 2.9 and 2.10 are used to instantiate components. Another use 

of generate statements is to generate a set of logic equations. 

CONCURRENT AND SEQUENTIAL ASSIGNMENT STATEMENTS 

 We have introduced several types of assignment statement; logic or arithmetic 

expressions, selected assignment statements, and conditional assignment statements. All of 

these statements share the property, that the order in which they appear in VHDL code does not 

affect the meaning of the code Because of this property, these statements are called the 

concurrent assignment statements. 

www.binils.com

Anna University, Polytechnic & Schools
                    www.binils.com



69 
 

 VHDL also provides a second category of statements, called sequential assignment 

statements, for which the ordering of the statements, may affect the meaning of the code we 

will discuss two types of sequential assignment statements, called if-then—else statements and 

case statements VHDL requires that the sequential assignments statements placed inside 

another type of statement, called a process statement. 

PROCESS STATEMENT  

 Figures 2.2 & Fig.2.3 show two ways of describing a 2-to-1 multiplexer, using the 

selected and conditional signal assignments the same circuit can also be described using an if-

then-else statement, but this statement must be placed inside a process statement figure 2.5 

shows the code using process statement the process statement, or simply process, begins with 

the PROCESS keyword, followed by a sensitivity list. for a combinational circuit like the 

multiplexer, the sensitivity list includes all input signals that are used inside the process the 

process statement is translated by the VHDL compiler into logic equations in the figure the 

process consists of the single if-then-else statement that describes the multiplexer function. thus 

the sensitivity list comprises the data inputs, w0, and w1, and the select input s. 

 In general, there is a number  of statement inside a process Using VHDL, when there is a 

change in the value of any signal in the value of any signal in the process’s sensitivity list, then 

the process becomes active. 

 Once active, the statements inside the process are evaluated in sequential order. Any 

assignments made to signals inside the process evaluated if there are multiple assignment to the 

same signal, only the last one has any visible effect. 

LIBRARY ieee; 

USE ieee.std_logic-1164 all; 

ENITITY mux2to 1 IS 

 PORT (w0, w1, s :IN STD_LOGIC 

   f :OUT STD_LOGIC); 

END mux2to1; 
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ARCHITECTURE Behavior OF mux2to1 IS 

BEGIN 

  IF=’0’ THEN 

  f<w0; 

ELSE 

 F<w1; 

END IF; 

END PROCESS; 

Figure 2.5 A2to1 multiplexer specified using the if-then-else statement 

CASE STATEMENT 

 A case statement is similar to a selected signal assignment the case statement has a 

selection signal and includes WHEN clauses for various valuations of this selection signal. 

figure 2.6 shows how the case statement can be used for describing the 2-to1 multiplexer circuit 

the CASE keyword, which specifies that s to be used as the selection  signal. the first WHEN 

clause specifies, following the=> symbol, the statements that should be evaluated when s=0. in 

this example only statement evaluated when s=0 is f<=w0 The case statement must include a 

WHEN clause for all possible valuation of the selection signal. hence the second WHEN 

clause, which contains f<=w1, uses the OTHERS keyword. 

LIBRARY ieee; 

USE ieee.std_logic_1164 all; 

ENTITY mux2to1 IS  

 PORT (w0, w1, s  : IN STD_LOGIC 

  f   : OUT STD_LOGIC); 

END mux2to1; 

ARCHITECTURE Behavior OF mux2to1 IS 

BEGIN 

 PROCESS (w0, w1, s) 
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 BEGIN 

  CASE s IS 

   WHEN ‘0’=> 

    f<=w1; 

  END CASE; 

 END PROCESS; 

END Behavior; 

 Figure 2.6 A case statement that represents a 2-to-1multiplexer. 

 

VHDL OPERATERS  

 In this section we discuss the VHDL operators, that are useful for synthesizing logic 

circuits. Table lists these operators in groups that reflect the type of operations performed. 

Operator category Operator symbol Operation performs 

Logical And 

OR 

NAND 

NOR 

XOR 

XNOR 

NOT 

AND  

OR 

Not AND 

Not OR 

XOR 

Not XOR  

NOT 

Relational = 

/= 

> 

< 

>= 

<= 

Equality 

Inequality 

Greater than 

Less than 

Greater than or equal to 

Less than or equal to 

Arithmetic + 

- 

* 

/ 

Additional  

Subtraction 

Multiplication 

Division 

Shift and Rotate SLL 

SRL 

SLA 

ROL 

ROR 

Shift left logical 

Shift right logical 

Shift left arithmetic  

Rotate left 

Rotate Right 

 To illustrate the results produced by the various operators, we will use three-bit vectors 

A(2DOWNTO 0),B(2DOWNTO 0), and C(2DOWNTO 0). 
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LOGICAL OPERATORS 

 The logical operators can be used with bit and Boolean types of operands. the operands 

can be either signal-bit scalars or inultibit vectors for example, the statement  

C<=NOT A; 

 Produces the result c2=a2. c1=a1 and c0 = a0where a and c are bits of the vectors A and 

C. 

 The statement 

   C< A AND B; 

 Generates c2=a2. c2, c1=a1.b1, and c0=a0.b0. the other operators lead to similar 

evaluations. 

RELATIONAL OPERATORS  

 The relational operators are used to compare expressions. The results of the comparison 

is TRUE or FALSE. The expressions that are compared must be of the same type For example, 

if A=010 the A>B evaluates to TRUE, AND B/=”010 evaluates to FALES. 

ARITHMETIC OPERATORS  

 Arithmetic Operators perform standard arithmetic operations Thus  

     c<A+B; 

 Puts the three-bit sum of A plus B into  C. The operation  

CONCATENATE OPERATOR  

 This operator concatenates two or more vectors to create a large vector. For example,  

D<= A & B ;  

Defines the six – bit vector D = a2a1 a0b2b1b0. Similarly , the concatenation  

E < = “ 111” & A &”00”  

 Produces the eight – bit vector E = 111a2a1a000. 
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SHIFT AND ROTATE OPERATORS  

 A vector operand can be shifted to the right or left by a number of bits specified as a 

constant. When bits are shifted ; the vacant bit positions are filled with 0s. For example,  

B< = A SLL 1 ;  

 Results in b2 = a1, b1 = a0 and b0 =0. Similarly,  

B < = A SRL 2 ; 

 Yields b2 = b1 = 0 and b0 = a2  

 The arithmetic shift left, SLA, has the same effect as SLL. But, the arithmetic shift right, 

SRA, performs the sign extension by replicating the sign bit into the positions left vacant after 

shifting . Hence.  

B < = A  SRA 1 ;  

 Gives b2 = a2, b1 =a2, and b0 =a1.  

 

 An operand can also be rotated, in which case the bits shifted out from one end are 

placed into the vacated positions at the other end. For example.  

 

B<=A ROR 2 ;  

 Produces b2 = a1, b1 = a0 and b0 = a2 .  

 

 

OPERATOR PRECEDENCE :  

 Operators in different categories have different precedence. Operators in the same 

category have the same precedence, and are evaluated from left to right in a given expression. It 
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is a good practice to use parentheses to indicate the desired order of operations in the 

expression. To illustrate this point, consider the statement.  

                                                          S<=A+B+C+D;  

Which defines the addition of four vector operands. The VHDL complier will synthesize a 

circuit as if the expression was written in the form (A+B)+C)+D, which gives  a cascade of 

three adders so that the final sum will be available after a propagation delay through three 

adders. By writing the statement as.  

S<=(A+B)+(C+D) ;  

 They synthesized circuit will still have three adders, but since the sums A+B and C+D 

are generated in parallel, the final sum will be available after a propagation delay through only 

two adders.  

 Table groups the operators according to their functionality. It shows only those operators 

that are used to synthesize logic circuits. The VHDL Standard specifies additional operators, 

which are useful for simulation and documentation purposes. All operators are grouped into 

different classes.  

2.2 VHDL CODE  

VHDL CODE FOR AND GATE : 

Library ieee ;  

Use ieee. Std _logic_1164.all ;  

Entity and Gate is  

 Port (A,B ; in std_logic)  

 F : out std_logic) ;  

End and Gate ;  
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Architecture func of and Gate is begin  

 F<= A and B ;  

End func ;  

 

VHDL CODE FOR OR GATE :  

Library ieee ;  

Use ieee. Std _logic_1164 all ;  

Entity or Gate is  

 Port (A, B : in std_logic ;  

  F : out std _logic);  

end or Gate ;  

architecture func of orGate is  

begin  

 F< = A or B ;  

end func ;  

 

VHDL CODE FOR NAND GATE :  

Library ieee ;  

Use ieee.std_logic_1164 all ;  

 

Entity nandGate is  

 Port (A, B : in std_logic ;  

  F : out std_logic) ;  

end nand Gate ;  
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architecture func of nandGate is  

begin  

 F < = A nand B ;  

end func ;  

 

VHDL CODE FOR NOR GATE :  

Library ieee ;  

use ieee. Std_logic _11164. All ;  

entity  norGate is  

 port (A, B : in std_logic ;  

  F : out std_logic) ;  

end nor Gate :  

architecture func of norGate is  

begin  

 F < = A nor B ;  

End Func; 

VHDL CODE FOR  8:1 MUX 

library  IEEE ;  

use IEEE. STD_LOGIC _1164. ALL ;  

use IEEE. STD_ LOGIC _ARITH. ALL ;  

use IEEE. STD_LOGIC _UNSIGNED. ALL ;  

Entity mux IS  

Port( s: in _ std_logic _ vector (2 downto 0); 
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     inp: in _ std_logic _ vector (7 downto 0); 

op:out std_ logic ); 

END Entity mux; 

Architecture mux OF  mux IS 

BEGIN 

PROCESS ( s,inp) 

BEGIN 

CASE s IS  

WHEN “000”=>OP<=INP(0); 

WHEN “001”=>OP<=INP(1); 

WHEN “010”=>OP<=INP(2); 

WHEN “011”=>OP<=INP(3); 

WHEN “100”=>OP<=INP(4); 

WHEN “101”=>OP<=INP(5); 

WHEN “110”=>OP<=INP(6); 

WHEN others =>op<=inp(7); 

END case; 

END PROCESS; 

END ARCHITECTURE mux; 
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VHDL CODE FOR 4:1 MUX 

library  IEEE ;  

use IEEE. STD_LOGIC _1164. ALL ;  

use IEEE. STD_ LOGIC _ARITH. ALL ;  

use IEEE. STD_LOGIC _UNSIGNED. ALL ;  

Entity mux1 IS  

Port ( I;in std_Logic _ vector 3 downto 0 ); 

         Y: out std_ logic); 

END mux1; 

ARCHITECTURE Behavioral OF mux1 IS 

BEGIN 

PROCESS (I,S0,S1) 

BEGIN 

IF (S1=”0” and S0 =’0’) THEN 

Y<=I0; 

ELSIF (S1=”0” and S0 =’1’) THEN 

Y<=I1; 

ELSIF (S1=”1” and S0 =’1’) THEN 

Y<=I2; 

ELSIF (S1=”1” and S0 =’1’) THEN 

Y<=I3; 

END If; 
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END PROCESS; 

END Behavioral; 

 

VHDL Code for Encoder (4 ; 2)  

library  IEEE ;  

use IEEE. STD_LOGIC _1164. ALL ;  

use IEEE. STD_ LOGIC _ARITH. ALL ;  

use IEEE. STD_LOGIC _UNSIGNED. ALL ;  

 

entity encod is  

Port (a : in STD_LOGIC _VECTOR (3 downto 0) ;  

B : out STD_LOGIC_VECTOR (1 down to 0)) ;  

end encod ;  

 

architecture Behavioral of encod is  

begin  

process(a)  

begin  

if (a(0) = ‘1’) then 

b<= “00”;  

elsif (a(1) = ‘1’) then  

b<=”01”;  
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elsif (a(2) = ‘1’) then  

b<=”10” ;  

elsif (a(3) = ‘1’) then  

b<=”11” ;  

end if ;  

end process ;  

end Behavioral ;  

VHDL CODE for  1 to 4 DEMULTIPLEXER 

library  IEEE ;  

use IEEE. STD_LOGIC _1164. ALL ;  

use IEEE. STD_ LOGIC _ARITH. ALL ;  

use IEEE. STD_LOGIC _UNSIGNED. ALL ;  

entity DeMUX is 

port( X: in std_logic; 

sel:in std_logic_vector (1 downto 0); 

A: out std_logic; 

B: out std_logic; 

C: out std_logic; 

D: out std_logic; 

end DeMUX; 
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architecture behaviour of DeMUX is 

begin 

process(sel, X) 

begin 

case sel is 

when “00”=> 

A <=X; 

B <=’0’; 

C <=’0’; 

D <=’0’; 

When “01” => 

B <=X; 

A <=0; 

C <=’0’; 

D <=’0’; 

When “10”=> 

C <=X; 

A <=’0’; 

B <=’0’; 

D <=’0’; 

When others=> 

D <=X; 
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A <=’0’; 

B <=’0’; 

C <=’0’; 

end case; 

end process; 

end behaviour; 

VHDL code for  8:3 ENCODER Logic Program  

VHDL program for “8:3 Encoder” behavioral design  

library IEEE ;  

use IEEE STD_LOGIC _1164. ALL ;  

use IEEE.STD_LOGIC_ARITH.ALL ;  

use IEEE> STD_LOGIC_USIGNED.ALL ;  

entity ENC2 is  

  Port (S : in std_logic ;  

   T : in  std_logic ;  

   U : in std_logic ;  

   V : in std_logic ;  

   W : in std_logic ;  

   Y : in std_logic ;  

   Z : in std_logic ;  

   OUT0 : out std_logic ;  

   OUT1 : out std_logic ;  
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   OUT 2 : out std_logic) ;  

end ENC2 ;  

architecture Behavioral of ENC2 is begin  

  process (S,T, U, V, W, X, Y, Z)  

  begin  

  OUT0<=T OR V OR X OR Z ;  

  OUT1 < = U OR V OR Y OR Z ;  

  OUT 2 < = W OR X OR Y OR Z ;  

  end process ;  

end Behavioral ;  

VHDL CODE FOR DECODER (2:4)  

library IEEE ;  

use IEEE. STD_LOGIC_1164.ALL ;  

use IEEE. STD_LOGIC_ARITH.ALL ;  

use IEEE.STD_LOGIC_UNSIGNED. ALL ;  

 

entity decod 1 is  

Port  (10 : in STD_LOGIC)  

I1: in STD_LOGIC  

En : in STD_LOGIC ;  

Y : out STD_LOGIC_VECTOR (3 downto 0)) ;  

end decod 1 ;  
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architecture Behavioral of decod 1 is  

begin  

process (I0, I1, En) 

begin  

if( En = ‘1’)  

then  

Y(0) < = (not I0) and (not I1) ;  

Y(1)<= (not I0) and  I1 ;  

Y(2)<= I0 and (not I1) ;  

Y(3) <=I0 and I 1 ;  

else  

Y < = “0000” ;  

end  if ‘  

end  process ;  

end Behavioral ; 

 

VHDL CODE 3:8 DECORDER :  

Entity decorder 3 x 8 is  

Port (ctrl : in std_logic_vector (2 downto 0) ;  

z : out std_logic_vector (7 downto 0) ;  

end decoder 3x8 ;  
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architecture dec3x8_Dflow of decoder 3x8 is  

begin  

z<= “0000001”  when ctrl = “000” else  

“00000010” when ctrl = “010” else  

“000000100” when ctrl = “010” else  

“00001000” when ctrl = “011” else  

“00010000” when ctrl = “100” else  

“00100000” when ctrl = “101” else  

“01000000” when ctrl = “110” else  

“10000000” ;  

end dec 3x8 Dflow ;  

VHDL CODE FOUR BIT ADDER / SUBTRACTOR -- 

-- This is the XOR gate  

library ieee ;  

use ieee. Std_logic_1164. All ;  

-- 

entity xorGate is  

 port (A, B ; in std_logic) ;  

  F : out std_logic) ;  

end xorGate ;  

-- 

Architecture func of xorGate is  
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Begin  

 F <=A xor B ;  

end func ;  

-- 

-- Now we build the four bit Adder Subtractor  

Library ieee ;  

use ieee. Std_logic_1164.all ;  

entity adder Subtract or us  

 port (mode    : in std_logic ;  

 A3, A2, A1, A0  : in std_logic ;  

 B3, B2, B1, B0  : in std_logic ;  

 S3, S2, S1, S0  : out std_logic ;  

  Court , V   : out std_logic ) ;  

end  adder Subtractor ;  

-- Structural architecture  

architecture struct of adder Subtractor is  

 component xorGate is   -XOR component  

  port (A, B : in std_logic ;  

   F : out std_logic ) ;  

end  component ; 

component Full_Adder is   - FULL ADDER  
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component  

 port (X, Y, Cin : in std_logic ;  

  sum, Cout : out std_logic) ;  

 end component ;  

-- interconnecting wires  

 signal C1, C2, C3, C4 ; std_logic – intermediate carries  

 signal xor 0, xor1, xor2, xor3, : std_logic ; - xor outputs  

begin  

 GX0 : xorGate port map (mode, B0, xor 0) ;  

 GX1 : xorGate port map(mode, B1, xor 1) ;  

 GX2 : xorGate port map(mode, B2, xor 2) ;  

 GX3 : xorGate port map (mode, B3 , xor 3) ;  

 

 FA0 : Full_Adder port map (A0, xor 0, mode, S0, C1) ; - S0  

 FA1: Full_Adder port map (A1, xor 1, C1, S1, C2) ; - S1 

 FA2: Full_Adder port map (A2, xor 2, C2, S2, C3) ; - S2 

 FA3: Full_Adder port map (A13, xor 3, C3, S3, C4) ; - S3 

 Vouut : xorGate port map (C3, C4, V) ;  - V 

 Cout <=C4     - Cout  

End struct :  
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VHDL CODE FOR FOUR BIT ADDER  

LIBRARY ieee ;  

USE ieee. Std_logic _1164. all ;     Output of adder 4  

   Network is shown here  

ENTITY adder 4 IS  

 

PORT (Cin : IN STD LOGIC ;  

 X3, X2, X1, X0   : IN STD_LOGIC  

 Y3, Y2, Y1, Y0   : IN STD_LOGIC ;  

 S3, S2, S1, S0   : OUT STD _ LOGIC ;  

 Cout     : OUT STD _ LOGIC  

END adder 4 ;  

 

ARCHITECTURE Structure OF adder 4 IS  

 SIGNAL c1, c2, c3 : STD_LOGIC ;  

 COMPONENT fulladd   

 

 

    PORT (Cin, x,y : IN STD_LOGIC ;  

     S, Cout : OUT STD _LOGIC) ;  

 

END COMPONENT ;  

BEGIN  

Stage 0 : Fulladd PORT MAP (Cin, x0, y0, s0, c1) ;  

Stage 1 : Fulladd PORT MAP (C1, x1, y1, s1, c2) ;  

Stage 2 : Fulladd PORT MAP (C2, x2, y2, s2, c3) ;  

Stage 3 : Fulladd PORT MAP (C3, x3, y3, s3, c4) ;  

Cin = > c3, Cout => Cout , x = >x3, y=>y3, s=>s3) ; 

END Structure ;  

  Figure 2.9. VHDL Code for a four – bit adder 

Intermediate Signals 

Shown Here-these are 

signal used in the 

logic circuit 

Intermediate  

outputs 

are 

Specified 

in the  

Architecture  
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VHDL CODE FOR COMPARATOR  

LIBRARY ieee ;  

USE ieee. Std_logic_1164.all ;  

USE work. Fulladd_package.all ;  

 

ENTITY comparator IS  

 PORT (X, Y : IN STD _LOGIC _VECTOR (3DOWNTO 0) ;  

 V, N, Z     : OUT STD_LOGIC  

 

END comparator ; 

ARCHITECTURE Structure OF comparator IS  

 

 SIGNAL S : STD_LOGIC _VECTOR (3 DOWNTO 0) ;  

 SIGNAL C : STD_LOGIC_VECTOR (1 TO 4) ;  

BEGIN  

 Stage 0 : fulladd PORT MAP (‘1’, X(0), NOT Y(0) , S(0), C(1) ;  

 Stage 1 : fulladd PORT MAP (C(1), X(1), NOT Y(1), S(1), C(2)) ;  

 Stage 2 : fulladd PORT MAP (C(2), X(2), NOT Y(2),S(2), C(3)) ;  

 Stage 3 : fulladd PORT MAP (C(3), X(3), NOT Y(3), S(3), C(4)) ;  

 V<=C(4) XORC (3) ;  

 N<=S(3) ;  

 Z<=’1’ WHEN S (3 DOWN TO0) = “0000” ELSE ‘0’  

 

END Structure ;  

 Figure 2.7 Structure VHDL code for the comparator circuit.  

LIBRARY ieee ;  

USE ieee.std_logic_1164.all ;  

USE ieee.std_logic_signed.all ;  

 

ENTITY comparator IS  

 PORT (X, Y   :  IN STD_LOGIC _VECTOR (3 DO  
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  V, N, Z  : OUT STD_LOGIC ) ;  

END comparator ;  

ARCHITECTURE Behavior of comparator IS  

  SIGNAL S : STD _LOGIC_VECTOR (4DOWNTO 0) ;  

BEGIN  

 S<=(‘0’ & X) – Y ;  

 V<=S(4) XOR X(3) XOR Y(3) XOR S(3) ;  

 N<=S(3) ; 

 Z<=’1’ WHEN S(3 DOWNTO 0) = 0ELSE ‘0’ ; 

END Behavior ;  

Figure  2.8 Behavioral VHDL code for the comparator circuit.  

 

VHDL Code for 3 bit subs tractor  

 (This VHDL code use for 3 bit comparator by using full subtractor)  

 

1. library ieee ;  

 Use ieee. Std_logic_1164. All ;  

 

 entity comp_3 bit is  

 port (a:in std_logic_vector (2 downto 0) ;  

 b:in std_logic_vector (2 downto 0) ;  

 agb, aeb, alb : inout std_logic) ;  

 end comp_3bit ;  

 

 architecture dataflow of comp_3 bit is  

 component fullsub is  

 port (a,b,c : in std_logic) ;  

 end component ;  

 signal s, c:std_logic_vector (2 down to 0) ;  

 begin  

 a1 : fullsub port map (a(0), b(0), ‘0’, s(0), c(0));  
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 a2 : fullsub port map (a(1), b(1), c(0), s(1), c(1)); 

 a3 : fullsub port map (a(2), b(2), c(1), s(2), c(2)); 

 agb<=aeb nor alb ;  

 aeb<=not (s(0) or s(1) or s(2))  ;  

 alb < = c (2) ;  

 end dataflow ;  

 

Subtractor Code  

 library ieee  ;  

 use ieee. Std_logic _1164.all ;  

  

 entity fullsub is  

 port (a,b, c:instd_logic ;  

 s, cout : out std_logic) ;  

 end fullsub ;  

 

 architecture dataflow of fullsub is  

 begin  

 s<=a xorb xor c ;  

 cout < = (not a and (b or c) or (b and c) ;  

 end dataflow ;  

4X4 – Bit Multiplier VHDL Code  

Library IEEE ;  

use IEEE. STD_LOGIC_1164.ALL ;  

use IEEE.MUMERIC_STD.ALL ;  

 

entity Multiplier_VHEL is  

 port  

 ( 

  Nibblel, Nibble2 : in std_logic _vector (3 downto 0); 

  Result : out std_logic_vector (7 downto 0)  
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 );  

end entity Multiplier_VHDL ;  

architecture Behavioral of Multiplier _VHEL is  

begin  

 

 Result  <=std_logic_vector (unsigned (Nibblel)* unsigned (Nibble 2)* unsigned 

(Nibble2)); 

end architecture Behavioral ;  
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UNIT – III 

3.1. INTRODUCTION / REPRESHING TO FLIP – FLOPS & ITS EXCITATION 

TABLE  

T flip- flop  

 

   

    

 

          

                             Fig. 3.1 A circuit symbol for a T-type flip-flop  

 

 If the T input is high, the T flip – flop changes state (“toggles”) whenever the clock 

input is strobed. If the input is low, the flip-flop holds the previous value. This behavior is 

described by the characteristic equation :  

 Qnext  = TQ = TQ + TQ (expanding the XOR operator) and can be described in a truth 

table : 

T flip – flop operation  

Characteristic table       Excitation table  

T Q      Qnext Comment  Q Qnext    T Comment 

0 

0 

1 

1 

0 0 

1 1  

0 1 

1 0 

hold state (no clk) 

hold state (no clk) 

toggle 

toggle 

 0 

1 

0 

1 

0           0 

1           0 

1           1 

0           1 

No change  

No change 

Complement 

Complement 

T             Q  

 

 

˃             Q 
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JK flip – flop  

 

 

 

 

 

 

Fig. 3.2. A circuit symbol for a positive – edge – triggered JK flip – flop  

JK flip – flop  

 The combination J = 1, K = 0 is a command to set the flip – flop; the combination J = 0, 

K=1 is a command to reset the flip – flop ; and the combination J = K = 1 is a command to 

toggle the flip-flop , i.e. , change its output to the logical complement of its current value. 

Setting J = K = 0 does NOT result.  

 The characteristic equation of the JK flip – flop is :  

 Qnext  = JQ + KQ  

 and  the corresponding truth table is :  

JK flip – flop operation  

Characteristic table       Excitation Table  

J      K       Qnext Comment  Q Qnext J K Comment 

0      0          Q 

0      1           0 

1      0           1 

1      1           Q 

hold state  

reset 

set 

toggle 

 0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

X 

X 

X 

X 

1 

0 

No change 

Set 

Reset 

No change 

 

 

J               Q 

Clk 

 

K             Q 
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SR NOR  latch  

R              Q 

 

 

S              Q 

 

Fig : 3.3. Circuit symbol for SR latch  

  

An SR latch, constructed from a pair of cross-coupled NOR gates  

 While the S and R inputs are both low, feedback maintains the Q and Q outputs in a 

constant state. If S (Set) is pulsed high while R (Reset) is held low, then the Q output is forced 

high, and stays high when S returns to low ; similarly, if R is pulsed high while S is held low, 

then the Q output is forced low, and stays low when R returns to low.  

 

Characteristic table      Excitation table  

S R Qnext Action  Q Qnext S R 

0 

0 

1 

1 

0 

1 

0 

1 

Q 

0 

1 

X 

hold state  

reset 

set 

not allowed 

 0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

X 

X 

0 

1 

0 

 

Characteristic equation : Q + R’Q + R’S or Q + = R’Q + S.  
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D – Flip – Flop  

 D- flip - flop is a very useful storage element. Its present state-next state table 

demonstrates the behavior of a D-flip-flop.  

It has the following characteristics :  

Characteristic equation : Q(t+1) = D  

 

 

Characteristic Table     Excitation Table 

D    Q(t+1)   Operation 

0      0           Reset 

1     1             Set  

 

 

 

 

 

 

Counters  

 A counter is a circuit used to count a repeated set of values, like clock pulses. In this 

case, the counter is used to count the number of clock cycles. Since the clock pulses occur at 

known intervals, the counter can be used as an instrument for measuring time (and therefore 

period or frequency). 

 Counters can be classified into two types.  

They are  

i) Asynchronous (or) ripple (or) serial counter.  

ii) Synchronious counter (or) parallel counter  

In a serial counter each flip flop is triggered by the previous FF and thus the counter has a 

cumulative settling time. In synchronous counters the FFs are triggered by a single clock pulse 

simultaneously.  

 

Q(t) Q(t+1) D 

0 0 0 

0 1 1 

1 0 0 

1 1 1 
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Comparison of Asynchronous counter and Synchronous counter  

Asynchronous counter Synchronous counter 

1. Each FF clocked by previous FF All FFs clocked simultaneously  

2. Propagation delay of counter = 

Propagation delay of each FF x no. 

of FFs. Hence slow speed of 

operation. 

Propagation delay of counter = Propagation 

delay of one FF and the combinational 

hardware. Hence high speed of operation.  

3. Simple Hardware More complex hardware  

 

 

 4-Bit Binary Up – Ripple counter (Asynchronous counter)  

 Pulse counters are formed by cascading the flip-flops. A4 bit Binary counter using four 

JK MS flip-flops is shown fig. 3.4. 

 The pulses to be counted are applied to the clock input of FF1. For all stages J and K are 

tied to the supply voltage, so that J=K=1, and makes JK MS Flip Flop as a Toggle Flip Flop. 

Now the Q1 output toggle in each falling or negative edge of the clock pulse.  

 Since Q1 is the clock input for Flip flop FF2, Q2 toggles with each negative edge of Q1. 

Similarly Q3 toggles with each negative edge Q2 and Q4 toggles with each negative edge of Q3.  

 

 

 

 

 

 

 

Q4                      Q3                            Q2                           Q1                        RES 

  

                                                      Fig 3.4 

 

Q4     S     J 

 MSB FF4    C 

        R      K 

Q4     S     J 

 LSB FF1    C 

        R      K 

 

Q4     S     J 

        FF2    C 

        R      K 

 

Q4     S     J 

       FF3    C 

        R      K 
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Pulse Q4 Q3 Q2 Q1 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

 

4- Bit ripple down counter  

 A simple 4 bit Down Counter can be constructed using four JKMS flip flop in the toggle 

mode as shown in fig. 3.5. The clock pulse input is given to C1. Q1 is connected to C2, Q2 to C3, 

Q3 to C4. The outputs are taken as usual from Q4 Q3 Q2 Q1. When all the flip flops are Reset, 

Q4, Q3, Q2, Q1 =0000. In the first negative edge of the clock, Q1 toggles from 0 to 1 . This 

means Q1 changes from 1 to 0 since this is a negative transition immediately Q2 also toggles 

from 0 to 1 and Q2 from 1 to 0 . 
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   Q4                       Q3         Q2                  Q1 +VCC 

 

 

 

RESET 

                                                      Fig3.5 

R Q4 Q4 Q3 Q3 Q2 Q2 Q1 Q1 Pulse 

0 1 0 1 0 1 0 1 0 0 

15 0 1 0 1 0 1 0 1 1 

14 0 1 0 1 0 1 1 0 2 

13 0 1 0 1 1 0 0 1 3 

12 0 1 0 1 1 0 1 0 4 

 

 The change in Q2 being a negative edge, Q3 also toggles from 0 to 1 and Q3 from 1 to 0. 

So a single clock pulse causes change from 0000 to 1111 by chain reaction.  

 In the next negative edge of the clock, Q1 toggles from 1 to 0 and Q1 from 0 to 1. The 

change Q1 in now is positive and so no further toggling takes place in the other flip flops. So 

the output now is Q4 Q3 Q2Q1 = 1110. For the next negative edge of the clock pulse Q2 toggles 

from 1 to 0 Q2 from 0 to 1 . Now the output is Q4 Q3 Q2 Q1 = 1100. In this way the process is 

going on and finally Q4Q3Q2Q1 = 0000.  

4- Bit binary UP / Down counter  

 An Up- Down counter can be constructed by using exclusive  OR gates alone with the 

JK MS flip flops, as shown in Fig 3.6 (J & K inputs are connected to VCC)  

 If the control line is at 0 the output of the gates is Q and so we get up counting.   

 On the other hand, if the control line is held at 1, the output of the gates is Q1 and then 

we get down counting.  

           In the up / down counters, the Flip Flop outputs can be set with the set terminal.  

Q4               J 

Q4              C4 

        R4       K 

Q1               J 

Q1                  C1 

        R1       K 

 

Q2               J 

Q2             C2 

        R2       K 

 

Q3               J 

Q3             C3 

        R3       K 
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Q4 Q3 Q2 Q1 

 

 

              

  

                                                                                                                  DOWN     +5 

 UP        0 

                                                                                 Fig 3.6 

                                                                        

Ripple Counters  

 In a ripple counter the clock pulses are applied to clock input of first flip flop. The clock 

inputs of other flip flop are obtained from the previous Q outputs.  

 Let us consider this ripple counter in the state Q4, Q3, Q2, Q1 = 1111 (15).  

 When the next clock pulse arrives, all the flip – flops are reset giving Q4, Q3, Q2, Q1 = 

0000 

 But this does not happen instantaneously because in the trailing edge of the clock pulse, 

Q1 changes from 1 to 0, this trailing edge of Q1 causes Q2 to change from 1 to 0, this trailing 

edge of Q2 causes Q3 to change from 1 to 0 and similarly for Q4. Though the final result is 

0000, the output passes through intermediate states such as 1110, 1100, 1000.  

 Thus the output ripples through 4 flips flops and hence it is called as ripple counter. The 

ripple counter has a certain propagation delay just a fraction of micro second.  

 Also the intermediate state can cause trouble. To void this difficulty synchronous 

counters are developed. In synchronous counters output of all flip flop resets simultaneously.  

 

 

 

 

Q4      

               C4 

        R4        

Q1      

               C1 

        R1       

K 

 

Q2      

               C2 

        R2        

Q3      

               C3 

        R3        
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Mod n counter  

 A counter, which is reset at the nth clock pulse is called mod ‘n’ counter or divide by ‘n’  

counter or divide by ‘n’ counter. An ordinary 3 bit binary up counter is automatically reset at 

the 8th clock pulse.  Hence it is called “mod 8 counter” or divide by 8 counter”.  

 Similarly an ordinary 4 bit binary  up counter will reset at the 16th clock pulse, hence it is 

called “mod 16 counter” or “divide by 16 counter”.  

 A mod -2 counter consists of only the flip-flop, a mod – 4 counter requires two flip-flops 

and it cunts through four discrete states. Three flip-flops form a mod -8 counter, while four flip 

– flop form a mod -16 counter. Hence the ordinary counters have a natural count of 2, 4, 8, 16, 

32, 64 and so on by using proper number of flip – flops.  

 It we desire to construct the counters having the mod of other than 2,4,8,16 and so on, 

the following points to be remembered.   

1. To determine the number of flip – flops required, it is determined by choosing the lowest 

natural count that is greater than the desired modified count. For example a mod-7 

counter require three flip – flops.  

2. Add an extra logic circuit , to reset the flip – flop in a required level.  

A Mod – 3 Counter  

 The two flip – flops in fig. 3.7 is connected to provide a mod-3 counter. Since two flip-

flops have a natural count of 4, this counter skips one state. The truth table in Fig.3.7(c) Show 

that this counter progresses through the count sequence 00, 01, 10 and then back to 00. It 

clearly skips count 1. 
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CLK 

  

+VCC                                            +VCC  

 

                                         A                                                        B 

                                    (a) Logic Diagram 

Time 

Clock  

     A 

     B   

                                        (b)   Wave forms 

                     

                 

 

 

                                             ©  Truth Table 

 

 

B A Count 

0 

0 

1 

0 

0 

1 

0 

0 

0 

1 

2 

0 

J           A 

˃ 

K         A̅             

J           B 

˃ 

K       BBAR   

BBAR     

BBA̅             
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                       Clock        

 

                                     (d) Logic block  

The two-flip-flop mod-3 counter is considered as a logic building block as shown in fig. 

3.7(d). This counter divides the clock frequency by 3. 

 

Mod-10 counter (Decade counter)  

 BCD numbers are ranging from 0000 to 1001, which have the decimal values of 0 to 9. 

BCD counter means, a counter which will count the values from 0000 to 1001, and also reset 

the next (10th) clock pulse.  

 Hence a mod 10 or divide by 10 counter is called BCD counter. A BCD needs four flip-

flops and a two input NAND gate. The NAND gate is used to reset all the flip-flop at the 10th 

clock clock.  

Synchronous counter :  

 A 4-bit synchronous counter is shown in Fig. 3.8. Here the clock pulses are fed to each 

flip flop simultaneously. So after the 15th clock pulse the state of the Flip Flop Q4 Q3  Q2 Q1  = 

1111.  

 Q1 toggles if J1 = K1 = 1  

 Q2 Toggles if Q1 = q  

 Q3 Toggles if Q1 Q2 = 1    (i.e. A1 = 1)  

 Q4 Toggles if A2 = 1    (i.e. Q3A1 = 1i.e. Q1Q2Q3 = 1)  
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Q4                         Q3                                 Q2                           Q1 

    

   ++++   

 A2        A1 

 

CLOCK 

  +5 

                                     Fig 3.8 Synchronous Counter                        

 At the arrival of 16th clock pulse Q1 will change to 0. Immediately the states of all the 

Flip Flops will b 0000. Thus all the flip flops toggle simultaneously in a single step.  

 The maximum frequency of operation for synchronous counter is 34MHz while 16MHz 

for the Ripple counters in TTL.  

Shift Registers  

 A register is simply a group of flip flops that can be used to store binary numbers. Each 

flip- flop can be store on bit of binary data.  

 A register used to store an 8 bit binary number must have eight flip – flops. 

 Naturally, the flip flops must be connected in cascaded manner, such that the binary 

numbers can be entered (shifted) into the register and possibly shifted out.  

 A group of flip flops connected to provide for entering and shifting the binary data is 

called shift registers.  

 The bits in a binary number can be moved from one place to another’s in to ways, 

namely serial shifting and parallel shifting.  

 In serial shifting, the data bits are shifted in serial fashion beginning with either the MSB 

side or LSB side. In parallel shifting, all data bit are shifted simultaneously.  

 There are two ways to shift data into a register, (serial or parallel) and also two ways to 

shift the data out of the register.  

 This leads to the construction of four basic register types as shown the Fig. 3.9 they are :  

Q3        J3 

FF3       C3 

           K3 

 

Q4        J4 

FF4       C4 

    R4   K4 

 

Q1        J1 

FF1       C1 

           K1 

 

Q2        J2 

FF2       C2 

    R2   K2 
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Fig. 3.9 Shift register types 

 

1. Serial in – Serial out (SISO) 

2. Serial in – Parallel Out (SISO) 

3. Parallel in – Serial Out (PISO) 

4. Parallel in – Parallel Out (PIPO)  

We now need to consider the methods for shifting data in either a serial or parallel fashion. 

Data shifting techniques and methods for constructing the four different types of registers are 

discussed in the following sections.  

1. Serial in & Serial out  

 Fig . 3.10 shows serial in serial out shift left register.  

 We will illustrate the entry of the four bit binary number 1111 into the register, 

beginning with the left-most bit.  

 Initially, register is cleared , So QA QB QCQD = 0000 
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Dout 

 Din 

 

 

 

CP 

                                               Fig 3.10 

 

 

 

(a) When data 1111 is applied serial, i.e.  

 Left – most 1 is applied as Din  

 Din = 1, QA QB QC QD =  0000 

 The arrival of the first falling clock edge sets the right  - most flip – flop, and the stored 

word becomes,  

 QA QB QC QD = 0001  

(b) When the next negative clock edge hits, the QC flip – flop sets and the register contents 

become.  

(c) The third negative clock edge results in ,  

 QA QB QC QD = 0111 

(d) The fourth falling clock edge results in ,  

 QA QB QC QD = 1111  

Fig. 3.11 shows serial in serial out shift right register  

 We will illustrate the entry of the four bit binary number 1111 into the register, 

beginning with the left-most bit.   

 Initially, register is cleared. So QA QB QC QD = 0000 

(a) When data 1111 is applied serially, i.e. left – most 1 is applied as Din.  

 Din = 1 QA QBQCQD = 0011 

 

D C B A 

QD            DD 

 

QC            DC 

 

QB            DB 

 

QA            DA 

A B C D 
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Din                                                                                                                                                                            Dout 

 

 

 

cp 

                                           Fig3.11 

 The arrival of the first falling clock edge sets the left – most flip-flop, and the stored 

word becomes,  

  QA QB QC QD = 1000 

(b) When the next falling clock edge hits, the QB flip – flop sets and the register contents 

become,  

  QA QB QC QD=1100 

(c) The third falling clock edge results in, 

  QA QB QC QD=1110 

 

(d)  The fourth falling clock edge gives,  

  QA QB QC QD=1111 

Serial in parallel out shift register  

 In this case, the data bits are entered into the register in the same manner as discussed in 

the last section, i.e. serially.  

 But the output is taken in parallel. Once the data are stored, each bit appears on its 

respective output line and all bits are available simultaneously, instead of a bit-bybit basis as 

with the serial output.  

 

 

 

 

 

 

D C A 

QB           DB 

 

QC           DC 

 

QD          DD 

 

QA           DA 

 
A D C B 
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Din 

 

 

 

CP 

                         QA                                               QB                                              QC                                                               QD 

                                Fig3.12 

 

Parallel in serial out shift register  

SHIFT/LOAD 

 A B                C                                                     D 

 

 

 

 

 

            

 

 

 CP Serial out 

 

                                                  Fig3.13 

 In this type , the bits are entered in parallel i.e. simultaneously into their respective 

stages on parallel lines.  

B C B A 

QD          DD 

 

QC           DC 

 

QB           DB 

 

QA           DA 

 
A B C D 

G4 G1 G5 

 

G2 

 

G6 

 

G3 

 

QA     DA 

 

QD    DD 

 

QC     DC 

 

QB     DB 

 
A B D C 
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 Fig. 3.13 illustrates a four  - bit parallel in serial out register. There are four input lines 

XA, XB, XC , XD for entering data in parallel into the register.  

 SHIFT / LOAD is the control input which allows shift or loading data operation of the 

register.  

 When SHIFT / LOAD is low, gates G1, G2, G3 are enabled, allowing  each input data bit 

to be applied to D input of its respective flip-flop.  

 When a clock pulse is applied, the flip-flip with D=1 will SET and those with D=0 will 

RESET. Thus all four bits are stored simultaneously.  

 When SHIFT / LOAD is high gates G1, G2, G3 are disabled and gates G4 G5, G6 are 

enabled. This allows the data bits to shift left from one stage to the next.  

 

Parallel in parallel out register 

                                Parallel Data Input 

 

 

A                             B                              C                               D 

 

 

 

 

CP 

                      QA         QB                              QC                              QD 

 

                                                       Parallel Data Outputs 

                                                   Fig3.14 

QA            DA 

 

QD            DD 

 

QC            DC 

 

QB            DB 

 
A B D C 
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 From the third and second types of registers, it is cleared that how to enter the data in 

parallel i.e. all bits simultaneously into the register and how to take data out in parallel from the 

register.  

 In parallel in parallel out register, there is simultaneous entry of all data bits and the bits 

appear on parallel outputs simultaneously. Fig. 3.14 shows this type of register.  

 

SEQUENTIAL CIRCUIT DESIGN  

3.2.  DESIGN STEPS  

 

 Sequential circuits are also called finite state machines (FSMs), The name derives from 

the fact that the functional behavior of these circuits can be represented using a finite, number 

of states. We will often use the term finite state machine, or simply machine, when referring to 

sequential circuits.  

 

W 

 Z 

         Q 

 

CLK  

                      Fig3.15 The General Form of a Sequential Circuit           

 

STATE DIAGRAM  

 The first step in designing a finite state machine is to determine how many state are 

needed and which transitions are possible from one state to another. A good way to begin is to 

select one particular state as a starting state; this is the state that the circuit should enter when 

power is first turned on or when a reset signal is applied.  

 The starting state is called state A. As long as the input w is 0, the circuit need not do 

anything, and so each active clock edge should result in the circuit remaining in state A. When 

w becomes equal to 1, the machine should recognize this, and move tot a different state, which 

Combinational  

Circuit 

Combinational  

Circuit 
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we will call state B. This transition takes places on the next active clock edge after w has 

become equal to 1.  

 In state B, as in state A, the circuit should keep the value of output z at 0, because it has 

not yet seen w= 1 for two consecutive clock cycles. When in state G, if w is 0 at the next active 

clock edge, the circuit should move back to state A. However, if w = 1 when in state B, the 

circuit should change to a third state, called C, and it  should then generate on output z=1. The 

circuit should remain in  state C as long as  w= 1 and should continue to maintain z = 1.  

 When w becomes 0, the machine should move back to state A. Since the preceding 

description handles all possible values of input w that the , machine can encounter in its various 

state. Hence we conclude that three states are needed to implement the desired machine.  

 

 

 Behavior of a sequential circuit is described in several different ways. The simplest 

method is to use a pictorial representation in the form of a state diagram.  The state diagram is a 

graph that depicts states of the circuit as nodes (circles) and transitions between states as 

directed arcs. The state diagram in Figure 3.16 defines the behavior that corresponds to our 

specification. States A, B and C appear as nodes in the diagram.  

 Node A presents the starting state, and it is also the state that the circuit will reach after 

an input w=0 is applied. In this state the output z should be 0, which is indicated as A/z=0 in 

the node.  

 The circuit should remain in state A as long as w = 0, which is indicated by an arc with a 

label w = 0 that originates and terminates at this mode. The first occurrence of w=1 (following 

the condition w= 0) is recorded by moving from state A to state B. This transition is indicated 

on the graph by an arc originating at A and terminating at B.  

 The label w =1 on this arc denotes the input value that causes the transition. In state B 

the output remains at 0, which is indicated as B/z =0 in the node. 

 When the circuit is in state B, it will change to state C if w is still equal to 1 at the next 

active clock edge. In state C the output z becomes equal to 1. If w stays at 1 during subsequent 

clock cycles, the circuit will remain in state C maintaining z =1. However, if w becomes 0 

when the circuit is either in state B or in state C, the next active clock edge will cause a 

transition to state A to take place.  
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                Reset                 

          W=1 

 

W=0  

 W=0 

 W=0 W=1 

 

 

         W=1 

  

Figure 3.16 State diagram of a simple sequential circuit.  

 

STATE TABLE :  

 Although the state diagram provides a description of the behavior of a sequential circuit 

that is easy to understand, to proceed with the implementation of the circuit, it is convenient to 

translate the information contained in the state diagram into a tabular form. Figure 3.17 shows 

the state table for our sequential circuit. The table indicates all transitions from each present 

state to the next state for different values of the input signal. Note that the output z is specified 

with respect to the present state.  

Present 

state 

Next State 
Output 

z 

 = 0 =1  

A 

B 

C 

A 

A 

A 

B 

C 

C 

0 

0 

1 

Figure 3.17 State table for the sequential circuit in figure 3.3 

 

A/Z=0 

C/Z=0 

 

B/Z=0 
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STATE ASSIGNMENT  

 The state table in Figure 3.4 defines the three states in terms of letters A, B and C. When 

implemented in a logic circuit, each state is represented by a particular valuation (combination 

of values) of state variables. Each state variable may be implemented in the form of a flip-flop. 

Since three states have to be realized, it is sufficient to use two state variables. Let these 

variables by y1 and y2.  

W Y1 Y1 

Z 

   

 Y2   Y2 

 

 

CLK 

 

Figure 3.18 A general sequential circuit with input w, output z, and two state flip-flops  

 

 Figure 3.18 shows to indicate the structure of the circuit that implements the required 

finite state machine. Two flip-flops represent the state variables.  

 From the specification in Figures 3.16 and 3.17, the output z is dertermined only by the 

present state of the circuit.  

 Thus the block diagram in Figure 3.18 shows that z is a function of only y1 and y2; our 

design is of Moore type.  

 

 

 

 

 

 

Combinatio

-nal  Circuit 

 

 

Combinatio

-nal  Circuit 

 

˃ 

 

˃ 
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SUMMARY OF DESIGN STEPS  

 We can summarize the steps involved in designing a synchronous sequential circuit as 

follows :  

1. Obtain the specification of the desired circuit.  

2. Derive the states for the machine by first selecting starting state.  

 Then, given the specification of the circuit, consider all valuations of the inputs to the 

circuit and create new states as needed for the machine to respond to these inputs.  

 To keep track of the states as they are visited create a state diagram. When completed, 

the state diagram shows all states in the machine and gives the conditions under which the 

circuit moves from one state to another.  

3. Create a state table from the state diagram.  

4. In our sequential circuit example, there were only three states ; hence it was a simple 

matter to create the state table. However, in practice it is common to deal with circuits 

that have a large number of states.  

 In such cases it is unlikely that the first attempt at deriving a state table will produce 

optimal results. Almost we will have more states than is really necessary. This can be 

corrected by a procedure that minimizes the number of states.  

5. Decide on the number of state variables needed to represent all states and perform the 

state assignment.  

 There are many different state assignments possible for a given sequential circuit. Some 

assignments may be better than others.  

6. Choose the type of flip-flops to be used in the circuit Derive the next – stage logic 

expressions to control the inputs to all flip-flops and then derive logic expressions for 

the outputs of the circuit.  

7. Implement the circuit as indicated by the logic expression.  
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EXAMPLES FOR Mealy and Moore Type Finite State Machines  

Objectives  

 There are two basic ways to design clocked sequential circuits. These are using :  

1. Mealy Machine,  

2. Moore Machine.  

Mealy Machine  

 In a Mealy machine, the outputs are a function of the present state and the value of the 

inputs as shown in Figure 3.19  

Accordingly, the outputs may change asynchronously in response to any change in the 

inputs.  

 

Inputs   X Z Outputs 

 

  Y   

  

Present  

State 

 

                  Fig3.19   Mealy Type Machine  

 

 

 

 

 

 

 

 

 

Combinational  Logic 

Memory Element 
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Moore Machine  

 In a Moore machine the outputs depend only on the present state as shown in Figure 

3.20 

 The outputs change synchronously with the state transition triggered by the active 

clock edge.  

 

 

                                Inputs X 

 

 

 

           Z                                               Y 

 

     Outputs Present State 

                              Fig3.20 Moore type machine 

Mealy State Machine  

 The Mealy machine state diagram is shown in Figure 3.21. 

 Note that there is no reset condition in the state machine that employs two flip-flops. 

This means that the state machine can enter its unused state ‘11’ on start up. 

 

 

 

 

 

 

 

 

 

Combinational  

Logic 

 

Memory 

Element 

 

 

Combinational  

Logic 
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 0/0 

 

 

 

      0/0 

 

     0/0                               1/0                                                1/1 

 

 1/0 

 

 

                         Figure 3.21  Mealy State Machine for ‘111’ Sequence Detector  

 

 To make sure that machine gets resetted to a valid state, we use a ‘Reset’ signal.  

 The logic diagram for this state machine is shown in  Figure 3.22. Note that negative 

triggered flip-flops are used. 

 

 

 

 

 

 

 

 

 

 

 

Intial 

State 

AB=00 

GOT-11 

AB=10 

 

GOT- 1 

AB=01 
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Figure 3.22 : Mealy State Machine Circuit Implementation 

 

                         

 

 

 

                          

                  

 

 

Figure 3.23: Timing Diagram for Mealy Model Sequence Detector 

 

 

 Timing Diagram for the circuit is shown in Figure 3.23. 

 Since the output in Mealy model is a combination of present state and input values, an 

unsynchronized input with triggering clock may result in invalid output, as in the present 

case.  

 Consider the present case where input ‘x’ remains high for sometime after state ‘AB=10’ 

is reached. This results in ‘False Output’, also known as ‘Output Glitch’.  
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Moore State Machine  

 The Moore machine state diagram  for ‘111’ sequence detector is shown in Figure 3.24  

 The state diagram is converted into its equivalent state table (See Table 1).  

 The states are next encoded with binary values and we achieve a state transition table 

(See Table 2).  

 

                                                                                    0 

 

 

 

  

0 1 

                                                  0                                                                          0 

 

 

                                  1  

           

           

           

           

                          

           

        

 

 

 

                                                    

                                                      Figure 3.24: Moore Machine State Diagram  

 

Initial  /        

       0 

 

    ‘1’/0 

 

 

    ‘11’/0 

 

    

‘111’/1 
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Table 1 : State Table  

Present 
Next 

State 
 Output 

Present State 
Next State Output 

Z x =0 x =1 

Initial  

Got – 1  

Got – 11 

Got – 111 

Initial  

Initial 

Initial 

Initial 

Got – 1  

Got – 11  

Got – 111 

Got – 111 

0 

0 

0 

1 

 

  

Table 2 : State Transition Table and Output Table 

Present 
Next 

State 
 Output 

Present State 
Next State Output 

Z x =0 x =1 

Initial  

Got – 1  

Got – 11 

Got – 111 

Initial  

Initial 

Initial 

Initial 

Got – 1  

Got – 11  

Got – 111 

Got – 111 

0 

0 

0 

1 

 

 

  We will use JK and D flip – flops for the Moore circuit implementation. The excitation 

tables for JK and D flip-flops (Table 3 & 4) are referenced to tabulated excitation table 

(See Table 5)  

Table 3 : Excitation Table for JK flip-flop  

Q (t) Q(t+1) J K 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

X 

X 

X 

X 

1 

0 
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Table 4: Excitation Table for D flip – flop  

Q (t) Q(t+1) J 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

 

Table 5 : Excitation Table for the Moore Implementation  

Inputs of Comb. 

Circuits Next State 

Outputs of Comb. 

Circuit Output 

Present State Input Flip-flop Inputs 

A B X A B JA KA DB Z 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

0 

0 

1 

0 

1 

0 

1 

1 

0 

1 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

1 

X 

X 

X 

X 

X 

X 

X 

X 

X 

1 

0 

1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

 

 

 

 Simplifying Table 5 using maps, we get the following equations :  

 JA = X.B  

 KA = X’ 

 DB = X (A+B) 

 Z = A.B  

 Note that the output is a function of present state values only.  

 The circuit diagram for Moore machine circuit implementation is shown in Figure 3.25 
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 The timing diagram for Moore machine model is also shown in Figure 3.26 

 There is no false output in a Moore model, since the output depends only on the state of 

the flop flops, which are synchronized with clock. The outputs remain valid throughout 

the logic state in Moore model.  

 

 

Fig3.25 Moore Machine Implementation for Sequence detector 

 

Figure 3.26 : Timing Diagram for Moore Model Sequence Detector.  

 

DESIGN OF MODULO COUNTER (UPTO 3 BIT) WITH ONLY D FLIP FLOPS 

THROUGH STATE DIAGRAM  

 The counting sequence is 0, 1, 2,……., 6, 7,0,1,…… 

 There exists an input signal w. The value of this signal is considered during each clock 

cycle. If w =0, the present count remains the same ; if w =1, the count is incremented.  
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STATE DIAGRAM AND STATE TABLE FOR A MODULO – 8 COUNTER  

 Figure 3.27 gives a state diagram for the desired counter. There is a state associated with 

each count. In the diagram state A corresponds to count 0, state B to count 1, and so on. We 

show the transitions between the states needed to implement the counting sequence. Note that 

the output signals are specified as depending only on the State of the counter at a given time, 

which is the Moore model of sequential circuits.  

 The state diagram may be represented in the state-table form as shown in figure 3.28 

    W=0   W=0   W=0        W=0 

 

             W=1   W=1        W=1 

 

 

W=1            W=1 

 

 

 W=1      W=1   W=1 

 

 

W=0   W=0         W=0   W=0 

Fig3.27   State Diagram 
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Present 

 State 

Next State 
Output 

 =0  =1 

A 

B 

C 

D 

E 

F 

G 

H 

A 

B 

C 

D 

E 

F 

G 

H 

B 

C 

D 

E 

F 

G 

H 

A 

0 

1 

2 

3 

4 

5 

6 

7 

Figure . 3.28 State table for the counter 

 

STATE ASSIGNMENT  

 Three state variable s are needed to represent the eight states. Let these variables, 

denoting  the present state, be called y2, y1, and y0. Let Y2, Y1, and Y0 denote the corresponding 

next – state functions. The most convenient (and simplest) state assignment is to encode each 

state with the binary number that the counter should give as output in the state. Then the 

required output signals will be the same as the signals that represent the state variables. This 

leads to the state – assigned table in Figure 3.29 

 The final step in the design is to choose the type of flip-flops and derive the expressions 

that control the flip – flip-flop inputs. The most straight forward choice is to use d-type flip-

flops.  
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 Present 

 State 

y2y1y0 

Next State 
Output 

z2z1z0 
  =0 

Y2Y1Y0 

 =1 

Y2Y1Y0 

A 

B 

C 

D 

E 

F 

G 

H 

000 

001 

010 

011 

100 

101 

110 

111 

000 

001 

010 

011 

100 

101 

110 

111 

001 

010 

011 

100 

101 

110 

111 

000 

000 

001 

010 

011 

100 

101 

110 

111 

 

Figure 3.29 State – assigned table for the counter  

 

 

IMPLEMENTATION USING D  - TYPE FLIP – FLOPS  

 When using d-type flip-flops to realize the finite state machine, each next – state 

function, Yi, is connected to the D input of the flip-flop that implements the state variable yi.  

 

 The next-state functions are derived from the information in Figure 3.12 Using 

Karnaugh maps in figure 3.13, we obtain the following implementation.  

 

 Do = Y0 + wy0 + wy0  

 D1 = Y1 = wy1 + y1y0 + wy0y1  

 D2 = Y2 = wy2 + y0y2+y1y2 + wy0y1y2  

 

 The resulting circuit is given in Figure 3.14. It is not obvious how to extend this circuit 

to implement a larger counter, because no clear pattern is not found in the expressions for D0, 

D1 and D2. However, we can rewrite these expressions as follows.  

   D0 = wy0 + wy0  

      = wy0  
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   D1 = wy1 + y1y0 +wy0y1 

      = (w+y0) y1 + wy0y1 

     = wy0y1 + wy0y1 

    = wy0 y1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Karnaugh maps for D Flip – flops for the counter  

 

  D2  =  wy2 +y0y2 + y1y2 + wy0y1y2 

   = (w+y0+y1)y2 + wy0y1y2 

   = wy0y1y2 + wy0y1y2 

   = wy0y1 y2 

      Y2 = w. y2 +y0. y1 + y1.y2 + w. y0 . y2 

Figure 3.13 Karnaugh maps for D Flip – flops for the counter  

  D2  =  wy2 +y0y2 + y1y2 + wy0y1y2 

   = (w+y0+y1)y2 + wy0y1y2 
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   = wy0y1y2 + wy0y1y2 

   = wy0y1 y2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLES :  

 Design a modulo 6 counter using D Flip Flops use proper excitation table & State 

diagram  

 

SOLUTION :  

Step : 1  

 Count Sequence :  0 1 2 3 4 5 
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Step 2 :  

 State Diagram  

 

   W=0    w=0    w=0 

 

              

            

           W=1                                                                                                            w=1 

 

                                              

       W=1                                       W=1                                        

A/0 

 

C/2 

 

B/1 

 

D/3 

 

E/4 

 

F/5 
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Step 3 :  

 State Table  

Present 

 State 

Next State 
Output 

 =0  =1 

A 

B 

C 

D 

E 

F 

A 

B 

C 

D 

E 

F 

B 

C 

D 

E 

F 

A 

0 

1 

2 

3 

4 

5 

Step : 4  

 State Assigned Table  

 Present 

 State 

y2y1y0 

Next State 
Output 

z2z1z0 
  =0 

Y2Y1Y0 

 =1 

Y2Y1Y0 

A 

B 

C 

D 

E 

F 

000 

001 

010 

011 

100 

101 

000 

001 

010 

011 

100 

101 

001 

010 

011 

100 

101 

000 

000 

001 

010 

011 

100 

101 
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Step 5 :  

 K map implication 
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Step 6 : Logic diagram  

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE:  

Design a modulo 5 counter using D Flip Flops use proper excitation table & State 

diagram  

 

SOLUTION  

Step 1 : Count Sequence : 0 1 2 3 4 
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Step 2 : State Diagram   

 

  W=0    w=0    w=0 

 

   W=1        w=1     

  

 W=1          w=1 

 

 

      W=1 

  W=0         w=0 

 

 

Step 3 :  

 State Table  

 

Present 

 State 

Next State 
Output 

 =0  =1 

A 

B 

C 

D 

E 

A 

B 

C 

D 

E 

B 

C 

D 

E 

F 

0 

1 

2 

3 

4 

 

 

 

 

A/0 

D/3 

 

E/4 

 

B/1 

 

C/2 
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Step 4 :  

 State Assigned Table  

 

 Present 

 State 

y1y0 

Next State 
Output 

z1z0 
  =0 

Y1Y0 

 =1 

Y1Y0 

A 

B 

C 

D 

E 

000 

001 

010 

011 

100 

000 

001 

010 

011 

100 

001 

010 

011 

100 

000 

000 

001 

010 

011 

100 

 

 

 

Step 5 

 K map simplification  

 

 00      01       11     10     00    01        11      10 

  

00   00 

01   01 

11   11 

10   10 

 

                 K map for y0       K map for y1 

     Y0= wy2y0 + wy2y0                                       Y1=wy2y1 + wy2 

D0= Y0= wy2y0 + wy2y0                                D1= Y1=wy2y1 + wy2 

0   0 

0 d d d 

0 d d d 

1 0 0  

0 0   

0 d d d 

0 D d d 

0  0  
1 

1 1 

1         1 

1 

1         1 

1 
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                                              00     01      11      10 

                                   00 

                                   01 

                                   11 

                                   10 

 

K map for y2 

                                                           Y2=wy2y1y0 + wy2y1y0 

                                             D2= Y2=wy2y1y0 + wy2y1y0 

0 0 0 0 

1 D d d 

0 d d d 

0 0  0 
1 
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EXAMPLE: 

Design a modulo 4 counter using D Flip Flops use proper excitation table & State diagram  

 

Solution :  

Step : 1 : Count Sequence   0 1 2 3 

 

 

Step : 2 : State Diagram  

 

 

                                     W=0                            W=0 

   W=1 

 

             W=1       w=1 

 

 

              W=1 

                                      W=0                W=0 

 

 

 

 

 

 

 

 

 

A/0 

C/2 

 

D/3 

 

B/1 
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Step 3 :  

 State Table  

 

Present 

 State 

Next State 
Output 

 =0  =1 

A 

B 

C 

D 

A 

B 

C 

D 

B 

C 

D 

E 

0 

1 

2 

3 

Step 4 :  

 State Assigned Table  

 Present 

 State 

y1y0 

Next State 
Output 

z1z0 
  =0 

Y1Y0 

 =1 

Y1Y0 

A 

B 

C 

D 

00 

01 

10 

11 

00 

01 

10 

11 

01 

10 

11 

00 

00 

01 

10 

11 

 

Step 5 

 K map simplification  

 

        00      01      11    10      00       01       11       10 

0        0 

1        1 

           

            K Map For Y0                                                         K Map For Y1 

Y0=w    y0                                                     Y1=wy1 + wy1y0  + wy1y0   

D0= Y0= w    Y0                                                                  D1= wy1 + wy1y0  + wy1y0   

0 0   

0  0  

0   0 

1 0 0 1 
1 1 

1       1 1       1 
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UNIT – IV 

4.1 VHDL CODE FOR SEQUENTIAL CIRCUIT  

VHDL Constructs for storage elements with reset input  

VHDL code for a Gated D Latch 

LIBRARY ieee; 

USE ieee.std_logic-1164.all; 

  ENTITY latch is PORT (D, clk :  IN STD – LOGIC; 

      Q : OUT STD – LOGIC;  

END latch; 

 

ARCHITECTURE Behavior OF latch IS BEGIN  

  PROCESS (D, clk) 

  BEGIN 

   IF clk  = ‘1’ THEN  

    Q<=D; 

   END PROCESS; 

  END Behavior; 

 

 

VHDL code for D flip with Reset input   

library IEEE; 

use IEEE.std_logic_1664.all; 

 

entity d_ff_srss is  

port ( 

d,clk,reset,set : in STD_LOGIC; 

q : out STD_LOGIC); 

end d_ff_ 

ARCHITECTURE Behavior OF srss of  d_ff_ 
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begin 

process(clk) 

begin 

if clk’event and clk=’1’ then 

if reset=’1’ then 

q <= ‘0’; 

elsif set =’1’ then  

q <= ‘0’; 

elsif set =’1’ then  

q <= ‘1’; 

else 

q <=d; 

end if; 

end if; 

end process; 

end d_ff_srss; 

q <=d; 

end if; 

end if; 

end process; 

end d_ff_srss; 
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VHDL Code for D.. Flip Flop Without reset Input  

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity DFF1 is  

Port (D : in std_logi; 

 CLK : in std_logic; 

 Q : out std_logic; 

 QN : out std_logic; 

end DFF1; 

 

architecture Behavioral of DFF1 is  

begin  

 process (CLK) 

 begin 

   if CLK = ‘1’ then 

   Q <= D; 

   QN <=NOT D; 

   end if; 

 end process; 

end Behavioral; 

 

VHDL Code for JK Flip flop with reset Input  

Library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 
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entity JKFF3 IS  

 Port (CLOCK : in std_logic; 

 J : in std_logic; 

 K : in std_logic; 

 REST : in std_logic; 

 Q : out std_logic; 

 QBAR : out std_logic); 

end JKFF3; 

 

architecture Behavioral of JKFF3 is  

signal state : std_logic; 

signal input : std_logic_vector (1 downto 0); 

begin 

 input < = J & K; 

 p:procees (CLOCK, RESET) is 

 begin   

   if RESET =’1’ then  

   state<=’0’ 

   elsif (rising_edge (CLOCK) then 

   case(input) is  

   when”11”=> 

   state<=not state; 

   when “10” => 

   state<=’1’; 

   when “01”=> 

   state<=’0’; 

   when other=>null; 

   end case; 
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   end if; 

  end process; 

 end Behavioral; 

 

VHDL Code for JK Flip flop without reset Input  

Library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity JKFLIPELOP1 is 

Port (J : in std_logic; 

 K : in std_logic; 

 CLK : in std_logic; 

 Q : inout std_logic; 

 QN : inout std_logic); 

end JKFLIPFLOP1; 

 

architecture Behaviroral of JKFLIPFLOP1 is  

begin  

 process (CLK,J,K) 

 begin 

  if (CLK=’1’ and CLK’ event) then  

  if (J=’0’ and K=’0’) then 

   Q <=Q 

   QN <+QN; 

  elsif(J=’0’ and K=’1’) then 

   Q<= ‘1’; 

   QN <= ‘0’; 
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  elsif(J=’1’ and K=’0’) then 

   Q <= ‘0’; 

   QN <= ‘1’; 

  elsif (J=’1’ and K=’0’) then  

   Q <=’0’; 

   QN <= ‘1’; 

  elsif(J=’1’ and K=’1’) then 

   Q <= NOT Q; 

   QN <= NOT QN’  

  end if; 

  end if’ 

 end process; 

end Behaviroal; 

 

VHDL code for T FF with reset input  

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity tff is  

Port (clk : in STD_LOGIC; 

reset : in STD_LOGIC; 

t : in STD_LOGIC; 

q : out STD_LOGIC; 

end tff; 

architecture Behavioral of tff is  

signal q_reg: std_logic; 

signal q_next: std_logic; 

begin 
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process(clk) 

begin 

if (reset = ‘1’) then 

q_reg <= ‘0’; elsif (clk’ event and clk = ‘1’) then 

 q_reg <= q_next; 

end if; 

end process; 

q_next <= q_reg  

when t = ‘0’ else not (q_reg); 

q <= q_reg; 

end Behaviroal; 

VHDL Program for T Flip-Flop without Reset input  

Library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSINED.ALL; 

entity tflip is  

port (T, CLK:in bit; 

Q : inout bit; 

QN : out bit); 

end tflip; 

architecture Behaviroal of tflip is  

begin 

process (CLK) 

begin 

if CLK =’0’ and CLK’ event then  

Q <= (T and not Q) or (not T and Q) after 10 ns; 

end if; 

QN<=NOT Q; 
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END PROCESS; 

END BEHAVIORAL; 

 

4.2 VHDL EXAMPLES 

Counters (up to 3 bits) 

(i) Three – bit up – Counter with synchronous reset 

 LIBRARY ieee ; 

 USE ieee.std_logic_1164.all; 

 USE ieee.std_logic_unsigend.all; 

 

 ENTITY upcounter IS 

  PORT (clock : IN STD_LOGIC ; 

   clear  : IN STD_LOGIC ; 

   q  : OUT STD_LOGIC_VECTOR 

       (2 DOWNTO 0)) ; 

 END upcounter ; 

 

 ARCHITECTURE behavior OF upcounter IS 

 SIGNAL count  :STD_LOGIC_VECTOR (2 DOWN TO 0); 

 BEGIN 

  IF clock’EVENT AND clock = ‘1’ THEN 

   IF clear = ‘1’ THEN 
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    count< = “000” ; 

   ELSE 

    count<= count + ‘1’ ; 

   END IF ; 

  END IF ; 

 END PROCESS ; 

  q <= count ; 

 END behavior ; 

 

3- bit up counter with reset 

Truth Table 

Clock Count (2) Count (1) Count (0) 

Clear 0 0 0 

1 0 0 1 

2 0 1 0 

3 0 1 1 

4 1 0 0 

5 1 0 1 

6 1 1 0 

7 1 1 1 
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NOTE : 

If we want to design 2 bit up counter the only change is the width of q is changed as 2 

bit as shown 

[q : OUT STD_LOGIC_VECTOR (1 DOWNTO 0)) ;] 

 

(ii) Three – bit down – counter with synchronous reset 

 LIBRARY ieee ; 

 USE ieee.std_logic_1164.all; 

 USE ieee.std_logic_unsigned.all; 

 ENTITY downcounter IS 

  PORT (clock : IN STD_LOGIC ; 

   clear  : IN STD_LOGIC ; 

   q  : OUT STD_LOGIC_VECTOR 

        (2 DOWNTO 0)); 

 END downcounter ; 

  

 ARCHITECTURE  behavior  OF  downcounter  IS  

 SIGNAL count :STD_LOGIC_VECTOR (2 DOWNTO 0); 

 BEGIN 
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  downcounter : PROCESS (clock) 

  BEGIN 

   IF clock’EVENT AND clock = ‘1’ THEN 

    IF clear = ‘1’ THEN 

     count< = “000” ; 

    ELSE 

     count< = count – ‘1’ ; 

    END IF ; 

   END IF ; 

  END PROCESS ; 

  q < = count ; 

 END behavior ; 

3-bit down counter with reset    :Truth Table 

Clock Count (2) Count (1) Count (0) 

Clear 0 0 0 

1 1 1 1 

2 1 1 0 

3 1 0 1 

4 1 0 0 

5 0 1 1 

6 0 1 0 

7 0 0 1 
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Note : 

 If we want to design 2 bit downcounter the only change is the width of q is 

changed as 2 bit as shown. 

 [q : OUT STD_LOGIC_VECTOR (1 DOWNTO 0));] 

VHDL Program for decade counter 

LIBRARY ieee ; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_unsigned.all; 

 

ENTITY modcounter IS 

PORT (clock : IN STD_LOGIC ; 

         clear  : IN STD_LOGIC ; 

q    : OUT STD_LOGIC_VECTOR (3 DOWNTO 0)) ; 

END modcounter ; 

 

ARCHITECTURE behavior OF mod counter IS 

SIGNAL count: STD_LOGIC_VECTOR (3 DOWNTO 0); 

BEGIN 

modcounter: PROCESS (clock) 

         BEGIN 

                IF clock ‘EVENT AND clock = ‘1’ THEN 

                       IF (clear = ‘1’ OR count = “1001”) THEN 

                              count < = “0000”; 

                       ELSE 

                             count <= count + ‘1’; 

                    END IF; 

               END IF; 

    END PROCESS 

               q < = count; 

    END behavior; 
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Modulo 5 up counter 

Truth Table 

Clock Count (3) Count (2) Count (1) Count (0) 

Clear 0 0 0 0 

1 0 0 0 0 

2 0 0 0 1 

3 0 0 1 0 

4 0 0 1 1 

5 0 1 0 0 

6 0 1 0 1 

7 0 1 1 0 

8 0 1 1 1 

9 1 0 0 0 

10 1 0 0 1 

11 0 0 0 0 

12 0 0 0 1 

 

Note: 

 If we want to design modulo 6 counter it means that it has to count up to 5 [101] 

and for the next clock the value is 000. So the only change in the program is line number 

‘15’ the change is mentioned below.  

 IF (clear = ‘1’ OR count = “101”) THEN 
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(iv) 3 bit up / down counter with synchronous  reset 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_unsigned.all; 

 

ENTITY modcounter IS 

PORT (clock: IN STD_LOGIC; 

             clear: IN STD_LOGIC; 

             select: IN STD_LOGIC;  

q: OUT STD_LOGIC_VECTOR (2DOWNTO 0)) ; 

END updowncounter; 

ARCHITECTURE behavior OF updowncounter IS 

SIGNAL count: STD_LOGIC_VECTOR (2DOWNTO 0); 

BEGIN 

updowncounter: PROCESS (clock) 

         BEGIN 

                IF clock ‘EVENT AND clock = ‘1’ THEN 

                       IF clear = ‘1’ THEN 

                              count < = “000” ; 

ELSIF select = ‘1’ 

                             count <= count + ‘1’; 

   ELSE 

                             count <= count – ‘1’; 

               END IF; 

         END IF 

    END PROCESS 

               q < = count; 

    END behavior; 
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3-bit up / down counter 

Clock Count (2) Count (1) Count (0) 

Clear 1 0 0 

1 1 0 1 

2 1 0 0 

3 1 0 1 

4 1 1 0 

5 1 1 1 

6 1 1 0 

7 1 1 1 

8 0 1 0 

9 0 1 1 

10 0 1 0 

11 0 1 1 

12 0 0 0 

13 0 0 1 
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Explanation: 

 The code defines an entity named up-down counter.  

 It has the inputs clock, select, clear (synchronous reset input) and the output q. 

 The process sensitivity list includes clock. Because the value of q depends on the 

changes in the value of this signal. 

 During positive clock edge (if clock ‘EVENT AND clock = ‘1’) only the output q 

is changed. If clear input is equal to 1, the output count = 000. Else it will check 

the condition select input, if select = 1 count = count + 1. Else the output count = 

count-1, and it is assigned to q. 

Johnson Counter 

 In a Johnson counter, inverted output of the last stage flip-flop is fed back to the 

input of the first stage flip flop. 
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Clock L Q0 Q0 Q0 Q0 

0 1 0 0 0 0 

1 0 1 0 0 0 

2 0 1 1 0 0 

3 0 1 1 1 0 

4 0 1 1 1 1 

5 0 0 1 1 1 

6 0 0 0 1 1 

7 0 0 0 0 1 

8 0 0 0 0 0 

9 0 1 0 0 0 

 

Table Counting sequence of 4 bit Johnson Counter 

Program 

 LIBRARY ieee; 

 USE ieee.std_logic_1164.911 

 USE ieee.std_logic_unsigend.all; 

 ENTITY Johnson IS 

  PORT (clock : IN STD_LOGIC; 

   C  : IN STD_LOGIC; 

   Q  : BUFFERSTD_LOGIC_VECTOR 

       (3 DOWNTO 0)); 

 END Johnson; 
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 ARCHITECTURE Behavior of Johnson IS 

 BEGIN 

  PROCESS (clock, C) 

  BEGIN 

  WAIT UNTIL clock ‘EVENT AND clock = ‘1’; 

  IF C = ‘1’ THEN 

      Q < = “0000” 

  ELSE 

  Q (3) < = Q (2); 

  Q (2) < = Q (1); 

       Q (1) < = Q (0); 

       Q (0) <= Q (3); 

  END IF; 

 END PROCESS; 

  q <= count; 

 END behavior; 
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  UNIT – V 

 

INTRODUCTION TO PROM, PLA & PAL  

Programmable Read Only Memory (PROM) 

 A programmable read only memory (PROM) is a device that includes both the decoder 

and the OR gates within a single IC package. The Fig. no 5.1 shows the block diagram of 

PROM. It consists of n input lines and m output lines. Each bit combination of the input 

variables is called as an address. Each bit combination that comes out of the output lines is 

called as a word. The number of bits per word is equal to the number of output lines, m. The 

address specified in binary number denotes one of the minterms of n variables. The number of 

distinct addresses possible with n input variables is 2n distinct addresses in PROM, there are 2n 

distinct words in the PROM. The words available on the output lines at any given time depends 

on the address value applied to the input lines.  

 

Fig.N0:5.1 Block diagram of PROM 

 Let us consider 64 x 4 PROM. The PROM consists of 64 words which consists of 4-bits 

each. This indicates that there are four output lines and particular word from 64 words presently 

available on the output lines is determined from the six input lines. There are only six inputs in 

a 64x4 PROM because 26 = 64 and with six variables, it can specify 64 addresses or minterms. 

For each address input, there is a unique selected word. Thus, if the input address is 000000, 

word number 0 is selected and applied to the output lines. If the input address is 111111, word 

number 63 is selected and applied to the output lines.  
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 The Fig.no 5.2 shows the internal logic construction of a 64 x 4 PROM. The six input 

variables are decoded in 64 lines by means of 64 AND gates and 6 inverters. Each output of the 

decoder represents one of the minterms function of six variables. The 64 outputs of the decoder 

are connected through fuses to each OR gate. Only four of these fuses are shown in the 

diagram, but actually each OR gate has 64 inputs and each input goes through a fuse that can be 

shown as desired.  

 

Fig.N0:5.2 Logic construction of 64 x4 PROM 

Combinational Logic Implementation using PROM  

 By Looking, at the logic diagram of the PROM, each output provides the sum of all the 

minterms of n input variables. (i.e., any Boolean function can be expressed in sum of 

minterms). By breaking the links of those minterms not included in the function, each PROM 

output can be made to represent the Boolean function of one of the output variables in the 

combinational circuit.  For an n-input, m-output combinational circuit, it needs a 2nx m PROM.  

Example:  

 Using PROM realize the following expressions.  

 F1 (a,b,c)  =   m (0,1,3,5,7) 

 F2 (a,b,c)  =  m (1,2,5,6) 
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Solution:  

The given functions have three inputs. They generate 23 = 8 minterms and since there are two 

functions, there are two outputs. The functions can be realized as shown in Fig no 5.3 

 

Fig.No:5.3 2nx m PROM 

 

Example:  

 Design a combination circuit using a PROM. The circuit accepts 3-bit binary number 

and generates its equivalent Excess – 3 codes.  

Solution:  

 Let us derive the truth table for the given combinational circuit. Table shows the truth 

table.  
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Table No: 5.1 : Truth table for 3-bit binary to Excess -3 converter 

Inputs Outputs 

A2 A1 A0 B3 B2 B1 B0 

0 0 0 0 0 1 1 

0 0 1 0 1 0 0 

0 1 0 0 1 0 1 

0 1 1 0 1 1 0 

1 0 0 0 1 1 1 

1 0 1 1 0 0 0 

1 1 0 1 0 0 1 

1 1 1 1 0 1 0 

 

 In practice while the process of  designing combinational circuits with PROM, it is not 

necessary to show the internal gate connections of fuses inside the unit, as shown in the Fig 

no.5.3. This was shown for demonstration purpose only. The designer has to specify only the 

PROM (inputs and outputs) and its truth table, as shown in the fig.  
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Fig.N0:5.4 combinational circuits with PROM 

 

Fig.No:5.5 BLOCK DIAGRAM OF PROM 
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Table No: 5.2 PROM truth table 

A2 A1 A0 F3 F2 F1 F0 

0 0 0 0 0 1 1 

0 0 1 0 1 0 0 

0 1 0 0 1 0 1 

0 1 1 0 1 1 0 

1 0 0 0 1 1 1 

1 0 1 1 0 0 0 

1 1 0 1 0 0 1 

1 1 1 1 0 1 0 

 

PROGRAMMABLE LOGIC ARRAY (PLA) 

  

Several types of PLDs are commercially available. The first developed was the 

programmable logic array (PLA). The general structure of a PLA is shown in Figure no 5.6. 

Based on the idea that logic functions can be realized in sum-of-products form, a PLA consists 

of a collection of AND gates that feeds a set of OR gates. As shown in the figure, the PLA’s 

inputs x1,................ xn pass through a set of buffers (which provide both the true value and the 

complement of each input) into a circuit block called an, AND plane, or AND array.  
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Fig.No:5.6 BLOCK DIAGRAM OF PLA 

 

The AND plane produces a set of product terms P1.........Pk. Each output can be 

configured to realize any sum of P1,..........,Pk and hence any sum-of-products function as the 

PLA inputs.  

 

 A more detailed diagram of a small PLA is given in Figure no 5.7, which shows a PLA 

with three inputs, four product terms, and two outputs. Each AND gate in the AND plane has 

six inputs, corresponding to the true and complementing versions of the three input signals.  

 

 Each connection to an AND gate is programmable; a signal that is connected to an AND 

gate is indicated with a wavy line, and a signal that is not connected to the gate is shown with a 

broken line. The circuitry is designed in such a way that any unconnected AND – gate inputs 

do not affect the output of the AND gate.  
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   x1                 x2                  x3                                        programmable  

                                                                                     connections 

          p1              OR plane 

 

 

         p2 

 

 

          p3 

 

 

          p4 

 

 AND Plane 

 

 f1             f2 

                                  Fig 5.7 Gate Level Diagram of a PLA
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 In Figure no.5.8 the AND gate that produces P1 is shown connected to the inputs x1 and 

x2. Hence P1 = x1x2 Similarly, P2 = x1x3, P3 = x1x2x3 and P4 = x1x3.  Programmable connections 

also exist for the OR plane. Output f1 is connected to product terms P1, P2, and P3. It is therefore 

realizes the function f1 = x1x2+x1x3+x1x2x3   Similarly, output f2 = x1x2+ x1x2x3+ x1x3 Although  

shows the PLA programmed to implement the functions described above, by programming the 

AND and OR planes differently, in which each of the output f1 and f2 could implement various 

functions of x1, x2, and x3. The only constraint on the function is that can be implemented is the 

size of the AND plane because it products only four product terms. 

 

 Although Figure no.5.7 illustrates clearly the functional structure of a PLA, this style of 

drawing is not suitable for larger chips. Instead it has become customary in technical literature 

to use the style shown in Figure no 5.8. Each AND gate is depicted as a single horizontal line 

attached to an AND –gate symbol. The possible inputs to the AND gate are drawn as vertical 

lines that cross the horizontal line. At any crossing of a vertical and horizontal line, a 

programmable connection indicated by an x. Figure 5.8 shows the programmable connections 

needed to implement the product terms in Figure no 5.7. Each OR gate is drawn in a similar 

manner, with a vertical line attached to an OR-gate symbol. The AND gate outputs cross these 

lines, and corresponding programmable connections can be formed. The figure illustrates the 

programmable connections that produce the functions f1 and f2 from figure 5.7. www.binils.com
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Fig.No:5.8 Customary Schematic for the PLA  in figure 5.7 

 

 

PROGRAMMABLE ARRAY LOGIC (PAL) 

   In a PLA both the AND and OR planes are programmable. The programmable switches 

presented two difficulties for manufacturers of these devices; 

(i) They were hard to fabricate correctly and   (ii) they reduced the speed performance of 

circuits implemented in PLAs. These drawbacks led to the development of a similar device in 

which the AND plane is programmable, but the OR plane is fixed. Such a chip is known as a 

Programmable Array Logic (PAL) device. 

  Because they are simpler to manufacture, and thus less expensive than PLAs, and offer better 

performance. PALs have become popular in practical applications. 
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 x1         x2   x3 

 

 

 

 P1 

            1                  f1 

 P2                                                        

 

 P3 

      f2 

 P4 

 

 

 AND Plane 

 

Fig 5.9 An Example of a PAL 

 

 

   An example of a PAL with three inputs, four product terms and two outputs is given in figure 

5.9. The product terms P1 and P2   are hardwired to one OR gate, and P3 and P4 are hardwired to 

the other OR gate. The PAL is shown programmed to realize the two logic functions 

      f1 = x1x2x3 + x1x2x3   and f2= x1x2 + x1x2x3. In comparison to the PLA in figure 5.3, the PAL 

offers less flexibility 

        The PLA allows up to four product terms per OR gate, whereas the OR gates in the PAL 

have only two inputs. To compensate for the reduced flexibility, PALs are manufactured in a 

range of sizes, with various numbers of inputs and outputs, and different numbers of inputs to 

the OR gates.   
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 So far we have   assumed that the OR gates in a PAL, as in a PLA, connect directly to 

the output pins of the chip. In many PALs extra circuitry is added at the output of each OR gate 

to provide additional flexibility. It is customary to use the term macro cell to refer to the OR 

gate combined with the extra circuitry.  

 

 An example for the flexibility that may be provided in a macro cell is given in Figure 

5.10. The symbol labeled flip-flop represents a memory element. It stores the value produced 

by the OR gate output at a particular point in time and can hold that value as indefinite. The 

flip-flop is controlled by the signal called clock. When clock makes a transition from logic 

value 0 to 1, flip-flop stores the value at its D input at that time and this value appears at the 

flip-flop’s Q output. Flip-flops are used for implementing many types of logic circuits.  

 

 

Fig. No: 5.10 2-to-1 multiplexer 

 

In Figure no. 5.10, a 2-to-1 multiplexer selects as an output from the PAL either the OR-

gate output or the flip-flop output. The multiplexer’s select line can be programmed to be either 

0 or 1. Figure no. 5.8 shows another logic gate, called a tri-state buffer, connected between the 

multiplexer and the PAL output.  
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 Finally, the multiplexer’s output is “feed back” to the AND plane in the PAL. This 

feedback connection allows the logic function produced by the multiplexer to be used internally 

in the PAL. This allows the implementation of circuits that have multiple stages or levels, of 

logic gates.  

 

 

Comparison between PROM, PLA and PAL  

Sr. No PROM PLA PAL 

1 

AND array is fixed and 

OR array is programmable 

Both AND and OR 

arrays are 

programmable 

OR array is fixed and 

AND array is 

programmable 

2 
Cheaper and simple to use. Costliest and complex 

than PAL and PROMs. 

Cheaper and simpler 

3 

All minterms are decoded AND array can be 

programmed to get 

desired minterms 

AND array can be 

programmed to get 

desired minterms. 

4 

Only Boolean functions in 

standard SOP form can be 

implemented using PROM 

Any Boolean functions 

in SOP form can be 

implemented using 

PLA 

Any Boolean 

functions in SOP 

form can be 

implemented using 

PAL.  

 

 

 

COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLDs) 

 PLAs and PALs are useful for implementing a wide variety of small digital circuits. 

Each device can be used to implement circuits that do not require more than number of inputs, 

product terms, and outputs that are provided in the particular chip.  

www.binils.com

Anna University, Polytechnic & Schools
                    www.binils.com



170 
 

 These chips are limited to a number of inputs plus outputs of not more than 32. For 

implementation of circuits that require more inputs and outputs, either multiple PLAs or PALs 

can be employed or else a more sophisticated type of chip, called a complex programmable 

logic device (CPLD), can be used.  

 A CPLD comprises of multiple circuit blocks on a single chip, with internal wiring 

resources to connect the circuit blocks. Each circuit block is similar to a PLA or a PAL; which 

refers to the circuit blocks as PAL-like blocks. An example of a CPLD is given in Figure. No 

5.11. It includes four PAL-like blocks that are connected to a set of interconnected wires Each 

PAL-like block is also connected to a sub circuit labeled I/O block, which is attached to a 

number of the chip’s input and output pins.  

Figure No.5.12 shows an example of the wiring structure and the connections to PAL-like 

block in a CPLD. The PAL-like block includes 3 macro cells, each consisting of a four – input 

OR gate. 

 

Fig.No:5.11 BLOCK DIAGRAM OF PAL 

The OR-gate output is connected to another type of logic gate. It is called an exclusive – 

OR (XOR) gate. The behavior of an XOR gate is same as for an OR gate except that, if both of 

the inputs are 1, XOR gate produces a 0. One input to the XOR gate in Figure 5.10 can be 

programmable connected to 1 or 0: if 1, then the XOR gate complements the OR-gate output, 

and if 0 then XOR gate has no effect.  
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The macro cell also includes a flip-flop, a multiplexer, and a tri-state buffer. The flip-

flop is used to store the output value produced by the OR gate. Each tri-state buffer is 

connected to a pin on the CPLD package. The tri-state buffer acts as a switch that allows each 

pin to be used either as an output from the CPLD or as an input.  

 

Fig.No:5.12 PAL BLOCK DETAILS 

 

 

 

FIELD: PROGRAMMABLE GATE ARRAYS  

 A filed – programmable gate array (FPGA) is a programmable logic device. It supports 

implementation of large logic circuits. FPGAs are quite different from SPLDs and CPLDs 

because FPGAs do not contain AND or OR planes.  
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 Instead, FPGAs provide logic blocks for implementation of the required functions. The 

general structure of an FPGA is illustrated in Figure no 5.13. It contains three main types of 

resources: logic blocks, I/O blocks for connecting to the pins of the package, and 

interconnected wires and switches.  

 

 

 

Fig.No:5.13 LOGIC BLOCK DIAGRAM OF FPGA 

  

Fig.No:5.14 PIN DIAGRAM OF FPGA 
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The logic blocks are arranged in a two-dimensional array, and the interconnected wires 

are organized as horizontal and vertical routing channels between rows and columns of logic 

blocks. The routing channels consist of wires and programmable switches that allow the logic 

blocks to be interconnected in many ways.  

 

 Figure no .5.12 shows two locations for programmable switches; the dark boxes adjacent 

to logic blocks hold switches that connect the logic block input and output terminals to the 

interconnected wires, and the dark boxes that are diagonally between logic blocks connect one 

interconnected wire to another (such as a vertical wire to a horizontal wire). Programmable 

connections also exist between the I/O blocks and the interconnected wires. The actual number 

of programmable switches and wires in an FPGA varies in commercial chips.  

 

 FPGAs can be used to implement logic circuits of more than a million equivalent gates 

in size. FPGA chips are available in a variety of packages, including the PLCC and QFP 

package described earlier. Figure no 5.12 depicts another type of package, called a pin gird 

array (PGA), APGA package may contain up to a hundreds of pins in total, which extend 

straight outward from the bottom of the package, in gird pattern. Another packaging technology 

that has emerged is known as the Ball gird array (BGA). The BGA is similar to the PGA except 

that the pins are small round balls.  

INTRODUCTION TO ASIC  

 When the chip designer does not need complete flexibility for the layout of each 

individual transistor in a custom chip, some of the design effort can be avoided by using a 

technology known as standard cells. Chips are made by using this technology are often called 

application – specific integrated circuits (ASICs). This technology is illustrated in Figure no. 

5.15, which allow a small portion of a chip. The rows of logic gates may be connected by wires 

that are created in the routing channels between the rows of gates. 

 In general, many types of logic gates may be used in such type of a chip. The available 

gates are prebuilt and are stored in a library that can be accessed by the designer. In Figure no 

5.13, the wires are drawn in two fashions. This scheme is used because metal wires can be 

created on integrated circuits in multiple layers, which makes it possible for two wires to cross 

one another without creating a short circuit.  
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Fig.No:5.15 TWO ROW STANDARD CELL CHIP 

The thin black wires represent one layer of metal wires, and the thick black wires are a 

different layer.  Each dark square represent a hard-wired connection (called a via) between a 

wire on one layer and a wire on the other layer. In current technology it is possible to have 

eight or more layers of metal wiring. Some of the metal layers can be placed on top of the 

transistors in the logic gates, resulting in a more efficient chip layout.  

 Like a custom chip, a standard-cell chip is created from scratch according to a user’s 

specifications.  

TYPES OF ASIC 

1. Full custom ASICs 

2. Semi custom ASICs 

       i. Standard cell based ASICs 

       ii. Gate Array based ASICs 

             a. Channeled Gate array 

             b. Channel-less Gate Array 

             c. Embedded Gate array 

Full Custom ASICs 

       In full custom ASICs, an Engineer designs all the logic cells, circuits and layout even 

interconnects are customized. These ICs are expensive to manufacture and design 

Semi Custom ASICs 

     In semi custom ASICs, some of the logic cells are predesigned and some of the 

interconnects are customized. 
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Standard cell based ASICs 

      It uses predesigned AND gates, OR gates, Multiplexers, Flip Flops known as standard cells. 

These standard cells are placed in standard cell area. When implementing the design, the 

standard cells are combined with the fixed blocks that are placed below the standard cell area. 

So, designer only defines the placement of standard cells.  

Gate array based ASICs   

       In gate array based ASICs, predesigned and pre-characterized   logic cells are arranged in a 

gate array library. So, the designer can choose the gate array to implement the design. 

Channeled Gate Array 

      Rows of logic cells are separated by channels that are used for making interconnection 

between the rows of logic cells. The space allotted for interconnect is fixed. 

Structured Gate Array    

 Certain areas in the chip are dedicated to implement specific function. 

Channel-Less Gate Array 

      No space is provided for interconnection instead the interconnection is done over the top of 

gate array devices  

 

Advantages 

1. Reducing system cost 

2. Low power consumption 

3. Improve speed  

4. Space saving 

5. Full custom Capability 

 

Applications 

1. Low noise audio circuit 

2. DC-Dc converters 

3. Linear regulators 

4. Interface circuit for bar code readers 

5. Timer Electronics 
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Implementation of Combinational circuits with PAL & PAL (up to 4 variables)  

PLA Implementation  

Example 1 

Implement the function f =  {1,2,3,5,7} in PLA 

SOLUTION  

Step 1 

 

 

 

 

 

 

Step 2 

   PLA Implementation  

 

Example 2: Illustrate how a PLA will be used for Combinational Logic for the functions:  

  f1 (a,b,c) = m (0,1,3,4) 

  f2 (a,b,c) = m (1,2,3,5,7) 
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SOLUTION 

Step 1  K map Simplification  

   

 

Step 2 

  PLA Implementation  
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Example: 3 

A combinational circuit is defined by the function F =  {1,3,5,7,10,11}  Implement the 

function in PLA 

SOLUTION  

Step 1  

  K Map Simplification  

 

Step 2 

 PLA Implementation  
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PAL IMPLEMENTATION  

Example: 1 

 Implement the function F ={1,2,3,5,7} in PAL.  

SOLUTION  

Step: 1 

 K map Simplification  

 

 

 

 

 

 

 

 

 

Step 2 

PLA Implementation  
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Example: 2 

  Implement the function F = {0,1,2,3,5} in PAL  

SOLUTION  

Step 1 

  K map Simplification  

 

 

 

 

 

 

 

 

 

Step 2  

  PAL Implementation  
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Example: 3   

Implement the function in F =  {1,3,4,6} PAL 

 

SOULTION  

Step 1 

  K map Simplification  

 

 

 

 

 

 

Step 2  

PAL Implementation 

 

Example: 4 

 Implement the function F =  m {0,1,6,7} in PAL 

SOLUTION  

Step: 1 

 K map Simplification  
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Step: 2 

 PAL Implementation  

 

 

Example: 5 

A combinational circuit is defined by the function Implement the function F =  m 

{0,2,6,7,8,9,12,13,14}in PAL  

SOLUTION  

Step 1 

 K Map Simplification  
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Step 2 

 PAL Implementation  
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REVIEW QUESTIONS 

UNIT-I 

Part-A 

1. Draw the Transistor level implementation of NAND Gate using CMOS logic 

2. Draw the Transistor level implementation of NOR Gate using CMOS logic 

3. What are the universal Gates? 

4. Why NAND & NOR Gates are said to be universal gates? 

5. Distinguish between combinational & sequential circuits 

6. List few combinational circuits 

Part-B 

1. Draw the circuit of Half Adder. 

2. Draw the circuit of full adder. 

3. What do you meant by Hazards? List the types of Hazards. 

4. What are the types of races? Define Critical Race. 

Part-C 

1. Implement the function with f=0,2,3,7 minimal gates 

2. Implement the above function f=0,2,3,7 with 4:1 mux 

3. Implement the function with do not care conditions of 4&6 with minimal 

 gates 

4. Implement the function with minimal gates with 4:1mux 

5. Implement the function f={1,2,3,5,7,10,13} with minimal gates  

6. Implement the above function with 4:1mux 

7. Implement the function f={1,2,3,5,7,10,13} 

8. Implement the above function with 4:1 mux 

9. Draw the circuit of NMOs, NAND, NOR, AND, OR,  

10. Draw the circuit of CMOS NAND, NOR, AND, OR 
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UNIT-II 

Part-A 

1. Define Synthesis  

2. Define Timing Simulation  

3. Expand VHDL  

4. What are the different levels of abstractions? 

5. Define selected signal assignment.  

Part-B 

1. What are assignment statements? 

2. Define for Generate statement? 

3. Distinguish between concurrent assignment & sequential assignment & sequential assignment 

statement.  

4.        List any Two VHDL operators & Explain 

5. Define data flow modeling.  

6.        Write the VHDL code for OR Gate 

7.         Write the VHDL code for AND Gate 

8.         Write the VHDL code for NOT Gate 

 

Part C 

1. Explain in detail about different levels of obstructions.  

2. Explain in detail about assignment statements.  

3. Write a VHDL Code four bit adder.  

4. Write a VHDL Code for four bit Comparator  

5. Write a VHDL Code for four bit Multiplier  

6. Write a VHDL Code for AND, OR , NOR Gates  

7. Write a VHDL Code for 4:1 mux  

8. Write a VHDL Code for four bit multiplier  

9. Write a VHDL Code for Demux  

10. Write a VHDL Code for mux.  

 

 

www.binils.com

Anna University, Polytechnic & Schools
                    www.binils.com



186 
 

 

UNIT-III 

Part – A  

1. What is the main element in the sequential circuit? 

2. Write the excitation Table for T Flip Flop.  

3. What do you mean by SISO & PISO? 

4. Are Latch & Flip Flop Same? 

5. Distinguish between combinational circuit & Sequential circuit.  

6. Write the excitation table for D Flip Flop  

7. List the various shift Registers present in digital circuit.  

Part – B 

1 Distinguish between Latch & Flip Flop .What are the types of Flip-Flops 

2. Write down the count sequence for Modulo 8 Counter.  & Draw  the  state diagram 

3. Write down the count sequence for Modulo 6 Counter. & Draw  the  state diagram 

4. Distinguish between synchronous & Asynchronous Counter.  

5. Define state Table.   

6. Define state diagram.  

7. Write down the excitation Table for JK Flip Flop.  

 

Part – C 

1. Design a modulo 8 bit counter using D Flip Flop. Use proper excitation table & State diagram.  

2. Design a modulo 6 bit counter using D Flip Flop. Use proper excitation table & State diagram.  

3. Design a modulo 5 bit counter using D Flip Flop. Use proper excitation table & State diagram.  

4. Design a modulo 4 bit counter using D Flip Flop. Use proper excitation Table & State diagram.  

5. Write down the summary of Design Steps  

6. Give out the examples for Moore & Mealy Machine  

7. Define Mealy & Moore Machines.  
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UNIT-IV 

Part – A  

1. What do you meant by storage elements? 

2. Write the importance of D FF   

3. Write the importance of T FF   

4. Write the importance of JK FF   

Part – B 

1.       Write the VHDL code for T FF 

2.       Write the VHDL code for D FF  

3.       Write the VHDL code for JK FF  

PART C 

1.       Write a VHDL code for 2 bit up counter 

2        Write a VHDL code for 3 bit up/down counter. 

3.       Write a VHDL code for Decade counter. 

4.       Write a VHDL code for Johnson Counter. 
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UNIT-V 

Part – A 

1. Define PLA  

2. Draw the simple circuit of PLA structure  

3. Define PAL 

4. Expand PLA & PAL 

Part – B 

1. Draw the General Structure of CPLD 

2. Draw the General Structure of FPGA  

3.         Define ASIC. Write the types of ASICs 

4.    . Draw the simple circuit of PAL structure    

5.         Bring out comparison between PROM, PLA & PAL 

Part – C 

1. (a)  Write short notes on PLA        

            (b)  Implement the following functions in PLA 

  f1(a,b,c) =  m{0,1,3,4} 

  f2(a,b,c) = {0,2,6,7,8,9,12,13,14} 

2. Implement the following function in PAL    

 f=m{0,2,6,7,8,9,12,13,14} 

3. (a) Write short notes on PAL  

 (b) Implement the function F =  m(0,1,2,3,5) in PAL  

4. (a) Explain about GPLD in detail  

 (b) Explain about FPGA in detail  

5.       Design a combination circuit using a PROM. The circuit accepts 3-bit binary number and 

generates its equivalent Excess – 3 codes.  
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