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DETAILED SYLLABUS
UNIT-I
1.1 SLOPE AND DEFLECTION OF BEAMS

Deflected shapes / Elastic curves of beams with different support conditions —Definition of Slope and
Deflection- Flexural rigidity and Stiffness of beams- Mohr’s Theorems — Area Moment method for slope
and deflection of beams — Derivation of expressions for maximum slope and maximum deflection of
standard cases by area moment method for cantilever and simply supported beams subjected to
symmetrical UDL & point loads — Numerical problems on determination of slopes and deflections at
salient points of Cantilevers and Simply supported beams from first principles and by using formulae

1.2 PROPPED CANTILEVERS

Statically determinate and indeterminate Structures- Stable and Unstable Structures- Examples- Degree
of Indeterminacy-Concept of Analysis of Indeterminate beams - Definition of Prop —Types of Props- Prop
reaction from deflection consideration — Drawing SF and BM diagrams by area moment method for UDL
throughout the span, central and non-central concentrated loads — Propped cantilever with overhang —
Point of Contra flexure.

UNIT-II
2.1 FIXED BEAMS — AREA MOMENT METHOD

Introduction to fixed beam - Advantages —Degree of indeterminacy of fixed beam- Sagging and Hogging
bending moments — Determination of fixing end(support)y moments(FEM) by Area Moment method —
Derivation of Expressions for Standard/cases — Fixed beams subjected to'symmetrical and unsymmetrical
concentrated loads‘and UDL — Drawing SF and BM"diagrams for Fixed-beams with"supports at the same
level (sinking of supports or supports at different levels are not included) — Points of Contra flexure —
Problems- Determination of Slope and Deflection of fixed beams subjected to only symmetrical loads by
area moment method — Problem:s.

2.2 CONTINUOUS BEAMS — THEOREM OF THREE MOMENTS METHOD

Introduction to continuous beams — Degree of indeterminacy of continuous beams with respect to
number of spans and types of supports —Simple/Partially fixed / Fixed supports of beams- General
methods of analysis of Indeterminate structures — Clapeyron’s theorem of three moments — Application
of Clapeyron’s theorem of three moments for the following cases — Two span beams with both ends
simply supported or fixed — Two span beams with one end fixed and the other end simply supported —
Two span beams with one end simply supported or fixed and other end overhanging —Determination of
Reactions at Supports- Application of Three moment equations to Three span Continuous Beams and
Propped cantilevers —Problems- Sketching of SFD and BMD for all the above cases.

UNIT-HlI
3.1 CONTINUOUS BEAMS — MOMENT DISTRIBUTION METHOD

Introduction to Carry over factor, Stiffness factor and Distribution factor —Stiffness Ratio or Relative
Stiffness- Concept of distribution of un balanced moments at joints - Sign conventions — Application of
M-D method to Continuous beams of two / three spans and to Propped cantilever (Maximum of three
cycles of distribution sufficient) —Finding Support Reactions- Problems - Sketching SFD and BMD for two
/ three span beams.
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3.2 PORTAL FRAMES — MOMENT DISTRIBUTION METHOD

Definition of Frames — Types — Bays and Storey - Sketches of Single/Multi Storey Frames, Single/Multi
Bay Frames- Portal Frame — Sway and Non- sway Frames- Analysis of Non sway (Symmetrical) Portal
Frames for Joint moments by Moment Distribution Method and drawing BMD only— Deflected shapes of
Portal frames under different loading / support conditions.

UNIT-IV
4.1 COLUMNS AND STRUTS

Columns and Struts — Definition — Short and Long columns — End conditions — Equivalent length /
Effective length— Slenderness ratio — Axially loaded short column - Axially loaded long column — Euler’s
theory of long columns — Derivation of expression for Critical load of Columns with hinged ends —
Expressions for other standard cases of end conditions (separate derivations not required) — Problems —
Derivation of Rankine’s formula for Crippling load of Columns— Factor of Safety- Safe load on Columns-
Simple problems.

4.2 COMBINED BENDING AND DIRECT STRESSES

Direct and Indirect stresses — Combination of stresses — Eccentric loads on Columns — Effects of Eccentric
loads / Moments on Short columns — Combined direct and bending stresses — Maximum and Minimum
stresses in Sections— Problems — Conditions for no tension — Limit of eccentricity — Middle third rule —
Core or Kern for square, rectangular and circular sections — Chimneys subjected to uniform wind
pressure —Combined stresses in Chimneys due to Self weight and Wind load- Chimneys of Hollow square
and Hollow circular cross sections only — Problem

UNIT-V
5.1 MASONRY DAMS

Gravity Dams — Derivation of Expression for maximum and minimum stresses at Base — Stress
distribution diagrams — Problems — Factors affecting Stability of masonry dams — Factor of safety-
Problems on Stability of Dams— Minimum base width and maximum height of dam for no tension at
base — Elementary profile of a dam — Minimum base width of elementary profile for no tension.

5.2 EARTH PRESSURE AND RETAINING WALLS

Definition — Angle of repose /Angle of Internal friction of soil- State of equilibrium of soil — Active and
Passive earth pressures — Rankine’s theory of earth pressure — Assumptions — Lateral earth pressure
with level back fill / level surcharge (Angular Surcharge not required)— Earth pressure due to Submerged
soils — (Soil retained on vertical back of wall only) — Maximum and minimum stresses at base of
Trapezoidal Gravity walls — Stress distribution diagrams — Problems — Stability of earth retaining walls —
Problems to check the stability of walls- Minimum base width for no tension.
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UNIT -1

1.1 SLOPE AND DEFLECTION OF BEAMS

1.1 SLOPE AND DEFLECTION OF BEAMS

Deflected shapes / Elastic curves of beams with different support conditions —Definition of Slope
and Deflection- Flexural rigidity and Stiffness of beams- Mohr’s Theorems — Area Moment
method for slope and deflection of beams — Derivation of expressions for maximum slope and
maximum deflection of standard cases by area moment method for cantilever and simply
supported beams subjected to symmetrical UDL & point loads — Numerical problems on
determination of slopes and deflections at salient points of Cantilevers and Simply supported
beams from first principles and by using formulae.

CHAPTER 1
1.1 INTRODUCTION

1. Beam
A structural member which is acted upon by a system of external loads at right angles to
its axis is known as beam. Generally, a beam is a horizontal member to support floor
slabs, secondary beams, walls, stairs etc.

2. Classification of structure
In general, the following are two types.of structures
a) According to static equilibrium equation
i) Statically determinate structures
ii) Statically indeterminate structures
Further, the above structures are classified according to support conditions as
presented below

b) According to support conditions
1. Cantilever beam

Simply supported beam

Propped cantilever beam

Overhanging beam

AW

Fixed beam
6. Continuous beam
3. Shear force (S.F)
The Shear Force at any section of a beam is the algebric sum of all the forces acting either
left or right of that section. It is denoted by F (or) SF. The symbol of SF is F(or)V(or)SF.

THEORY OF STRUCTURES Page 1
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4. Bending moment (B.M)

The bending moment at any section of a beam is the algebric sum of all the moments of
the forces acting either left (or) right of that section. It is denoted by B.M(or) M.

1.1.1 Deflected shapes of beam / Elastic line (or) elastic curve of beam
When a beam is subjected to transverse loads it develops shear force and bending

moment at every cross section. Due to transverse load the beam gets deflected. The
deflected configuration of the beam is known as deflected shape.

W

1 # B
e B

~< _.9 _HSB
Elastic curve

—- f -

Fig 1.1 Elastic curve

._.____f_‘____‘

A

SO

Where, OB = Slope at B
SB = Deflection of free end(B)

(a) Elastic line (or) elastic curve of beam

The configuration of the longitudinal axis of the beam after bending takes place due to
loading is called elastic curve. (or)
The edge view of the deflected neutral surface of a beam is known as elastic curve.

The deflected shape of various types of beam is presented below

\)%
A ——=—"TpB. A c
j = 0B R 1

Elastic curve Jastic line

\ E | {
Fig 1.2 For a cantilever beam Fig 1.3 For a simply supported beam
W

Ai S ~. //’// EB A 3 —— \l d B
Z Elastic curve ZEIastic curve T

Fig 1.4 For a fixed beam Fig 1.5 For a propped cantilever
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— ~
Elastic line Elastic line

Fig 1.6 For a continuous beam

1.1.2 Slope and Deflection
(a) Slope (0 or i)

The angle made by the tangent at a point on the elastic curve with the horizontal is called
the slope at the point. It is denoted by 6 (or) i.

7=

Elastic curve

e
L

Fig 1.7
(b) Deflection (5 ory)

The vertical distance between the original axis to the elastic curve of the beam after loading
is called deflection. It is denoted by & (or) y.

1.1.3 Flexural rigidity and Stiffness of beams
(a) Flexural rigidity (El)
The product of valUes of young’s modulus’and Ml"about Neutral@axisis calledflexural
rigidity.
ie. Flexural rigidity = = Young’s modulus x M.I
=ExI|=El
The product of El is expressed in N.mm? (or) kN.m?
(b) Stiffness

Stiffness of a beam is the property of resistance against rotation and deflection. The
moment required to produce unit rotation of slope is called stiffness of the beam. It is
depends upon the end conditions, flexural rigidity and span of the beam.

1. Stiffness factor, k = % —>» for fixed ends
. 3El .
2. Stiffness factor, k = 7 —» for simply supported ends

1.1.3 Book Work - |

a) Differential Equation

Derive the differential equation of flexure (or) relation between slope deflection and radius

of curvature.

2
m=gl &Y
e dx
THEORY OF STRUCTURES Page 3
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Solution

Consider a small portion of PQ of length ‘ds’ of a beam as shown in fig.1.4
R = Radius of curvature

do = Angle bounded by the arc ‘ds’ at centre

We know,
Arc length ds =dx =R. dO
1.8 )
R dx
tan6=d—y dy:e
dx dx
Differentiate w.r.t. x
dy _do
dx? dx

—(2)

> Differential equation of flexure.

Note:
d’y . . .
VE = M — Flexural differential equation.

2
| El d’y =slope = El [%j

El

dx? X
d?y

El
[f e
d(M) _d (Eld?y
dx?

= deflection = Ely

dx dx

J = F = shear force.

3
di [E:jds yJ = w = Rate of loading
X X

1.1.3 (b) Method of finding the slope and deflection

The following are the various methods for slope and deflection.
1. Mohr’s area moment method
2. Double integration method

THEORY OF STRUCTURES Page 4
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3. Macaulay’s method
4. Strain energy method
5. Conjugate beam method

1.1.4 Area moment method

It is a simple method, Mohr’s Theorem | & Il are used for the determination of slope and
deflection of beams at any section with reference to the B.M.D., hence it is called as Mohr’s
area moment method.

1.1.4 (a) Mohr’s Theorem —|

It states that the change of slope between any two points on an elastic curve is equal to the
area of BMD between the two points divided by flexural rigidity.

A
Slope= 0= —
P El

(b) Mohr’s Theorem - Il

It states that the intercept taken on a vertical reference line of tangents at any two points
on an elastic curve is equal to the moment area of BMD between these points about the
reference line divided by flexural rigidity.

AX
Y = — = deflection.
El
Where, A = Net area of BMD
AX = Net moment area of BMD.
El = Flexural rigidity
Book Work — 2

State and prove Mohr’s theorem for slope (Mohr’s theorem - 1)
1.1.4 (b) Mohr’s Theorem - |

It states that the change of slope between any two points on an elastic curve is equal to the
area of BMD between the two points divided by flexural rigidity.

— A — ]
0= i slope L
Where A ! J
A = Net area of BMD | ﬂ XX
El = Flexural rigidity. H 0! : ﬂ ﬂ
Proof H ﬂ I ﬁ ﬂ
Consider a beam AB deflected as shown in fig. l & I [
Consider two points P & Q and draw tangents at P and Q. ﬁ —d—n R E ﬁ
| I
I |

|
PQ = dx = length of curve !
dO =change of slope w

We know Fig 1.10
dx = R.dO
THEORY OF STRUCTURES Page 5
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1 49 — (1)
R dx
But M = E
| R
1 _ M —(2)
R El
Mo do
El dx
dH = M X dX
El
.0, _ > M dx _A
El I
_ A
0= E| | Where =M. dx = A = Net area of BMD
Book Work -3

State and prove Mohr’s Theorem - Il for deflection.
1.1.4 (c) Mohr’s Theorem -II

It states that the intercept taken on a vertical reference line of tangents at any two points
on an elastic curve is equal to the moment area of BMD between these points about the
reference line divided by flexural rigidity.

Where A; = Moment area of BMD
El = Flexural rigidity

Proof
Consider a BMD as shown in fig.
40 = M dx
El
- M -
40 X = EIdX X (A=IMdx)
5 = M dx T - A_;
MR El
Oam = A—; deflecti
A/B £l eflection

Where M dx = area of BMD
X = centroid of BMD
A X = Moment area of BMD

THEORY OF STRUCTURES Page 6
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1.1.5 Slope and Deflection for standard cases

Book Work — 4

1.1.5 (a) Cantilever beam with point load ‘W’ at free end.

Derive the max. slope and deflection for a cantilever beam with point load ‘W’ at free end.

Solution

Consider a cantilever beam loaded as shown in fig.
Draw BMD as shown in fig.
Draw tangents at A & B to the elastic curve.

By Mohr’s Theorem - |
s 4 v
El / _ le
A = Area of BMD A a \\-&B
A= lxbxh L . )
2 4
2 X=4%¢
A= l XIXW/ = we u u
2 W. ¢
eB = A = iX Wﬁz &
El El 2
Fig142
We?
GB =
2 El
By Mohr’s Theorem - Il
o 2
§,=5. = x _ 1 IWC, 2,
El El 2 3
X = Centroid of BMDfrom B
x=2¢
3
we®
0p,= 0., = i
B mx = S| deflection at B
THEORY OF STRUCTURES Page 7
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Book Work — 5

1.1.5 (a) Cantilever beam with udl (w/m)

Derive the max. slope and deflection for a cantilever beam with udl over entire span.

Solution
Consider a cantilever beam loaded as shown in fig.
Draw BMD

Let A = area of BMD between A & B

A= 1xbxh
3

1 wer owe?
S Xl X— = —
3 2 6

>

; = Centroid of BMD from B

X = E x
4
w/m
By Mohr’s Theorem — | g
A
0p = E A T ieE B
—
1 (s (2 o
b L [WEY_ W g . 5
El 6 6 El
_owet _
O = SEl slope at B —————— X:3J,’4t‘) —
WL oc
By Mohr’s Theorem - Ii; )
AX BMD
6B:é‘max ==
El
3
5,=5. = % (%x%ﬁj Fig 1.13
nd
Deflection at B = Og=Opax = wl
8El
THEORY OF STRUCTURES Page 8
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Solved Problems

Problem 1

A cantilever beam 2m span 200mm wide and 400mm deep. Carries a point load of 10 kN
at free end. Find the max. slope and deflection by area moment method take
E=2.0x10° N/mm>

Given data:
By area moment method “
Span /{ =2m = 2000 mm
Wide b =200mm
Depth d = 400mm5 , Ly
E =2.0x10° N/mm
Solution

(i)Moment of inertia (l)

3 3
_ bd” _ 200x400° 1.067 x 10°mm*

M.I. () T 12 10 kKN

(ii) Bending Moment
W./ =10x2=20kN.m
Draw BMD as shown in fig.1.9

Aé
A = area of BMD ﬂ m

A =1xbxh
2

A = % X 2 x 20 = 20 kNm?/=20x10°/Nmm?

;= Centroid of BMD draw B 20 kN.
X

= % x 2 =1.33m=1.33 x 10> mm

(ii) Slope & Deflection
By Mohr’s Theorem —|

A 20x10°
Slope Bg= — = s 5
El (2.0x10°)(1.067x10%)

Slope B3=9.37 x 10 radians

radians

(iii) Deflection (6g)
By Mohr’s Theorem - II

AX
Deflection 6g = —

Deflection Omay = é (A;) = (2.Ox105)(:;..067X109) (20 x 1.33) x10™
=1.24x10%m
Omax  =0.125mm
THEORY OF STRUCTURES ~ Page9
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Alternate method
wee 10x10°%x (2000)*

= - 57 9.37 x 10~ radian
2 El ZX[ (2x10°)(1.067x10 )]

(i)Slope 0 =

(ii) Deflection (3g)
we? _ 10x10°x (2000)°

8 = = =0.124mm
3El 3] (2x10°)(1.067x10°) |
=0.125mm
Result
05 =9.37 x 10° radians
O0g = 0.125mm
Problem 2

A cantilever beam 3m span carries a point load of 30 kN at 1m from free end. Find max.
Slope and deflection. Take El = 10 x 10® kN.m?>

Given data: 30kN
Span / =3m ¢
|1 =2m """'-...‘_
]
El =10 x 10" kN.m? I 2m T im

Draw BMD as shown in fig.1.10

Solution
60KNm

Draw BMD
Let A = area of BMD

A = lxbxh

2

Bending Moment @ A=30x 2 = 60 kNm

A =% x 2 x 60 = 60kNm?

- 2

X1 =(1+§x2)=233m
THEORY OF STRUCTURES Page 10
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(i) Slope

By Mohr’s Theorem - |
A

B= —

I = 10X10° radians
X

0s = 6 x 10™ radians

(ii) Deflection

By Mohr’s Theorem - Il
Omax = A_Xl
El
_ Ax, _ 60x2.33

=1.398x 10°m=1.398 mm = Deflection at B

B=

ElI 10x10*

Problem 3

A cantilever beam of span 4m is subjected to a udl of 20 kN/m over a entire length. Find
the maximum slope and deflection.Take E = 2.1 x 10° N/mmz, I=15x 103mm*

Given data:
Span /=4m
Udl w=20kN/m
E =2.1x 10° N/mm?® 2ok
| =15x 10°mm* A xreea
Required ~
Slope at g =7 4m
Deflection at B 65 ="

(i) Bending Moment

2 2
B.M @ A duetoudlload = % = 20)2(4 =160 KN.m
Draw BMD

A = area BMD
A = 1xbxh

3
A = % x4 x 160 =213.33 kN.m?= 213.33x10° N.mm?
; = Centroid from free end
X =§x| =(§x4)=3m=3x103mm

4 4

THEORY OF STRUCTURES Page 11
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(ii) Slope

By Mohr’s Theorem - |
A 213.34x10° .
g= — = s 5 radians
I (2.1x10°)(15x10%)

0s = 6.772 x 10 radians

(iii) Deflection
By Mohr’s Theorem - II

Ax _ (213.34x3)x10"

Omax = = = mm
El (2.1x10°)(15x10°)
Result
g = 6.772 x 10 radians
Omax =2.03mm
Problem 4

A cantilever beam 3m span carries a point loads of 10 kN at free end and an udl of 2 kN/m
over its entire span. Find the max. slope and deflection. Take El = 2 x 10* kN.m?

Given data:
Span 4 =3m
Point load w =10 kN
ud| w =2 kN/m
El £2x10" kN.m?
Solution:

(i) Bending Moment

Bending Moment @ A due to point load
= WI=10x3=30kN.m

Bending Moment @ A due to udl

2kN/m 10kN

A e B
=5

- 3m —"

—_— X1 =2/3g—>

30kNm M

2 2 —_— W — S
_ %:2X3 —9kN.M X2 =3/4¢
Draw BMD 9kNm W
Aq = area of BMD for point load
A, = area of BMD for udl
Due to Point load
Aq = lxbxh
2
1 2
Aq =EX3X3O =45 kNm
X_1 = 2 X3 =2m
3
THEORY OF STRUCTURES Page 12
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Due to UdI

A, == xbxh

A, =9 kNm?’

x
w
x
o

X,

x
w
1l
g
N
(&

3

MW Wik Wl

(ii) Slope
By Mohr’s Theorem - |

Og = A = [Mj radian
El El

1
2x10*
(iii) Deflection

0s [45+9]=2.7x10" radians

By Mohr’s Theorem - Il
Ax 1 - -
Omax=0p= —= — (A1 X1+AxX
a B El EI ( 1A1 2 2)
1

- o ((45x2) + (9x 2.25))

Smax =5.513x10m=5.513mm

Result
B =2.7 X 10" radians
0g =5.513mm
Problem 5 16IN
A Cantilever beam of span 5m is carrying a é \I/
point load of 16KN at 4m from fixed end. A% Y B
Calculate the slope and deflection at load point % ' Sm '|
Am: o] M=

and at the free end by area moment theorem.
Take E = 1.5 x10° N /mm? and 1=4x10° mm* .

Given data:
Cantilever beam with point load 64 KN @
Point load W = 16KN m
x4)+1=3.67m——

Span (= 5m |—(%

E=15 x1805 Némmz BMD
I=4x10" mm _
To Find: \
Max slope = 8="?
Max deflection= 6 =7 6
B
DEFLECTION CURVE
THEORY OF STRUCTURES Page 13
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Solution:
Area of BMD A =%x bh

Bending moment =WL

= 16 x4 =64 kNm
= % xbx h 10kN
=~ x4x 64 % 5kN/m \lé
A = 128 kN.m’ Ag___ -
A = 128x10° N .mm’ Z N

Centroid of BMD
2

X=(=x4)+1
(3 )

= 3.67m =3.67x10> mm
40 kN.

Applying Mohr ‘s theorem - |
A

(i) Slope=BB =emax=§ %?
9 —
128x10 213_){:3}%2—3.5111_.1

" (15x10%)(4x10°)
05 =0 ma= 2.13.x 107 Radians

BMD

Applying Mohr ‘s theorem -1l
(ii) Deflection = 6 5 = 6 pox= 2
El

_ (128x3.67)x10%

~ (1.5x10°)(4x10°)

Deflection=6g =0 max=7.83mm

Result:
Slope=0g =0 ma=2.13x 10 Radians
Deflection =65 =0 max=7.83mm

Problem 6
A cantilever beam 4m span carries an udl of 5 kN/m over 2m from fixed end and a point
load of 10 kN at free end. Find the max. slope and deflection. Take El = 10 x 10* kN.m>.

Given Data:
Span / =4m
udl w =5kN/m
Point load W =10 kN
THEORY OF STRUCTURES Page 14
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El =10 x 10* kN.m?

X =2m
Solution

(i) Bending Moment
BM due to point load w. /¢
=10x4=40kN.m

2
WX
BM due to udl at A=

=5x2x%=10kN.m

Draw BMD by parts as shown in fig.1.13
Due to point load,

A = l xbxh
2
1 2
A =§x4x40 = 80kNm
— 2
X =— x4 =2.67m
3
Due to UDL,
A, = 1 xbxh
3
1 2
A, =§x2x10 =6.67 kNm
X, = [2+§x2j =3.5m
4
(ii) Slope
By Mohr’s Theorem - |
.67
05 = A = (A+A) = 80+6 64 = 8.67x 10 radians
El El 10x10

(iii) Deflection
By Mohr’s Theorem — I
Ax 1 - -
Omax =0g= I = = (A1 X1+ A; X3)
Smax  =08=2.37x10°m =2.37mm

:10 0° (80x2.67+ 6.67x3.5)
X

Result
0s = 8.66 x 10 radians
Omax = 2.37mm

THEORY OF STRUCTURES Page 15
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Problem 7

A cantilever beam 5m span carries an udl of 20 kN/m over a length of 3 m from fixed end
and two point loads of 40 kN and 30 kN at 3m and 5m from the fixed end respectively.
Determine the maximum slope and deflection at the free end using Mohr’s Theorem. Take

El = 47.05 x 10° kN.m?.

Given data:
Span [/ =5m
udl w =20 kN/m
X =3m
W =30 kN at free end
W1=40 kN at€1=3m
El =47.05 x 10° kN.m?
Required
63 =7 63 =?
Solution:

(i) Bending Moment

Bending Moment at A due to udl
wx® _20x3°
2
Bending Moment at A due to load W
W x€=30x5 =150kN.m
Bending Moment at A due to load W;

=90kN.m

W.X =40x3 =120 kN.m

40 KN 30 KN

Draw BMD
Aq =£xbxh
2
1 2
A =§x5x150=375kN.m
X, =241 = 245-333m
3 3
A, =£xbxh
2
1 2
A, = E x3x120 =180 kN.m
—_ 2 2
X =—X+(8-x)=(=x3)+2=4m
2 3 (€-x) (3 )
A =1xbxh
3
1 2
Az =§x3x90 =90 kN.m
— 3 3
Xq =(=X)+(€-x) =(=x3)+2 =4.25m
4 4
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(ii)Slope

By Mohr’s Theorem - |
OB= A = —A1+A2+A3 radian

El El
1

= m(375+180+90) =13.7088x10°° radians
.05x

Os

=0.0137 radians
(iii)Deflection

By Mohr’s Theorem - 1|
S = Ss= X L AR A Xt As )
max B El El 1A1 2 A2 3A3
1
= ——  [(375x3.33) + (180x4)+(90x4.25
47 05X10° [ )+ ( )+( )]

Smax = 49.97 x 10°>m = 49.97mm

Result
0p = 13.7088 x10 3 radians
0 =49.97 mm

Problem 8

A cantilever 2m long carries a point load of 9 kN at free end and a udl of 8 kN/m. Over a
length of 1m from the fixed end. Determine the deflection at the free end if E = 2 x 10°
N/mm?Z. Take | = 2250 x 10° mm*.

Given data:
E =2x10°>N/mm?
| =2250x10*mm*

Span f =2m 9 KN
‘ y
Point load W =9 kN; 4 8 KN/m
Udl w=8kN/m A D B
Solution y N oG
Fram e T

(i) Bending Moment
B.M. due to point load = Wx |
=9x2=18 KN.m

2
B.M. due to udl load = %

) e

- X1=3X2 =

= 8x1x % =4 KN.m

Draw BMD
A = l xbxh
2
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A =%x2x18 = 18 kNm?

=18x10° Nmm?

A, = 1 xbxh
3
1 2
A, = 5 x1lx4 =1.33 kNm
= 1.33x10° Nmm”
X, = 2 %2 =1.33 m=1.33x10° mm
3
X, =1+ (% x1) =1.75m =1.75x10> mm
By Mohr’s Theorem - |
(i) Slope
Og AL (A1 +A,) = - L (18 +1.33)x10°
El El (2x107)(2250x10%)
Og =4.30 x 10 radians
By Mohr’s Theorem - Il
(iv) Deflection
8max = &
El

1 - -

—= (A7 Xq FAX

El(ll 22)
1

T (2x10°%)(2250x10%)
Omax =5.84 mm

[(18 x 1.33) + (1.33x 1.75)] x10**

Result
0p = 4.30 x 10° radians
Omax = 5.84 mm

Problem 9

A cantilever beam of span 4m is subjected to a udl of 20 kN/m over a entire length and a
point load of 15 kN acting at the centre. Find the maximum deflection for the beam. Given E
=2.1x10° N/mm?, 1=15x10°mm*

Given data:
Span / =4m
udl w =20 kN/m
Point load w =15 kN
E =2.1x10° N/mm?
| =15 x 10°mm*
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Solution
(i) Bending Moment

B.M. due to point load Wx I=15 x 2 = 30 KN.m

=30x10° Nmm?

=213.33x10° Nmm?

2 2
B.M. due to udl load % = 20x4
Draw BMD
A = l xbxh
2
1 2
A =Ex2x30 =30 kNm
— 2 3
X, =(2+§x2) =3.33m=3.3x10" mm
A, = l x bx h
3
A, = % x4 x 160 =213.33 kNm?
— 3 3
X, =ZX4 =3m=3 x 10" mm
By Mohr’s Theorem - 1|
Ax 4 - -
0 = == (AT X1+ A, X
max EI EI ( 1 1 2 2)

1

=160 KN.m

(2.1x10°)(15x10%)
Omax = 2.35mm

Result
Omax = 2.35mm

[(30 x3.3) +(213.34x30)]x10"

Problem 10

A cantilever beam 3m long carries an udl of w/m over its entire span. The size of beam is
75mm x 150mm. If the max. deflection is 2.5mm, determine the load w/m. Take E =2 x 10°

N/mm?. Also find the max slope.

Given data:

b=75mm
d =150mm

8g=2.5mm=25x10%m e B
E=2x10°> N/mm? “H
il 3m ]
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Solution:
(i). Moment of inertia (I)

3 3
_ bd” _ 75x150° _ ) 09 x 105mm?

12 12 W
]

(ii). Total udl/m (w)

wet L p
We know, 0g = =2.5mm
8EI
4
w/( 8
8EI
W= 35 x8EI _ 2.5 x 8 ((2x10°)(21.09x10°))
14 3000*
w =1.04 N/mm or kN/m
(iii) Slope (0)
3 3
Slope = wi = 1'0?( 3000 s~ radian =1.109 x 10 radians
6 El 6x(2x10°)(21.09x10°)
Result
W = 1.04 kN/m

Bs= 1.109 x 10°° radians

Problem 11

A cantilever beam of 1m long of rectangular section_of width /40mm and depth 60mm.
Calculate the maximum udl that canbe-allowed over the entire length of the beam without
exceeding a deflection of 3.5 mm at the free end. Also calculate the maximum slope at the
free end. Take E = 7 x 10* N/mm?Z.

Given data:

Span / = 1m=1000mm

Width b =40 mm

depth d =60 mm

Omax =3.5mm

E =7 x 10 N/mm?
Solution
(i) Moment of inertia (I)

3 3
Mi () = Pd _40X60 o 10%mm?
12 12

(ii) Safe udl (w/m)

6max = 68 = 3.5 mm
4

Cantilever beam with udl = 8nax = M
8EI

4
M = 6max
8EI

wx1000*
Z < = 3.5mm
8x(7x10")(720x10°)
THEORY OF STRUCTURES Page 20

www.binils.com
Anna University, Polytechnic & Schools



w=1.4112 N/mm or KN/m
Safe udl (w) =1.4112 KN/m.

iii) Maximum Slope

B = Maximum slope at B
w3 1.4112 x1000°

Bs = = " — radians
6El  6x(7x10")(720x10%)

0s=4.67 x 107 radian

Result

Safe udl (w) =1.4112 KN/m.
0p=4.67 x 107 radians

1.1.7 SIMPLY SUPPORTED BEAM WITH CENTRAL POINT LOAD(W)
BOOK WORK-6

SLOPE and DEFLECTION FOR SIMPLY SUPPORTED BEAM WITH CENTRAL POINT LOAD

SOLUTION
Consider simply supported beam loaded as shown in fig.
A = lx bxh
2
1 1 We Wwe?
A =% X FWEFE
202 4 16
- 2 | I .
X = — x — = — = Centroid from A
3 2 3
i) Slope
By Mohr’s Theorem - |
emax = A = ix
El El
N WezY) o we? W
™El | 16 16 El ‘
|| Nl
—_ Tl I E——
o = W2 A A
" 16E ) -~ (=
- - Wee |
It is symmetrically loaded 0p=0g =02=
16 El W¢E
4
By Mohr’s Theorem — I
_ C
UAX L (we 1) we 0 :
“"El ElI | 16 "3) 48El /)t X
3
Oc = Omax = we Mz eC
48 El 2
BMD
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1.1.8 Book Work—7

Slope and Deflection for simply supported beam with udl over the entire span

Solution
Consider simply supported beam loaded as shown in fig.

Draw BMD
Consider two points B & C

Draw tangentsatB & C C

Let A

| N
—
/
/
f
||
o
\
|
\

A =

<1
1

(i) Slope
By Mohr’s Theorem - | 0 L 0

e = — —_ | =
A 24 |~ 24El

El El

Since it is symmetrically loaded

wi®
Op = 0g =
AT TR JuE)

(ii) Deflection
By Mohr’s Theorem -l

5. CAx 1 (wﬁ 5ﬂj

= — = — X_
El El 24 16

A
384 El

6c = Omax

Problem 12

A Simply supported beam 5m span is 200mm x 300mm of size. It carries an UDL of
5KN/ m over the entire span. Calculate the Max slope & deflection by area moment
method. Take E=1.2x10° N/ mm?Z

Given data:
udl w =5KN/m
Span l =5m
Breadth b =200mm
Depth d =300mm
E = 1.2 x10° N/mm?
To find
Max Slope =0=?

Max deflection =6 =?
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Solution: SkN/m
Area of BMD A’emr:n@CL:aa:\moamq\B

A=gxbh
3 .

IZ
Bending moment =?
_ Bx5°

8
= 15.625kN . m

— sx25= e
A= §x2.5x15.625 276

=26.042 KN. m?
A = 26.042x10° N.mm?

Centriod of BMD DEFLECTION

Y=(§xb)

(39

X =1.563m = 1563 mm

x|

3
Moment of inertia | = —
12

_ 200x300°
12

I= 450 x 10° mm”.
Applying Mohr ‘s theorem — |
A
El
_ (26.042x10%)
(1.2x10%)(450%x10°)

(I) Slope =0g =0 max=

Slope=0p =0 nax=4.82x 10 Radians.
Applying Mohr ‘s theorem -l
Ax
El
_ (26.042x1.563)x10™
(1.2x10°)(450x10°)

(ii) Deflection =6 g = & max =

Deflection=6 5= 6 max =0.75mm.
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Result:
Slope =05 =0 max = 4.82 x 10™ Radians.

Deflection =8 g = & max =0.75mm

Problem 13

A simply supported beam 6m long, 150mm x 300mm size carries a central point load of 40
kN. Determine the maximum slope and deflection. Take E = 1.5 x 10° N/mm?>.

Given data:

Span / =6m

Load W =40 kN W

Wide b =150mm

Depth d =300mm

_ 5 2

E =1.5x10° N/mm Ly

Solution:

(i) Moment of inertia (1)
3 * 3
_ bd” _150"300° _ 435 5 % 10°mm? 40kN

12 12 C ‘
Bending Moment: |

| |
* HE&RL LL’//
Max. B.Mu = M: =il =60 kN.m A Hauﬂb,cfsf B
4 4
6m

Area of BMD

A = area of BMD between B & C %E

; = Centroid from B
A== xbxh C
L ]

0 - 0

Nl -

A== x3x60=90kNm?’

=90x10° Nmm?
BMD
=2m =2x10°> mm

X = X

wlnN
N o

(ii) Slope (0)
By Mohr’s theorem — |
9
Oa = 0= A = 950X10 s~ radians
El  (1.5x107)(337.5x10°)

0, = 0= 1.78 x 107 radians

(iii) Deflection (&max)
By Mohr’s theorem - i

AXx 1 ;.=
8C=E_:(=E (Ax)
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1

= - — (90x 2)x10" = 3.56mm
(1.5x10°)(337.5x10°)

C

Result
Omax = 1.78 x 10° radians
dc =3.56mm

Problem 14

A simply supported beam 8m long carries a point load of 90 kN at centre and udl of 5 kN/m
over at entire span. The size of beam is 200mm x 400mm E = 1.5 x 10* N/mmz. Determine
the maximum slope and deflection.

Given data:
Point load W =90 kN
udl  w =5kN/m W T
Wide b =200mm S0KN SKN/m
Depth d =400mm A B
E = 1.5 x 10* N/mm?
Required: wE
Slope & Deflection 4
Solution: Ce
i) Moment of inertia(l) 0 2270
bd®  200x(400)° e e
M.l = I= ~ (400)° 1.067 x.10°mm?
12 12 Mewt*
By Area Moment Method
ii) Free BMD Ce
W 90x8 e 0
BM due to Point load = TE = 2 =180 kN.m — g e !
BMD
2 2
BM due to udl = % = Sx8 =40 kN.m
iii) Area of BMD
Area of triangle A; = %x bxh
1 2
A= E x4x180 = 360 kN.m
= 360x10° Nmm?
— 2
Centroid X, = 3 x 4 =2.67 m=2.67x10> mm from B
2
Area of Parabola A; = EX bxh
2 2
A, = E x4x40= 106.67 kN.m
= 106.67x10° Nmm?
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Centroid X, = g x 4 =2.5 m=2.5x10° mm

(iv) Slope (0)
By Mohr’s theorem — |
0,=0 -A-L[A+A]
MR R
1 9 .
= . < [360+106.67]x10” radians
(2.5x10%)(1.067x10%)

0, =29.16 x 107 radians = 0.0291 radians

(v) Deflection (Smax)

By Mohr’s theorem - I
S = X = L (Ax+AX)
m T TR\ ?

1

) 3 -~ [(360 x2.67)+(106.67 x2.5)] x10
(1.5x10%)(1.067x10°)

Smax

Omax= 76.7 mm

Result
05 = 05 =0.0291 radians
Oc = Omax = 0:0767m

Problem 15

A Simply supported beam of span 4 m carries an UDL of 10KN/m over the full
length and a central point load of 20KN. determine the maximum slope and
maximum deflection by area moment method.

Take E=2x10°>N /mm? and | =8x10" mm* 206N
Given data: 10kN/m
S.S.B with UDL&P.L Am:immén:ag
UDL (w) =10 KN/ m 2m 2m
P.L (W) =20 KN 4m
Span { = 4m
E = 2x10° N/mm?
| = 8x 10" mm*
To Find:
Slope = 6 =7 ) x2=].33==
Deflection= 6 =? 3
Solution:
(i) Area of BMD (Point load)
Area of BMD A;= zi x bh —"I 5§X2:1-25m
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Bending moment = T

_ 204

4
=20KN.m

A1=E x 2 x20
2

=20 KN .m?
A; =20x 10° N.mm?

(ii) Area of BMD (UDL)

Area of BMD A; = % x bh

wi?
Bending moment = ?

_10x4°
8
= 20 kN.m

2
A, = §x2x20

=26.67 KN.m?
A,/=26.67 X 107 Nvmm?

Centriod of BMD (P.L)
2
X1 ==X
T3

2
== X2
3
=1.33m
X1 =1.33x10° mm.

Centriod of BMD (UDL)
5
X,=—=X(
"8
= § Xx2=1.25m
8
X, =1.25x10° mm.

Applying Mohr’s theorem -1
(iii) Slope =0 5 =8 max = %
_ (20+26.67)x10°
(2x10°)(8x10")

Slope =05 =0 max = 2.92X10° Radians.
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Applying Mohr’s theorem -l

_(Ax+AX)
El
[(20x1.33)+(26.67x1.25)] x10"

(2x10°)(8x107)

(iv) Deflection =6 5 =6 max

Deflection=6g =6 max =3.75 mm.
Result:

Slope =035 =0x= 2.92X107 Radians.
Deflection=6 5 =6 max =3.75 mm.

Problem 16

A Simply Supported beam 6m span carries two point loads of 15 kN each at one third span.
Determine the maximum slope and deflection.
Take El = 2 x 10* kN.m>,

Given data:
W =15KN
!/ =6m
3 3
El =2 x 10* KN.m? 15KN  15kN
Solution

H..H_H E ’_//
A/L EHQ‘“E___J;HD#/ j\B
2 m=—=—2m—=-=2m
30kN.m 30kN.m

(i) Bending moment

Since the load is symmetrical
Total load _ 15+15

2
MA=MB=0 A [ ]
Mc=Mp =15x2 =30 KN Al

(ii) Area of BMD -
X1
Fianay
BMD

Ra=Rg= =15KN

Area of triangle Al = %x bxh
1 2
Al= EX2X3O =30 kN.m

— 2
Centroid X, = §X 2=133mfromB

Area of rectangle A, =b x h
A, =1 x 30= 30 kN.m?

— 1
Centroid X, = 2+E =25m
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(iii) Slope (0)

By Mohr’s theorem — |
A 1
Op=0g= —= — [A1+A
A B El EI [ 1 2]

1
2*10*
0g = 3 x 1073 radian

[30+30] radian

(iv) Deflection (Smax)

By Mohr’s theorem - I
Ax 1 [ — . —

— == +A X

oo (AXTAX)

Omax= 1 [(30 x 1.33) + (30 x 2.5)]

2x10*

6max =

=5.745x10%m
Omax= 5.745 mm
Result:
Slope 0g = 3 x 10° radian

Deflection dmax= 5.745.mm

Problem 17

A girder of uniform section and constant depth 1800mm is freely supported over a span of
20 meter. Calculate the deflection for a uniformly distributed load on it such that the
maximum bending stress induced is 120 N/mm2. E = 2 x 105N/mm2.

Given data: ’ 180°=n radiansJ
w/m
d =1800mm
A T B
1 =20m =20000mm i ‘5_(2_#"’9]3
Gb =120 N/mm? o
E = 2 x 10° N/mm? e ¢ -
To find:
omax =7
|
|
Solution: |
Moment of Inertia (l) ‘
1800 — — ——
We know ‘
M _o, _E |
I y R ‘
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y=g=@=900mm
2 2
2
M=M=B.M.
8
2 2
Gb='\|/|—xy=%x@ = 112.5 (Mj

_ 5x(20000)?

" 384x2x10° (1.067) mm

max

Omax =27.79mm

Result
Omax = 27.79mm

Problem 18

A Simply Supported beam 4m long carries an udl over entire span if the maximum slope is
1° calculate the max deflection also udl.
Take El = 1 x 10* kN.m?

Given:

/ =4m =4000mm

Vs
Op= Og = — x 1°
AT P T 180
=17.45 x 10° radian

El =1 x10* kN.m?
Required:

8max:?
Solution:

(i) Safe udl (w)

Simply supported beam with udl over entire span
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We know,

3
Slope 6= w
24 El
_ Ox24El
==
_ 17.45x10° x 24x1x10*
= yE
= 65.44 kN/m
4
Deflection o, = Sw(
384El
4
Smax =M= 21.81x10° m
384x1x10

Omax =21.81mm
Result

W =65.44 kN/m

Omax = 21.81mm

Problem 19

A beam of span 4.5m is Simply Supported at its ends. Calculate the maximum permitted
udl, if the maximum slope at the support is restricted to 1° also calculate the max deflection
also udl. Take El = 0.8 x 10° kN.m?

Given
f =4.5m =4500mm
T
0p=0g= — x1°
AT 180
= 17.45 x 10° radian
El = 0.8 x 10* kN.m?
Required
W=7, Omax=?
Solution
For a simply supported beam with udl over entire span
We know,
w3
Max. Slope 04 =
PEEA = SaEl
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_ 6, X24El

w 7
_ 17.45x107 x 24 x0.8x10*
(4.5)°
w =36.77 kN/m
4
Deflection 8. = owl
384 El
4
Deflection 8. = owl
384 El
4
S = 5X36.77x4.54 - 2454%10% m
384x0.8x10

Omax = 24.54mm

Result
w =36.77 kN/m
Omax = 24.54 mm

Problem 20

A steel pipe 50mm internal dia.'2.5mm thick is simply.supported over a span of 6m, if the

1
deflection is limited to —— of span calculate the rate of loading and maximum slope. Take

E =2 x 10°N/mm?>. Also find the maximum slope.

wim
Given data: A B
Internal diad =50 mm BA-R%_H___‘&_##*QB
Thickness t =2.5mm l\i ﬂ
ExternaldiaD =(50+2x2.5) = 55mm ' 6m !
Span £ =6m = 6000 mm Meowe?
ma = Lx span = i 5
325 325
=18.46 x 10°m
E =2 x 10°N/mm? Ce
0 0
Required: X
w="? - Im el £ -
Solution: 2

(i) Moment of inertia (l)

R TN S t
| 64(D d* @

T 4 4
— (557 -50
64( ) — D
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| =142.38 x 10> mm*

El = 2x10°x142.39x10°

El = 28.48x 10°N.mm? = 28.48 kN.m?
We know,
By Area Moment Method
(ii) Free BMD

2 2
W WX

BM due to udl = ?f = TG =4.5w kN.m
Draw BMD

(iii) Area of BMD

Area of Parabola a = %x 3x45w=9w

Centroid X = g x3=1.875m fromB
(iv) Safe udl (w)
By Mohr’s theorem - I
S = X = L (ax ) = 1846 x10°
El El

Omax = 1 [(9 wx 1.875)] = 18.46 x 10
28.48

w  =31.16/x 16° kN/m
(v) Slope (0)
By Mohr’s theorem — |

A—iI[A]

Op=0p= — =
AT R E

i [9w] = . [9x 31.16 x 10”]
El 28.48

0, = 9.847 x10°3 radians
Results

w =31.16 x 10° kN/m

0a = 9.847 x 107 radians
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Bending Moment diagram for standard cases of beam

1.
/ w ) ®/m
/] 4
A g A ” B
0 | { .
‘ 1
/
' G .72
w7 BMD BMD
2.
3. M
ay b w w
A C B a i a
RWTb Re=Wa A c b A8
1
! RA=W RB=W
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1. Mohr’s Theorem -1

2. Mohr’s Theorem -1l

3. Slope and Deflection

1.1 HIGHLIGHTS

A
0= — =slope
El P

y= & = deflection.
El

Deflect /
Beam Slope Deflection Slope
Ratio
w We? wWe?
Ag ‘B B= B = 2
ﬂ E—— - 2 El 3El Ef
: %
w/m w(d we?
EIN= L i N 5o = 3
A —— s ‘BB ey
7 O 6 El 8El 7
¢
W
C We? We?
A= — B
——__BCc__— Oa=05= = 1
f IR RTY= <" 48EI Sy
L f J 3
c w/m
AT RS //?B A - we® o= 5w 5
) / NPT 24 < 384E| 16"

Part |

1.1 QUESTIONS for Homework

Each question consist only 2 marks

vk wnN e

span.

© 0 N o

Define elastic curve?

Define: Indeterminate Structure.
Define: Slope and Deflection.

Write the differential equation of flexure.
Draw the deflected shapes of any two beams.

Write the difference between roller and hinged supports.

10. Write the equation of area moment method theorem of deflection
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What is deflection of beam at free end for the beam carrying Point load at Free end?
What is the slope at support of a simply supported beam carrying point load at mid span?

State the Maximum slope value in a simply supported beam subjected to a point load at mid
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Part Il

Three / Five mark Questions

1.

2.
3.
4

5.
Part Il

State Mohr’s area moment theorems.
State Mohr’s area moment theorems for slope and deflection.

State Mohr’s Theorems 1 and 2 with respect to the deflected shape of a beam.

A cantilever beam of 3 meter length is subjected to a point load of 30 kN at its free end. Find
the deflection at the free end, using formula. if EI =90 x 10" N.mm2.

Explain slope and deflection

Ten mark Questions

1.

A steel pipe 50mm internal diameter and 2mm wall thickness is simply supported on a span of
6m. If the deflection is limited to 1/325 of the span, calculate the rate of loading on the beam.

Also calculate the maximum slope at the supports. Take E = 2 x 10° N/mm?.

A cantilever beam 120 mm wide and 200 mm deep is 3 m long. What udl should the beam can

carry to produce a deflection of 8 mm at the free end. Take E =210 GN/mm?®.

A cantilever of 5 meter span carries an u.d.l. of intensity 20kN/m over a length of 3m from its
fixed end and two point loads of 40kN and 30kN at 3m and 5m from the fixed end
respectively. Determine the maximum slope and deflection at the free end using Mohr’s

Theorems if El =47.05 x 10°kNm?>.

A cantilever/beam of span 4m is subjected to/an UDL of 20kN/m over the entire length and a
point load of 30 kN is acting at free end. Calculate the slope and Take E = 2 x 10°> N/mm? and |
=8x10'mm*.

A cantilever beam of 1 m long is of rectangular section of width 40 mm and depth 60 mm.
calculate the maximum udl that can be allowed over the entire length of the beam without
exceeding a deflection of 3.5 mm at the free end. Also calculate the maximum slope at the

free end. Take E =7 x 10* N/mm?.

A beam of span 4.5m is simply supported at its ends. Calculate the maximum permitted udl if
the maximum slope at the support is restricted to 1°. Also calculate the maximum deflection.
Take EI = 0.80 x 10* kNm?.

A simply supported beam of span 4m carries an UDL of 10 kN/m over the full length and a
central point load of 20kN . Determine the maximum slope and maximum deflection by area
moment method. Take E=2x10°N/mm? and 1=4x10®mm®* and | = 8x10’mm?*

A simply supported beam of span 8m carries an UDL of 18 kN/m throughout its length and a
concentrated load of 60kN at the centre. El = 2x10° KN.m” Determine the maximum values of

slope and deflection in the beam, using Mohr’s theorem. (Formula shall not be used).
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1.2 PROPPED CANTILEVER BEAM

1.2 PROPPED CANTILEVERS

Statically determinate and indeterminate Structures- Stable and Unstable Structures-
Examples- Degree of Indeterminacy-Concept of Analysis of Indeterminate beams - Definition
of Prop —Types of Props- Prop reaction from deflection consideration — Drawing SF and BM
diagrams by area moment method for UDL throughout the span, central and non-central
concentrated loads — Propped cantilever with overhang — Point of Contra flexure.

1.2.1 Static Equilibrium Equations

According to the principle of statics, any structural member should satisfy the
following equilibrium conditions.
1. Algebric sum of all vertical forces should be equal to zero.

ie2v=0
Sum of upward vertical forces = Sum of down ward vertical forces.

() Tv=4()

2. Algebric sum of all horizontal forces should be equal to zero.
ieXH=0
Sum of forces towards right side = Sum of forces towards side

H-—b=«H
ORUS)

3. Algebric sum of moments of all forces should be equal to zero.

ieXM=0
(+) @= ?(-)

Sum of anticlockwise moments = Sum of clockwise moments.
Determinate and indeterminate beams
Based on the static equilibrium equations the beams are classified as follows.
1. Statically determinate beams.
2. Statically indeterminate beams.
2.1.5. Statically determinate beams

When the reaction components of a beam can be analysed by using static equilibrium
equations (Zy =0, Zy =0, Xy = 0) only, it is called as statically determinate beam. In which the

degree of indeterminacy is equal to zero.
The examples for statically determinate beams as given below
i) Cantilever beam
ii) Simply supported beam
iii) Overhanging beam
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1.2.1. (b) Statically indeterminate beam

When the reaction components of a beam cannot be analysed by using static equilibrium
equations (Zy =0, 4 =0, Xy, = 0) only. The beam is called as statically indeterminate beam. In
which the degree of indeterminacy is not equal to zero. (One or more than one).

The examples for statically indeterminate beams are given below

i) Propped cantilever beam ii) Fixed beam iii) Continuous beam

1.2.1 (c) Degree of Indeterminacy

The difference between No. of unknown reaction components and No. of known equilibrium
equation is called Degree of Indeterminacy or degree of redundancy.
No.of unknown J [No.of knownusingstaticj

S

Degree of indeterminacy = , o _
reaction component equilibirum equations

1.2.1. (c) Example

1. Cantilever beam W
Unknown reaction components Mp & Ra =2 < ‘B
Know static equilibrium equation (2v=0; 2, =0) =2
S DI=(2-2)=0

It is statically determinate beam.

2. Simply Supported beam

Unknown reaction/components Ry &,Rg =.2 (‘ | )
Known static equilibrium equation (2 =0; 2y =0) =2
~DI=(2-2)=0 {
It is statically determinate beam. RA=7? Re="?

3. Propped cantilever beam

/‘\\
> £
T NAANNN
-3
w
%/

>
I
N

Unknown reaction components Ra Rgg Ma =3
Known static equilibrium equation (Zv=0; 2y =0)=2
. DI=(3-2)=1

It is statically indeterminate beam.

RB="

4, Fixed beam
Unknown reaction components

(RA/ RB/ MA/ MB) =4 Nos.

Known static equilibrium equations (‘
(Xv=0, ZM=0) = 2

~D.l.=(4-2)=2>0

It is statically indeterminate beam.
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5. Continuous beam

Unknown reaction components Ma=? w1 Me=0
(Ra Rs, RS, Ma Mg) =5 Nos. C } |
Known static equilibrium equations A" TB —/TC
(Sv=0, SM=0) = 2 TR
~D.lL=(5-2) =3 Ra=?  Re=? Rc="?
It is statically indeterminate beam.

AN NN

~

1.2.3. Method of analysis of indeterminate beam

The following are the various methods of analysis of indeterminate beams.
1. Area moment method.
Ma

2. Theorem of three moment method. y w
/]
3. Moment distribution method. A —— ‘3
. —
4. Strain energy method. }
5. Column analogy method Ra
6. Slope deflection method.

1.2.4 Propped cantilever beam

Definition

When a cantilever/beam/is supported by vertical post.at free end (or) near the free end is
called Propped cantilever beam. =lt"\is statically “determinate “béam ‘and its degree of
indeterminacy is 1.

Ma
w Ma

; & /| w/m

/W
Af—~<—_——-73 B e g

A L, 1 & Q. T B ™~

% 4 0

} }

RaA="? Re=7? Ra=7? Re=7?

Advantages of Propped cantilever beam
By providing propped at free end (or) nearby free end in a cantilever beam, the following are
the advantages.
1. Deflection at prop. is zero.
More shift and stable.
It can carry more load than cantilever beam.

2

3

4. Deflection is reduced.

5. Maximum +ve bending moment will be induced near the middle span.
6

Value of hogging moment at support is reduced.
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1.2.5 Type of Prop.

The following are the various types of Prop. /] ) ,gf
1. Rigid Prop. Ag ------- _ tve)
2. Sinking Prop. ?
3. Elastic Prop. B
Rigid Prop
i) At Rigid prop. the upward deflection is ; < wim
equal to downward deflection. Af \\\\\\\\\\ Ss(fve)
ii) There is no change in length of Prop. ; ot
i.e. Upward deflection = Downward deflection. | ¢ i
6g (+)ve =  &g(-)ve
Sinking Prop.
At sinking Prop. a part of the deflection destroys by the load.
i.e. Upward deflection} is not equal to Down load deflection due to

at Prop. End load.
Op/t)ve 1z Om(-)ve
Elastic Prop.
At elastic Prop. a part of deflection destroys and also changes in length due to reaction in the
Prop. because the Prop. material is elastic.
2.3.6 Point of contra flexure
The point where the BMD changes its sign from (+)ve to (—)ve and vice versa as shown in fig. is

called point of contra flexure (or) point of inflexion. The B.M at this point is zero.
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AREA MOMENT METHOD

Book Work -1

1.2.6 Propped cantilever beam with central point load (W)

Solution

Consider a cantilever beam propped at free end and loaded as shown in
fig.

Let Rg = Prop. Reaction
BM at a due to Prop. Reaction = Rg.2

BM at A due to load = w. g

Draw BMD by parts.

A =lxbxh
2
2
A1 =£X€XRB€=RB€
2 2
— 2
X ==/
' 3
_ 2
A2 :(_)ixl_xwz()ﬂ
YAV 2 8
5

Prop. Reaction

By Mohr’s Theorem - ||
omax = Ax =0
El

AX =0; Aj X1+ A X5 =0

)% )
2 )3 8 6

Ry £° 5W/°

3 48

5
Rg= — W
®~ 16

RA=W-RB=W-iW=£W
10 16

Draw SFD as shown in fig.1.37
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Bending Moment

MB=O
C:iWXI-:M
16 2 32
Mp = iWXE - Wl =W /¢ 5—_8
16 2 16
-3
Ma=—W/
"7 16
Draw BMD

Point of Contra Flexure (P):
Point of contra flexure will occur at “y” distance from B.
M, =0

/
My =Rva—W(v—§) =0

W.y—w y+W'[ =0
16 ' 2

1o
167" 2

y= 8¢ from B
11

Book Work — 2

1.2.7 Propped Cantilever beam with udl (w)

Solution i [ ‘
Consider a propped cantilever beam loaded as shown in fig. Ra= Re =
Let Rg = Prop. Reaction
Draw BMD by parts.

Prop. Reaction

A1 =lxbxh
2
2
A1 =iX€XRB€=RB€
2 2
— 2
X ==/
! 3
)3
3 2 6
—_ 3
X =—/
? 4
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By Mohr’s Theorem — I

&nax=&=
El
AX =0
2 2
) (20)- (1) (31
2 3 6, 4
Ry 2% wi!
3
3
Rg==w/
°" 3

S.Ra=wx / -RB=WE—§W€

5
Ra==w/
73
Draw SFD
Max. BM will occur at ‘x’ distance from B
X ({-x)

§wﬁ §Wf
8 8 X = 32
6x=13/ =3 % )
8x =3/

Bending Moment
MB =0

X
M, =Rg .X-W. X. ==
2

()

_ 9wl owe® 18wt -9wl* 9wl

My
6 128 128 128
2
M, _ ow/(
128
Ma =RBx£-wx€x|E
2
=iw£x€ —wx€—=WZ2 3—4
8 2 8
w2
M= —
AT g
Draw BMD
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Point of Contra Flexure (P):

Point of contra flexure will occur at “y” distance from B.
M, =0

My =RBxy—w.y.% =0

2
E wE.y—w.y— =0
8 2
y> _ 3
w. — = — |
2 8 y
y= 31 from B
4
Book Work —3

1.2.8 Propped cantilever beam with Non-central point load (W)

Solution

Consider a cantilever beam propped at free end and loaded as shown in fig.

Let Rg = Prop. Reaction at B
BM at a due to Prop./Reaction = Rz.8
BM at A due to load = w. a W

i) Area C
R,.0 ! [ ”

1
a1=E x € xRg.L =

X_l=§x8 =4m

W.a?

1
a,=— xaxW.a=
2

—_— 2
X, =[— xa]+b
) [3 ]

ii) Prop. Reaction (Rg)

By Mohr’s Theorem - Il

5max=&=0, AX =0
El

Upward deflection at B due to Rg = &3 (+)

Ax 1 -

8 (+) = — = —AX

8 (+) £ EI/\
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1|Rg.t? 2| _ |Rgt?
%al*) = E{ 2 Xsf} B [BEI } @)

Downward deflection at B due to load W = 65 (-)

5o (o) = X - i{w'az x(b+gbﬂ
El El 2 3

w.a’
8s(-) = { =5, (3f—a)} —————————————— (2)

at Rigid Prop. Upward deflection = Downward deflection

O (+) = 6g(-)
3
{RB.E} i {w.az (3£—a)}
3El 6EI

R = {W-az (3g_a)}

2.0°

Ra = Total load — Rg

w.a?
- |w - (3£—a)}

b
v - [

Draw SFD

Bending Moment
MB =0

w.a’ w.a.b?
Mc=Rgxb = |: 2(3 (3£—a)Xb:| = {7(%—&)}

2

Ma=Rgx2€—w.a= [‘g’; (3£—a)—(W.a)}=— BV; (ﬁz—bz)}

Draw BMD
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Problem 1

A propped cantilever beam 4m long carries a central point load of 20 kN. Determine the
prop. reaction and draw SFD and BMD.

Given data:

Span € =4m 20 KN

Load W =20 KN 1 l om
Solution: Al ——3 B

\

i) Bending moment " i - ‘
Rs = Prop. Reaction RA = 13.76 RB = 6.24
BMatAduetoRB =Rgx4 TP~ X
BM at A due to load = 20x2 = 40 KN.m
Draw BMD

ii) Area of Bending Moment Diagram

A; = =xbxh

x4 =2.67m

X 2 X 40 =— 40 kNm?

+ — x2 =+3.33m

iii) Prop. Reaction (Rg)
Upward } {Downwa rd

By Mohr’s Theorem — I deflection deflection
AX &g (+) =g (-)
omax=— =0 il st
El a, X _ a, X,
AX =0 El El
AX +A X =0 X = X
1 TR Xy = 8 RB x 2.67 = 40x3.33
(8 Rgx2.67)—40x3.33=0 Rs =6.24 KN
_ Reaction = Total load — Rg
8Rsx2.67=40x3.33 | Re=6.24KN
Ra=20-6.24
e 20~ 6.23 Ra = 13.76KN
Bending Moment A= L9 Ra =13.76 kN
MB =0
Mec = (6.24 x 2) = 12.48KN.m
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Ma = (6.24 x 4) — (20 x 2) = -15.04KN.m
Draw BMD
Point of Contra Flexure (y):

Point of contra flexure will occur at “y” distance from B. (Similar triangles)

y _2-y
1504 1248
12.48y=15.04(2-y) =0 1248 kN.m
27.52'y = 30.08 —~
y= 2008 09 0
27.52 15.%4
L

y= 109 |m from A

Problem 2
A Propped cantilever beam is 6m long. It carries an udl of 30 KN/m over its entire span.
Determine the Prop. reaction and Draw SFD and BMD.

Solution 30 kN/m
Span £ =6m
udl w =30.KN/m

let Rg = Prop. reaction

i) Bending moment by parts
Rg = Prop. Reaction
BMatAduetoRg=Rgx® =6Rp

BM at A due toudl = 39X 6°

2
=—540 KN.m
Draw BMD
ii) Area
a; = area of BMD due to Rg
1 SFD

A1=EX6X6RB=18RB 75.90 KN.m
Centroid P 2000

— 2 0

X, :EXG =4m 1§5

yl

a, = area of BMD due to udl BMD

A= % X 6 x 540 = 1080 KN.m?
Centroid of BMD from B
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X, = (§x6) = 4.5m
4

ii) Prop. Reaction
By Mohr’s Theorem - 1|

Upward deflection due to Prop. reaction = Downward deflection due to load

Ax _AX
El  El
AX = AX,

18 RBx 4 =1080x 4.5

Rg = 67.50 KN

Reaction at A = Total load — Rg

Ra=(30x6)—-67.50 =112.50 kN
Draw SFD

Maximum BM will occur at ‘x’ distance from B
X 6—X

67.50 112.50

112.50 x - 67.50 (6 -+ x) =405 - 67.50 x
x=2.25m from B

Bending Moment
MB =0

2
2.25 =75.94 kN.m

Mx = Rg X 2.25 — W.X. % = 67.50 x 2.25 — 30

2 2

=(67.5x6) - (30x% ) =—135KN.m

MA=RBX8—

Draw BMD
Point of Contra Flexure (P):

Point of contra flexure will occur at “y” distance from B.
- _ y _

My =Rgxy w.y.E =0

67.50 x y— 15 y*=0

y?-45=0

v’ =4.5

y=2.12m from B
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Problem 3

A propped cantilever beam 8m span carries an udl of 5 kN/m over its entire length.
Determine the prop. reaction also draw SFD and BMD.

Solution

i) Prop. reaction

we know, Rs = —w/ Vi Vi Vi Vi ViV Vi Vi Vi ViV
8 R
3 i |
Rg == x5x8=15kN L 8 \
8 RA=25 KN Re=15 KN
Ra =5x8—-15=25kN
Draw SFD r
G
Max. (+ve) BM will occur at ‘x’
distance from Prop. SFD 1
X 8—X

15 25

25x =15(8- Xx)
25 X =120-15x
40 x =120

= — =3m
40

Bending Moment
MB =0
My =(15X3)_(5X3ng =22.5kN.m

Ma =15x8—(5x3x%j=—40kN.m

Check

w2 2
Ma = wi = S8 =-40kN.m
8 8

Problem 4
A propped cantilever beam 6m span carries a point load of 30 kN at 2m from propped end.

Find prop. reaction draw SFD and BMD.

Given data:
Span £ =6m
Load W =30 KN
a=4m ; b =2m
Solution:

i) Bending moment by parts

BM due to Prop. Reaction =Rgx € =6 Rp
BM at A due to load = 30x4 = 120 KN.m
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ii) Area of BMD

1
A;=— xbxh
2 A d
. a
A1=EX6X6RB =18 Rp
— 2
X, == X6 =4m GIEB
3
o
1
A, = = xbxh
2 r
14.44
1 5 I3 Onnnnn‘nnnnnnnn e rrrrTTY 0 _1
A2_§x4x120 = —240m 0 1 5%
SFD El‘ﬁ“‘ﬁ J
X, =2+ = x4 = 4.67 m

ii) Prop. Reaction (Rg)

By Mohr’s Theorem - Il

AX -
Ben= ~x =0, AX =0
AT R

(18 Rgx4)—(240x4.67)=0
Rg = 15.56 kN
Ra=30-15.56 = 14.44 kN
Draw SFD

Check
(or) we know

Wa?
Rg =
e

(37 -a)

_ 30x 42

R = = (3x6—4) =15.56 kN

Ra=30-15.56 = 14.44 kN

Bending Moment
Mg=0
Mc=15.56 x 2 =31.12 kN.m
Mp=15.56x6—-30x4 =-26.67 kN.m
Draw BMD
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Problem 5
A beam of length 6m is fixed at one end and supported by a rigid Prop. at the other end at
the same level. It carries an udl of 5 KN/m for a length of 4m from fixed end. Determine the
Prop. reaction and Draw SFD and BMD. 5 wim

Given data:

Span € =6m

udl w =5KN/m

21 =4m

let Rg = Prop. reaction
Solution
i) Bending moment by parts

Rg = Prop. Reaction

BM at AduetoRzgx® =4Rg

BM at A dueto udl = 3% 4° = _40 KN.m

d 370

2 SFD
Draw BMD by parts
ii) Area of BMD
A; = area of BMD due to Rg
1
A]_ =EX6X6RB =18RB
., V2
Centroid X1:§X6 =4m fromB
A, = area of BMD due to udl
1
A, = 3 x4x40 =53.33KN.m
—_— 3
X, = ZX4 +2 =5mfromB

ii) Prop. Reaction (Rg)
By Mohr’s Theorem — I
Upward deflection due to Prop. reaction = Downward deflection due to load
AX _ AX
El El

18 Rgx4=53.33x5

Rg=3.70KN

Reaction at A = Total load — Rg

Ra=(5x4)—3.70 =16.30 kN
Draw SFD

Maximum (+ve) BM will occur at ‘x’ distance from C

X 4-X
3.70 16.30
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16.30 x—3.70 (4 —x) = 14.80 —3.70 x

X = w =0.74 m from C
20

i.e. (2+0.74)=2.74 mfromB

Bending Moment
MB =0

Mc=Rgx2=3.7x2=7.40 kN.m

2
MXx = Rg X 2.74 — W.X. % =370x274-5x 24 _g77kN.m
2 2
Mp=Rgx®— Wy =3.7x6— 5X24 =—17.80 KN.m
Draw BMD
16.30
X
(+)
Ollllllll IIIIO
B w 370
SFD '
Problem 6

A cantilever beam is supported by vertical post at free end 4m long and it carries a point
load of 20 kN at centre and udl of 5 kN/m over entire length. Draw SFD and BMD.

Solution
Span € =4m
Load W =20 KN
udl w =5KN/m

i) Bending moment by parts
Rg = Prop. Reaction

BM at Adueto Rz =4 Rg

BM at A due to udl = X4’ = 40 KN.m
2

BM at A due to load = 20x2 = 40 KN.m

Draw BMD by parts
ii) Area of BMD

Aq =£xbxh
2
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A1 =%X4X4RB=8RB
— 2
X = — x4 =2.67m
3
A, =1xbxh
3
1
A2 = § x4 x40 =53.33
X_2 =(§X4j =3m
4
Az =£xbxh
2
1
As =§x2x40 = 40
— 2
X, =2+§x2 =3.33m

ii) Prop. Reaction (Rg)
By Mohr’s Theorem — I

SFD '

AX
6gip=— =0
AT R
AX =0
Upward } R {Downward
deflection deflection

Arx, =[A; X, +As X, ]
(8 Re x 2.67) = [(53.33 x 3) + (40 x 3.33)]
21.36 Rg = 293.19

~293.19
° 21.36

Ra =20+ (5x4)—-13.75 =26.25 kN

=13.75kN

(or) we know,
Rg = [EW +§a)€)
16 8
R = (ix 20+§x 5x 4)
16 8

Rg =13.75 kN
Ra=20+5x4-13.75=26.25 kN
Draw SFD
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Bending Moment
MB =0

Mec = (13.75 x 2) = (5 x 2) (%) =17.50 kN.m

Mp=13.75 x4 — (20 x 2) - (5x4x%) = —25KN.m
M, = — 25 kN.m

Draw BMD

Problem 7

A beam of length 6m is Propped at one end. It carries two point loads of 5 KN each at 2m
and 4m from left supports. Determine the Prop. reaction by area moment method and
Draw SFD and BMD.

Solution
Span £ =6m
W1 = Wz =5 KN

let Rg = Prop. reaction at B
Ra = Prop. Reaction at A

i) Bending moment by parts
Rg = Prop. Reaction = Rg x II= 6Rg

BM at A due to W1 = RgX €/(5x4) =20 KN.m

BM at AduetoW,;= 5x2 =10 KN.m

Draw BMD by parts

ii) Area
A; = area of BMD due to Rg

A1=%X6X6RB=18RB

— 2
Centroid X, =3 X6 =4m
A, = area of BMD due to udl
1
A; = 5 x4x20 =40

Centroid of BMD from B

X, =2+(§X4j = 4.67m
1
Az = E x2x10 =10
— 2
X, =4+§x2 =533 m
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ii) Prop. Reaction (Rg)
By Mohr’s Theorem — I
Upward deflection due to Prop. reaction = Downward deflection due to load
aX _ X + 83 Xs
El El El

a X, =a,X, +az X, \ X1 |

18 Rg x 4 = (40 x 4.67) + (10 x 5.33) = 240.10 RE[' CLo (3

L Lt £ £ b £ £ £ £ 0 b 0 5

Rs =3.33 KN

Reaction at A = Total load — Rg

Ra=(5+5-3.33) =6.67 kN

Draw SFD L GoF

Bending Moment
Mg=0 BMD by Parts
Mc=Rgx2=3.33x2=6.66 kN.m
Mp=Rgx4—(5x2)=3.33x4-5x2
Mx = 3.32 kN.m
Ma=Rgx € —(5x4) - (5x2)=3.33x6-5x4-5x2
Ma =-10.02 KN.m
Draw BMD

Problem 8

A Cantilever beam of 6m length Propped at 2m from free end it carries an udl of 12 kN/m
over its entire span. Analyse the beam using area moment method Draw SFD and BMD
indicating the values of salient points.

Solution
Span £ =4m
Projection =2m
udl w =12 KN/m
let Ra = Reaction at A

Rg = Prop. reaction

i) Bending moment by parts
Rg = Prop. Reaction
BM at AduetoRgx€ =4 Rg

BM at Aduetoudl = 12X6X6_ 716 KN.m
2

BM at Bdue toudl = 12X2° = 24 KN.m
2

Draw BMD by parts
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ii) Area
a; = area of BMD due to Rg

di =%X4X4RB=8RB
Centroid

— 2

X, =—X4 =2.67 mfromB

a, = area of BMD due to udl
ay =4x24 =96 KN.m?
Centroid of BMD from B

RO

as = % x4 x 192 =256 kNm?
X_3 =§x4 =3m ,
4
1 SFD
ay =§x2x24 =16 kNm?
—_ 1
X, =ZX2 =0.5 m from B

ii) Prop. Reaction

By Mohr’s Theorem - I

Upward deflection due to Prop. reaction = Downward deflection due to load
(Are of +ve Bm X X') = Area of —ve Bm X X)

BMD

X a X, aX, a.X.
a11+44_22+33

El El El El
a1x_1 + a4x_4 = azx_2+a3x_3
(8 RBx 2.67) + (16 x 0.5) = (96 x 2) + (256 x 3)
21.36 Rg+ 8 =192 + 768 = 960
21.36 Rg =952
_ 952
2136
Rg =44.45 KN
Reaction at A = Total load — Rg
Ra=(12 x 6) —44.45 =27.55 kN

B

Maximum BM will occur at ‘x’ distance from C
X _ 4-X
2045  27.55
27.55 x=20.45 (4 —x)
27.55 x = 81.80 — 20.45x
48x =81.80
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= 81.80 =1.70 m from B

X

Bending Moment

MC=0
22
Mg=—-12x 7 =24 kN.m
3.7°
Mx =44.45x1.70-12 x =6.58 kN.m
2 2

MA=RBX€—

=4445x4-12x 67 =—38.20 KN.m

Draw SFD & BMD

Problem 9
A beam of length 8m is fixed at one end and supported on a rigid prop. at the other end at
the same level. The beam carries an udl of 8 kN/m over its entire length. Determine the

prop. reaction and draw SFD and BMD.

Solution ) 8 KN/m
(i) Prop. reaction A iw&mn%B
y e et o e e e

_3 _ 3 L 8 |
Rg _gwx€ = §x8x8 RAa=40 KN Re=24 KN
Rg =24 kN
RA=(8X8)'—24
RA:40 kN

Draw SFD as shown in fig. 1.48
Max. (+ve) BM will occur at ‘x’
distance from Prop.
X _8-X
24 40
40x=24 (8- X)
40x =192 -24X
64 x =192

x=3 |M

Bending Moment

MB=0
8
MA=(24x8)—8x8xE =—64 kN.m

Mx=(24x3)—8x3x% =36 kN.m

Draw BMD
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Point of Contra Flexure (P):
Point of contra flexure will occur at ‘y’ distance from B.
M, =0
2
Rexy—w (y7) =0

2

24xy—8xy— =0
2
4.y2= 24y
_ 24
Y 4

Y=6m |fromB

1.2 HIGHLIGHTS

1. Propped cantilever beam

When a cantilever beam is supported by vertical post at free end (or) near the free end is
called Propped cantilever beam. It is statically determinate beam and its degree of
indeterminacy is 1.

2. Prop. Reaction

Sl. Prop. Reaction
No. ‘ Type of biim . | (Ra & Ra)
1.
11
7 5
Rg = —W
A 2 \\\\\\\\\\\\\\ B 7 16
4
g Ry = Sxw
RA Re 16
2.
RB = E(.L){’;
w/m 8
A B
1 ________________ RA = E(.L){’;
| e 8
RA= Re = Position max. Bm.
X = E{’,
8
3. w 2
1 a ‘ b Rg = W.a3 (3¢-2a)
A B 2.0
’ 4
RtA Rs Ra = (W —Re)
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4,
W
/ |
A4 B W
7 ¢ a— Re = — (3¢ +a)
} ¥
RA Re
5. , w/m
Aj C B RB = lw%
A——1/p— 64
.- 2 —
B_

3.Ca

- 0. |
L4

ntilever and Propped cantilever beam.

Sl. . .

No Cantilever beam Propped cantilever beam

1. | One end fixed and another end | One end fixed and another end

free. supported by ver1\:/ivcal post.
j w
* l
Aj \QQ\Q\B $E A :I —_— B
Elastic cur\k‘ j =

2. | ltis a statically determinate beam

It is statically indeterminate beam.

3. | Degree of indeterminacy is zero
at fixed end is more.

Degree of indeterminacy is one
End support moment is zero.

4. | There is no positive moment.

There is a positive moment also.

5. | Slope and deflection are more at | Slope and deflection is zero at
free end. propped end.
4. Centroid and Area for standard cases.
SI.No. Shape Centroid Area
1.
f l(/’ 217 1 — g
s Xa==
A B 3
h .C from A A=%x2xh
- 2
Xg=— x#8
3
from ‘B’
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2 ¢ 3 ;Azﬁ Azlxéxh
i 2 ‘B 4 3
A ° from ‘A’
c - ¥
Xg=—
4
£ from ‘B’
3 XA _Oxb | A=Ixbxh
8 3
from ‘A’
- 3
A///////C B XC:—Xb
-~ X— e pr— 8
e from ‘C’

1.2 QUESTIONS

One mark Questions

W N A W N R

Define — A Prop
What is the degree of Indeterminacy of a propped cantilever beam?
Where the bending moment is maximum in a propped cantilever subjected to udl throughout.

Find the prop action of a propped cantilever beam subjected to point load at centre.
Draw the deflected shape of the any one-type of beam

What is the degree of indeterminacy of a Prepped Cantilever beam?

State the prop reaction value of\a/propped cantilever beam with central point loaf ‘W’
State the degree of indeterminacy of a fixed beam

What will be the degree of indeterminacy of a propped Cantilever? (unit 1.2)

10. What is the degree of indeterminacy of a fixed beam? (unit 1.2)

Three/Five mark Questions

1.

Find the prop reaction of a propped cantilever beam subjected to a point load at mid-span by
area Moment Method.

Draw the deflected shapes of cantilever beam, simply supported beam, propped cantilever
beam, fixed beam and continuous beam

Find the prop reaction of a propped cantilever beam subjected to UDL throughout the span by
area moment method.

Ten mark Questions

1. A beam of length 6m is fixed at one end and supported by a rigid prop at the other end at the
same level. It carries an UDL of 10KN/m for a length of 4m from the fixed end. Determine the prop
reaction and draw SFD and BMD.

2. A cantilever loaded with a point load at center of the span is propped at the free end. Find the
fixed support moment and prop reaction.
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3. A propped cantilever of length 8m is fixed at one end and supported on a rigid prop at the other
end. It carries a point load of 40 kN at a distance of 5m from the fixed end. Determine the prop

reaction. Draw SFD and BMD.

4. A beam of length 6m is fixed at one end and supported by a rigid prop at the other end. It carries
an UDL of 5 kN/m for a length of 4m from the fixed end. Determine the prop reaction and draw

SFD and BMD.

5. A beam of length 6m is fixed at one end and supported by a rigid prop at the other end. It carries
an UDL of 30 kN/m over its length. Determine the prop reaction and draw SFD and BMD.
6. A Propped Cantilever of span 6m carries two equal point loads of 5kN act at 2m and 4m from left

support. Determine the prop reaction and draw SFD and BMD

7. A beam of length 8m is fixed at one end and supported on a rigid unyielding prop carries an udl of

4 kN/m throughout the length. Draw SFD and BMD.

8. A cantilever of 6 m length is propped at 2m from the free end. It carries an udl of 12 kN/m
throughout it length. Analyse the beam using area moment method and draw the SF and BM

diagrams indicating the values at salient points.

9. Construct SFD and BMD for a propped cantilever of length 5m. with end prop carrying two point

loads of 5KN, 10KN at 2m. and 3m. distances'respectively from the fixed end.

10. A horizontal beam of 8 metre span s fixed 'at'one end‘and simply supported at the other end. It
carries an u.d.l. of 12 kN/m for 6m length from the fixed support. Determine the reactions at the
supports and draw the SF and BM diagrams using area moment method. Determine also the
positions of Zero moments in the beam.

11. A cantilever beam is supported by vertical post at free end 4m long and it carries a point load of
20 kN at centre and udl of 5 kN/m over entire length. Draw SFD and BMD.
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2.1. FIXED BEAMS — AREA MOMENT METHOD
Introduction to fixed beams:

W1 WZ

Fig 1

Fig 1 shows a simply supported beam AB carrying an external Load system.
Due to the load system a clockwise rotation at A (68,) and an anticlockwise rotation at B (6;) are
developed.

To make these rotations (6, & 6g) zero, an anticlockwise moment Mg at A and a clockwise moment
Mg, at B are to be applied.
These moments (Mag & Mg,a) can be developed by fixing the supports A & B.
These end moments are called “Fixed end moments”.and such.a beam.,is called.a.“Fixed beam”.
Advantages:

1) The fixed end moments reduce the max bending moment near the mid span.

2) Smaller c¢/s and hence economical.

3) Less deflection

4) Stiffer, stronger and stable.

Disadvantages:
1) Being an indeterminate structure, additional equations, besides static equilibrium equation

are necessary for the analysis.
2) Proper care should be taken for the effects due to temperature and secondary stresses.

Degree of indeterminacy of Fixed beam:
w
Maz
A R—
A C

ol o

No of unknown reactions =4

(Ra, Re, Mag and Mg,)

No of available static equilibrium equation =2
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Redundant reaction (excess unknown) =2(4-2)

<. Degree of indeterminacy is 2.

Sagging and Hogging moments:

g W/ m

A+ ¥ ¥ & & ¢
a7 ) C E M3
Fixed beam with u.d.[

wiz A I/‘D C E\I B wl
P 12

12 Hogging BMD Hogeging

Here point D & E are Point of contra - flexure

In case of fixed beams, both hogging bending moment and sagging bending moments are present.
The fixed end moments are usually hogging in nature.

The mid span moment (for symmetrical loading) is sagging in nature.

At the ends, the moments are hogging and gradually reduces to zero at the point of contra-flexure and
gradually increases to max sagging moment and then sagging moment gradually reduces to reach
another point of contra-flexurefandafter thatiincreasing to hoggingmoments at'other end.

Thus there are two point of contra-flexure.
Determination of Fixed end moments by Area moment method:

Mas w Maa
A
A C B

f [ |

The fixed ends can be calculated by Area moment method which uses Mohr’s theorems.

In case of symmetrical loading, the fixed ends are equal (i.e.) MAB = MBA. For this case, the fixed end
moments can be calculated by applying Mohr’s theorem |I.

In case of unsymmetrical loading, the fixed end moments are not equal. (i.e.) MAB is not equal to

MBA. For this case, the fixed end moments can be calculated by both the Mohr’s theorem.

(i.e.) Mohr’s theorems | and IL.
Derivations of expression for standard cases of fixed beams:

The following are the standard cases
I Fixed beam with central point load (symmetrical loading).
Il. Fixed beam with UDL throughout (symmetrical loading).
Il Fixed beam with a non-central (eccentric) point load (unsymmetrical loading).
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Standard case |
FIXED BEAM WITH CENTRAL POINT LOAD:

W
Mas Mzs
(2 LI |
\ C /
A B
r
Notations:
w — Central point load.
L — Span of the beam.
Mg — Fixed end moments at A.
Mga — Fixed end moments at B.
Concept:

*  This standard case is a case of symmetrical loading.
*  The fixed end moments are equal.
(le) MAB= MBA=M (Say).

*  The fixed end moments (Mug & Mg,) are evaluated by applying Mohr’s theorem |.

Approach:
The given Fixe M w M
Cy \L V2 g
\I — nt l/
w
L2 \L L2
fig 1 Simply suported beam
with central point load
M =+ M
fig 2. 5.5 beam with end moment
=+ wil/4
M _ M
u diagram (free BMD)
u’ diagram (fixed BMD)
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In the figure,

The BMD’s for the equivalent S.S beams are drawn.

The BMD for the S.S beam with loading is called as u diagram or free BMD.

For this case the p diagram is a triangle with a central ordinate of WI/4.

The BMD for S.S beam with ends moments is called p’diagram or fixed BMD.

For this case, the end moments are equal and hence p’ diagram is a rectangle.

The end moments are calculated by equating,

Area of p diagram =
Derivation:
Step 1: Area of p diagram

Area of y’ diagram.

wi/4

Area of p diagram

= Area of triangle

= % bh

= YxIxWI/4

= Wi’ /8

Step 2: Area of W’ — diagram:
Area of |’ diagram

= Area of rectangle

M

7

= Ixb
= | x M
= Ml

Step 3: Fixed end moments:
Area of 1’ diagram =
Ml
M =
(i.e.) Mag = Mga= M = WI/8.
Result:

The fixed end moments

MAB = MBA = WI/8.
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Standard case Il
FIXED BEAM WITH UDL THROUGOUT THE SPAN

_ L w/m - Maa
Mas (, (t N D
d N
VR 2 ' " " N
1 N
/
Notations:
w - UDL throughout the span

I -Span of the beam
M,z - fixed end moment at A
Mga - fixed end moment at B

Concept:
e This standard case is a case of symmetrical loading.

e The Fixed end moments are equal.
(i.e.) Mag = Mga = M (say)
e The fixed end moments (Mag & Mg,) are evaluated by applying Mohr’s Theorem I.

Approach:
The given fixed beam is converted to an equivalent S.S beam.

From the diagram,

The BMD’s for equivalent S.S beams.are drawn.
The p diagram'(free BMD) is a second degree parabola with a'central ordinate of wl2/8.
The W’ diagram (fixed BMD) is a rectangle with length ‘I and breadth ‘M’.

The end moments are calculated by equating,

Area of |’ diagram = Area of u diagram.
gw

/

Mz )ﬂﬂ}l

Q T3 3T T TV

J‘Rﬂ = nt Rz

f !
v v ¥ ¢ b3

Ra + R

M3 g ) Mas

A

T Equivalent 5.5 beam
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Step 1: Area of p diagram:
Area of p diagram
= Area of parabola
2/3 bh
2/3 x| x wl*/8
= wl*/12.
Step 2: Area of i’ diagram:
Area of W’ diagram
= Area of rectangle

= Ixb

= IxM

= Ml
Step 3: Fixed end moments:
Equating,

Area of W’ diagram

IxM
Therefore M
Mpe=Mga=M =

Area of u diagram
wl*/12
wl?/12

wl’/12

FIXED BEAMS WITH UNSYMMETRICAL LOADING

0 =0 %’Z “\L )

5 -0
e

V

elastic curve

[

—= <

Rs

Example fig

A
In the fig,
azb; Mag# Mgy;
RaZ Rg.
Boundary condition,
0,=0; 0;=0

6p=0; 6g =0;

When a fixed beam is subjected to unsymmetrical loading,
&% Fixed end moments (MAB & MBA) are not equal (i.e.) MAB # MBA.

(i.e.) RA # RB.

O

P b

The vertical reactions (RA & RB) are also not equal.

curve at the ends (boundary conditions).
& Here we use the conditions that the slope and deflection at the ends are zero.
% (i.e.)6A=0,8A=0; (or)BB=0, 6B =0;

Since the degree of indeterminacy or redundancy is two, the redundant reactions (excess
unknown reactions) are two.

Hence we require two more equations in addition to the two static equilibrium equations.

The two additional equations can be obtained from the geometric conditions of the elastic
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& \We make use of the area moment theorem (Mohr’s theorem) | & Il between the two ends to
obtain the two equations.

& The first equation is obtained from theorem | making use of the condition that the slope at the
ends of the beam are zero.

& The second equation is obtained from theorem Il making use of the condition that the
deflection at the ends are zero.
Hence from theorem |

Sans/ EI=0
El 20, therefore
2axp=0 - (1)
Hence from theorem Il
ZasgXa
EL_
El 20, >anx X4=0

Standard case Il
FIXED BEAM WITH A NON - CENTRAL (ECCENTRIC) POINT LOAD

Mas \LW ) Mas
\ @ b r
A€ g
A [ T
Ra Rs
Notations:
w - Non — central point load

Mus - Fixed end moment at A
Mgs - Fixed end moment at B
Ra - Vertical reaction at A
Rg - Vertical reaction at B

I - Span of the beam

Concept:
o This standard case is a case of unsymmetrical loading.

o The Fixed end moments are not equal. (i.e.) Mag# Mg,

&% The Fixed end moments are evaluated by applying Mohr’s theorems | & II.

Approach:
The given fixed beam is converted into equivalent simply supported beams and the corresponding U
diagram (Free BMD) and p’ diagram (Fixed BMD) are drawn.

The p diagram is a triangle with an ordinate of Wab/I at C.

Since MAB# MBA, the p’ diagram is trapezium. The fixed end moments are evaluated by applying
Mohr’s theorems | & II.

From theorem I,
Area of W’ diagram = Area of u diagram
From theorem II,

Moment of area of p diagram about A = Moment of area of
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Diagram about B
In this fig
Fig 2 & fig 3 are equivalent S.S beams
Fig 2(a) u diagram (Free BMD)
Fig 3(a) W’ diagram (Fixed BMD)

W Mza
Mas g\l : l 6 I’,D
;4\| C '3
=nt
w
a ‘|, b
S
Ra gﬂ 2 Rp
/IM
A B
| fal Xlﬂl | -
X, Xflz Maq

¢ )

Derivation:
Step I: Area of p diagram:
Area of p diagram = Area of triangle
=% bh

1 Wab
—x|x

Wab /2

Step Il: Area of p’ diagram:
Area of Y’ diagram = Area of trapezium

= Area of rectangle + Area of triangle
=lb+% bh
= (I x Mga) + %2 x | X (Mag — Mga)
=IxMga+ % x| x Mag—% x| x Mgy
=V x| x Mgp+ % x| x Mpg
= (Mag + Mgp) x 1/2

THEORY OF STRUCTURES Page 69

www.binils.com
Anna University, Polytechnic & Schools



Step llI: Application of Mohr’s theorem I:
Zoap

2 - 0 , EI#0
&ZaAB =0
Area of u diagram — Area of p’ diagram =0
Area of u diagram = Area of W’ diagram
Wab/2 = (Mpg + Mg,) I/2
oo MAB+ MBA=Wab/| _(1)

Step IV: Moment of area of p diagram:
Moment of area of u diagram about the left end A

=a, Xa,+a,.Xa,
1 Wab
a;=7Xa X —

L

¥Xa = ; a
— 1 Wab 2
a;. Xa =7 xax x;xa

=Wa’b/ 3l

1 Wab
—xbx

dp =

— . 3a+b
Xa,=(a+b/3)={ - )

- 1 Wab .3ath
ayXa,=-xbx—x(

L

)

Wab®
&l

(3a+Db)

<~ Moment of area of u diagram about A

=a,.Xa;+a, Xa,
Wa®s Wbt
= x (3a +'b)

= +
(2a’+ 3ab + b?)

31 3
_Wab

T oal

Step V: Moment of area of i’ diagram about A
Moment of area of p’ diagram about A,
=a;.Xa; +a,.Xa,
a; =Y¥bh
=% x| x (Mg — Mgp)
= (Mpg = Mga) x I/2
Xa3 =1/3
as.Xaz = (Mag— Maa) x (1/2) x (I/3)
= (Mas = Mg,) x I°/6

as = Mga x|

Ea4 = |/2

dg .Ea4 =|\/|BA><|X|/2
_Mpa 2

— o Mag—Mgs o 2
oo d3. Xaz+a,. Xaz = % I+ MBAT

&
&

~» Moment of area of W’ diagram about A
Map+ ZMpy |2

: SNF)
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Step VI: Fixed end moments:

(Mag + 2 Mga) X 1’/6 = H;—Tb (2a2 + 3ab + bz)
Mag + 2 Mpga =Hj:b (a2+ab+a2+2ab+b2)
Wab 5
=7 [a (a+b) + (a+b)]
Wab )
= (al +19)
Wab
=7 | (a+l)
Mag+2 Mga = Hf:b (I+a) -(3)
Mag + Mga = W:Ib
Equating1 & 3
Max _ uf:b (+a) - W:zb
Wabk Wa®b Wab
= 7 + 1% - M
B Wab )
“Mg = —7— (Hogging)
Substituting in 1
Wa'h
Mag + :1. = W,Eb
Wab Wea'b
Mag = : T
Wab I-Wa"h
=—zz
Wab (I—-a)
=—:2
Wab®
= :2 (since l-a.= b)
A Wah? |
“Mag =3 (Hogging)
Results:
Fixed end moments
Wab® .
M = 2 (hogging).
Wa b .
Mga == (hogging).

lllustrative examples for symmetrical loading:
(1). A Fixed beam of span 6m carries a central point load of 20kN. Analyse the beam for shear, BM and

draw the SFD & BMD.
Given data:

20KN

3m 3m

[=6m

To find:
To analyse the beam for shear & BM
Solution:
Consider Mg & Mg, as redundant reactions. (Excess unknowns)
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Step 1: p diagram (Free BMD):

A

RA = 20/2 = 10KN RB = 20/2 = 10KN

20 KN

3m 3m

o K—

;

=20/2 =10kN
Mu, =0 (simple support)
Muc =+Rax3-20x0=+10x3
=+ 30kNm
Mug =0 (simple support)
Complete p diagram.
Step 2: Fixed end moments: (M & Mg,)
By symmetry Mg = Mgp=M
For symmetrically loaded fixed beam
Area of i’ diagram = Area of u diagram
M x 6 =% x6x30
= 90kNm.
M = 15kNm

+ ve +30KN

K
_wdiagra

m,

1

diagram

Step 3: Vertical reactions (R,, Rg):
By symmetry,

RA :RB:
=20/2

total load

-
=

10kN ( ) T
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Step 4: Shear force (V,):

20KN

MAs =~ 10 KNm g \l(

A

) M3A = 10 XNm

f

ol
©
—
=

A
Ra = 10KN Tﬂ: 10KN

Va (L)
=0
Va(R) =+ 10kN
Vc (L) =Va(R)=+10kN
Vc(R) =Vc(L)—20 =+10-20
=-10kN
Vg (L) =Vc(R) =-10kN
Vg(R) =0
Where L = left side, R = right side
Complete SFD.

Step 5: Bending moment (My):

Ma  =- Mg (=M) = - 15kNm

Mc -M+ Rax/3 ==15+(10x 3)
+15kNm

Mg  =-Mga(=M) =-15kNm
Points of contra — flexure:

Mas = 15 KNm 20KN Mz4 =10 KNm

(,\ x :[/2=3mJ/ {/2=3m :)
\ :

Y| D C B

A [=6m A

Ra - 10KN Rp -10KN

Since the BM changes its sign from —ve to +ve from A to C and from +ve to —ve from C to B.
<> There are two points of contra — flexure.
Let one of the point of contra — flexure be D at a distance X from A.
SMp =0
+ RaxXx—Mpug =0
+10xx-15 =0
~X  =1.5m from A
By symmetry another point of contra — flexure at 1.5m from B.
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SFD & BMD

Maz= 15KN 20KN Msa=15KN

() )

ﬁ\{ 15m C Tom ((B

LOADING DIAGRAM 1\ _
Ra = 10KN 1\ Rp = 10KN
10KN + 10KN
10KN . 10KN
SFD

IS‘KWM% xﬁmﬁt

BMD

(2). A fixed beam of span 6m carries a UDL of 30kN/m throughout the span. Analyse the beam for
shear, BM and draw SFD & BMD.
Given data:

g.‘m KN/m

v WU I TTE TR
C

[=6m

A A4

L L. ¥

To find: Loading Diagram

To analyse beam for shear, BM and draw SFD & BMD.
Solution:

The given fixed beam is a symmetrically loaded fixed beam.
Step 1: u diagram (free BMD):

\/w/m
V' 2 T " 2

om

/—,’-m
= 135 KNm

[=6m

y diagram
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u diagram is a second degree parabola with max value as WI? /8 at mid span and
with ends 0.

Area of p diagram = %x 6 x 135
= 540kNm’

Step 2: ’ diagram (fixed BMD):
Since the loading is symmetrical.
Mas =  Mga
The W’ diagram is a rectangle.
Area of W’ diagram = Mpg x| =Mpsx 6
=6 Mgs.

Maz Mz sz
G D

Mz Maza

}

u

Step 3: Redundant reactions (Mags & Mg,):
Consider the fixed end moments MAB & MBA as redundant reactions (excess unknown)

For symmetrically loaded fixed beam
Area of i’ diagram = Area of p diagram

6 MAB. =540
Mps. =540/ 6 = 90kNm.
By symmetry Mpag = Mg,

SeMag = Mga =90kNm (hogging).
Step 4: Vertical reactions (R, & Rg):

By symmetry
RA _ RB _ tDt‘E:;&EI‘l‘
_30xE
= 90kN.
Step 5: Shear force (Vy):
Va =+ R, =+ 90kN
V¢ =+Ra—wl =+90-(30x3)=0
VB =- RB: - 90kN

Complete SFD.

Step 6: Bending moment (My):
Ma =-Mp =-150kNm
Mc =+Rax(I/2) = Mpg—w x (1/2) x (1/4)
=+90x(6/2)—90—[30 % (6/2) x (6/4)]
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=+270—-90-135=45kNm
MB =- MBA =- 150kNm
Point of contra — flexure:

v

For this standard case, the point of contra — flexure D & E are 0.211 | from the nearby support.
Maz
A

0.211 x 6 =1.266m from either support.
> M3z
v ¥ ¥ § 4 oV

Complete BMD.
41 o C E M3

SFD & BMD:
Fixed beam with u.d.[

[N

s

BMD

(3). A fixed beam of span 6m carries a point loads of 10kN at one — third points. Analyse the beam for
shear, BM and draw the SFD & BMD.

Given data:
10KN 10 KN
2 2m i’ 2m i/ 2m E B
A D E |§
<> ¢ <>
XI [: 6m .X-2
To find:
To analyse the beam for shear, BM and draw the SFD & BMD.
Solution:
Step 1: p diagram
2
1 3
10x2
=20KNm 10x2
| =20xNm
2m 2m 2m
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a;=%bh

=% x2x20

= 20kNm’

a,=Ixb

=20 x 2 = 40 kNm?

as = a; = 20 kNm?
Area of pdiagram=a;+ a,+ a;= 80kNm?
For concentrated loads (point loads) at 1/3rd points, the p diagram is a trapezium.
Step 2: u’ diagram
By symmetry

Mpg= Mgy =M
~» The W’ diagram is a rectangle.

Mag- Mpz-M Mapg- Mpg- M

om

Step 3:Redundant reactions (Mas& Mga)
Consider Ms& Mg, as redundants (excess unknowns)
But Mag = Mgy = M (By symmetry)
There is only one redundant reaction.
~» By applying Mohr’s theorem |,

Area of W’ diagram = Area of (i diagram

6 M =80

M =80/6 =13.33kNm

eaoMAB = MBA = 1333kNm

Step 4: Vertical reactions (Ra, Rg)

RA _ RB _ rﬂrrzi!mzri
10+10
=—— = 10kN
Step 5: Shear force (Vy)
Vo(L)=0

V4(R) =+ Ra=+ 10kN
Vi (L) =Va(R) =+ 10kN
Vp(R) =Vp(L)-10
=10-10=0
Ve(L)=Vp(R)=0
Ve(R) =Ve(L)-10
=0-10=-10kN
Vg (L) = Ve (R) = - 10kN
Ve(R)=0
Where L = Left side, R = Right side
Complete SFD.
Step 6: Bending moment (My)
M = - Mpg = - 13.33kNm
Mg=+ Ry X 2 — Myg
=+10x2-13.33=+6.67kNm

THEORY OF STRUCTURES Page 77

www.binils.com
Anna University, Polytechnic & Schools



Mc=+Ryax3—-Mp—-10x1
=+10x3-13.33-10 =-6.67kNm

Mg = Mp =+ 6.67kNm

Mg = - Mg =-13.33kNm

Points of contra — flexure:
Since the BM changes its sign —ve to +ve from A to D and +ve to —ve from E to B. There are two points
of contra — flexure one in section AD and another in section EB.

By symmetry both will be equal distance from the nearby support.
Let the BM be 0 at a distance X from A.

My=Mp=0

+RA X X—Mp=0

+10xx-13.33=0

10x =13.33
X =1.33m
By symmetry,
X1 =1.33m from A
X2 =1.33m from B
10RN  10RN
/'11 2m 2m 2m Etﬂ
1 ® C ¥
60=0pur
1.33m 6.67 + 6.67 1.33m
13.331 = - 113.33

(4). A fixed beam of span 6m carries an u.d.| of 10kN/m run over a length of 1/3" span from both the
supports. Calculate the fixed end moments and draw SFD & BMD.
Given data:

(mﬁ?{/m ( 10EN/m

Solution:

Step 1:Redundant reaction (Mag, Mga)
The given loading is symmetrical

Mag = Mga
Using O=0,
THEORY OF STRUCTURES Page 78

www.binils.com
Anna University, Polytechnic & Schools



Area of u diagram = Area of ' diagram
W diagram:

(f ORN/m (f ORN/m

. 2m ; 2m | 2m I
=nt
M .'Msl
6m T
Rz + Rs

u’ diagram

il AN

u diagram

Ma= OkNm

Up=20x2—(10x2x2/2) = 20kNm

He=20x3-10%x2x (2/2 + 1) = 20kNm

Mg =20 x 4 —10%x2x(2/2 + 2) = 20kNm

Hg =20 x 6 — 10x2%(2/2 + 2) — 10x2x2/2 = OkNm
Complete p diagram.3

Area of i’ diagram = Area of p diagram

Ixb =2 (2/3 x bh) + (Ixb)

Maex 6 =2 (2/3 x2x20) + (2x20)

6Mag =93.33

Mg = 15.56kNm

Mag = Mga

Mgs = 15.56kNm

Step 2: Vertical reactions ( R & Rg)
RA = RB . SO,
_ total loads

Ra=

_ E:uxf}+ (10%2) _ 40/2

Ra = 20kN )
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RA = RB = 20kN
Step 3: Shear force (Vy)

(mﬁw/m ( 10EN/m

\Igﬂﬁw
SFD
V(L) = OkN

Va(R) =+ Ry =+ 20kN
Vo =+Ra—(10x2) =+20—-20 = 0kN
Ve =0kN
Ve =0kN
V(L) = Ry — (10x2) — (10%x2) = 20 — 20 — 20 = -20KN
Vg(R) = OkN
Point of zero shear:
Shear Force is0/at D, C, and E.
Vo= Vc=Vg= OkN.
Complete SFD.

Step 4: Bending moment (M)
Mp = - Mg = - 15.56kNm
Mp = Rp X 2 - Mg - 10x2x2/2 = 20 x 2 — 15.56 — 20
=4.44kNm
Mc = Ryx 3 — Mpg — 10x2x(2/2 + 1) = 20x3 - 15.56 — 40
=4.44kNm
Me= Ra X 4 — Mpg — 10%2%(2/2 + 2) = 20x4 — 15.56 — 60
=4.44kNm
Mg = Rax 6 — Mag - 10x2x(2/2 + 4) — (10x2x2/2)
=20x6 —15.56 — 60 — 20 = - 15.56kNm
Point of contra - flexure:
Mg=RyoxXx—15.56-10xxxx/2=0
20x - 15.56 — 5x° =0
5x° — 20x + 15.56 =0
_—b+B —%ac
- 2a
_+20 4/(-20)"-4x5x15.56

x5
_ 20 9.4

10
a=+1.06m,b=+2.94m

Take a distance of 1.06m as x.
X=yso,y=1.06m
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Complete BMD.

20RN| +
- |208N
SFD
XL T N
I/ BMD \I

(Alternative Method using Formula)
(5). A fixed beam of span 6m carries an u.d.l of 10kN/m throughout the span. It also carries a central
point load of 20kN. Calculate the fixed end moments & draw SFD & BMD. Locate the point of contra
flexure.
Given data:

206N
Mag ( ! Oﬁﬂ\f/mlmm
B

Solution:
Step 1: Fixed end moments
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Mag = M1 + M2
EET:
20xe  20xE°
= +
g 12
=15+ 30 =45kNm
Loading is symmetrical.

Mag = Mga = 45kNm (Hogging).

Step 2: Vertical reaction (R, & Rg)

Loading is symmetrical
_Total loads

Ra = -
_ 2D+(f[ﬁx6} _ 40KN
RA = RB = 40kN
Step 3: Shear force
20
EW [—IOEW/m
A T C 1\ B
Rz
Ra i 3m | 3m |
40h
IOE;N
1 B
10 N
40EN
V(L) = OkN
Va(R) = 40kN

V¢(L) =40 — (10x3) = 10kN
V¢(R) = 40 — (10x3) — 20 = - 10kN
V(L) = 40 — (10x6) — 20 = - 40kN
Vg(R) = OkN
Point of zero shear:
S.F values suddenly changes exactly at C.
Point of zero shear is at C.
Complete SFD.

Step 4: Bending moment

M, = - 45kNm

Mc = - 45 + (40x3) — (10x3%x3/2) = +30kNm

Mg = - 45 + (40x6) — (10x6x6/2) — 20x3 = - 45kNm
Point of zero shear at C.
Max = Mc = 30kNm
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Point of contra — flexure:

Since BM values change from —ve to +ve in the portion of point of contra — flexure is in the portion AC
& BM values changes from +ve to —ve is in the portion CB, another point of contra — flexure is in the
portion CB.

Let the BM be 0 at D at a distance x.
Mp=0
-45 + (40xx) - 10xxxx/2 =0
5x” - 40x + 45 =0

_—bx VB —2ac

2a
_ #40 +4/(-20)"-4x5x45
- 25
_ 40+~/1600-500
- 10

=6.65m & 1.35m
The points of contra flexure are x= 1.35m from A and also y = 1.35m from B.
x=vy,D=E

<. acceptable value 1.35m from A.

Since the loading is symmetrical.
Y=1.35fromB

=1.3 :r=1'-3.5'

Illustrative example for unsymmetrical loading
(1). A fixed beam of span 6m carries a point load of 50kN at a distance of 2m from the left end and
another point load of 40kN at a distance of 2m from the right end. Calculate the fixed end moments
and draw SFD & BMD. Locate the point of contra — flexure.

Given data: 50 éj\f Py
40
Mz, | | ) Mo
N 2m 2m 2m F
P C D '3
b om i
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To find:
1. Fixed end moments (Mag, Mga)
2. Draw SFD & BMD

3. Locate point of contra — flexure

Solution:
Though symmetry exists with respect to type of load and position, the values are not same.

This is case of unsymmetrical loading.

oeoMAB * MBA

Step 1: (1) p diagram
Considering the beam with loading as simply supported p diagram

50 RN 40 RN

2m J/ 2m 2m

B

RA + RB =50+40
= 90kN
Taking moments about'A,

RN

2m

50 N
be 4 m

ﬁT c

Sle—2

1
» gf
i——| °
_Xa, I u diagram
l Xa, I
Xa,
xXa,
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Mu,= 0 (simple support)

Mpc= + Ra x 2 = +46.67 x 2
=+ 93.34kNm

Mo = + Ra x 4 — (50 x 2) = + 46.67 x 4 — 100
=+ 86.68kNm

Mug=0
Complete p diagram
(2) Centroidal distances:

Xa, = 5 x2=4/3 =1.33mfromA
— 1
xa2=2+§ x 2 =2.66m from A
— 1
xa3=2+2+§x2 =4.66m from A
Ea4=2+% =3m from A
(3). Area of i diagram
Area of (1) a;=% bh
=% x2x93.34
= 93.34kNm’
Area of( 2) a,=% bh
=1 x 2 x (93.34 — 86.68)
=% x 2 x 6.66 = 6.66kNm’
Area of (3) a; =% bh
=% x 2 x 86.68 = 86.68kNm’
Areaof (4) a,=1xb
= 2 x 86.68 = 173.36kNm’
~» Area of 1 diagram = Area of (1) + Area ofi(2)+ Area of (3) + Area of (4)

='93.34 + 6,66 + 86.68 + 173.36
= 360.04 kNm”?

(4). Moment of area of p diagram about A:
= Ya. Xa
=a,.Xa;+a,. Xa,+a;.Xa;+a,. Xa,
=(93.34 x 1.33) + (6.66 x 2.66) + (86.68 x 4.66) +
(173.36 x3)

=124.14+17.72 +403.93 + 520.08
= 1065.87kNm”.
Step 2: W’ diagram

Mz

Mgz
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Since the loading is unsymmetrical W’ diagram is a trapezium. Assuming Ma> Mg,
Centroidal distances:

- 1
xa5=gx6 =2m from A

Xag=1/2=6/2=3fromA

Area of W’ diagram:
= Area of (5)as + Area of (6)ag
Area of (5) as =% bh
=% % 6 X(Ma— Mg)
=3 x (Ma— Mg)
=3Ma—3M;
Area of (6) ag=1xDb
=6 x Mg
=6M;
~» Area of W’ diagram = as + ag
=3M, - 3Mg+ 6Mjg
=3Ma+ 3M;
Moment of area of y’ diagram about A:
=as . Xas+ ag. Xag
as . Xas=3(Ma—Mg) x 2 = 6(Ms— Mp)
ag . Xag = 6Mgx 3 = 18 M
as . Xas+ ag . Xag =6 x (My— M;) + 18 Mg
=6M,—6Mg + 18 Mg
= 6M, + 12Mg

Step 3: Fixed end moments
Since the loading is unsymmetrical Mg Mgk
Applying Mohr’s theorem |
Area of i’ diagram = Area of u diagram
3M, + 3Mg =360.64
M, + Mjg =120.21 -(1)
Applying Mohr’s theorem Il
Moment of area of u’ diagram about A = Moment of area of u
diagram about A
6M, + 12Mj; = 1065.67
6 (Ma+ 2M;g) = 1065.67
Ma+2Mg  =177.61 -(2)
Ma+M;  =120.21 - (1)
Subtracting (1) from (2)
Mg=177.61-120.21

<Mg=57.4kNm (hogging)
M, = 62.81kNm (hogging)

Step 4: Vertical reactions (R,, Rg)
Already calculated in step 1.

2. Ra = 46.67kN Rg = 43.33kN
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Step 5: Shear force (Vy)
Vao(L)=0
Va (R) =+ Ry =+46.67kN
Ve (L) =+ V4 (R) =+ 46.67kN
Ve (R) =+ Rp—50=+46.67-50
=-3.33kN
Vp (L) = V¢ (R) =-3.33kN
Vp (R) =+ R,—50-40
=+46.67 —90 = - 43.33kN
Vg (L) =Vp (R) =-43.33kN
Vg (R)=0
Since S.F changes its sign exactly at C, +M ., occurs at C.
Step 6: Bending moment (My)
Ma=-Mag

62kNm

507{3‘( 40 K(fv- D M-’B)l= 57-47(.7\’11‘1

\LZm\LZmI’
C D

Mas = 62KNm (,
N 2m
f*

P

Mc=-Mpg+ Ry %2
=-62 +46.67 x 2=+ 31.34kNm
Mp=-Mpp + Ry x4—-50x%2
=-62+46.67 x 4 —100 =+ 24.68kNm
Mg = - Mga'=~57.74kNm
Step 7: Summary

om

Mys = 62KNim SOKN - 40KN Mar= 57.4KNm
(4\1 2m \|/ 2m \I/ 2m__J
C

A D (s
Ra=46.67 K:NT Tﬁs =43.33 KN
QA =0 46.67KN 46.67KN
&5 =0 %I_zu.sﬂ(w 8C - Bmax
A STFD

—_—
62Kﬂ\fm|/ 93.34KNm |57 74 57.74 KNm

BMD
w
[/2 J( [/2 _
=t
example fig B
THEORY OF STRUCTURES Page 87

www.binils.com
Anna University, Polytechnic & Schools



Slope and Deflection of symmetrically loaded Fixed beams by Area — moment method

In case of symmetrically loaded fixed beams, the slopes and deflections at the fixed supports are 0.
& In case of symmetrically loaded fixed beams, the max deflection occurs at mid span (Centre).
o For finding the maximum deflection, Mohr’s theorem Il is applied between A & Cor B & C.
o Only half the BMD is considered.

WORKED EXAMPLE ON DEFLECTION FOR SYMMETRICALLY LOADED FIXED BEAMS.
(1) A fixed beam of span 6m carries concentrated load of 10kN at a distance of 2m from the left end

and another concentrated load of 10kN at a distance of 2m from the right end. Calculate the max

deflection by Area — moment method.

Given data:

0 =0 J0kN  10kN

C max

A D ¢ E

The max deflection by Area — mom; E B

Solution:
Mohr’s theorem Il is applied between the p

Step 1: Fixed end moments (Mpg = Mgy = V
For symmetrically loaded fixed beam Mg =

~» Applying Mohr’s theorem |,

Area of pdiagram = Area of W’ diagram 20
Area of half p diagram=a; + a,
di = % bh
= 7%x2x20 .
= 20kNm’ . u’ diagram
a, = 1b Al i
= 1x20 X
= 20kNm’ 42
Total area of p diagram =2 (20 + 20)
= 80kNm’
Area of W’ diagram (az) =1b _
_eM M=13.33
Area of |’ diagram = Area of p diagrai ol
6M = 80 —
M = 80/6 =13.33kNm. X .
Step 2: Max deflection (8,.x): A3 ﬂ dlag’”am
6max = 6(2
Applying Mohr’s theorem Il between A & C
. Taucws 10kN  10kN
6max - 6C_ El
SacXa=a; Xaq +2; Xgp— a3 X3 ﬂ 2m 2m 2m
X4 =7x2=4/3 =1.33mfromA a N e ="
X4y =2+1/2 =2.5m from A 1 D cC E B
Xg3 =3/2 =1.5m from A
SSac. X,=20x1.33+20%x2.5-3x13.33x1.5
1661 Deflected shape
R _ _ rascxy _ 16.61
°°6max - 6C - EI - El m.
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When El is in kNm?.

Result:
. . 16.61
Maximum deflection = = m
HIGH LIGHTS
1). Fixed beam:
Sl.no | Beam M, Mg Omax
I wi wi Ik
1. C "8 "8 192 EI
a 3B
| [ |
1 |
w/m
2 y (t : wi® wi® wi#
y I " R T T 384 EI
A7 M B
| [ |
| 1
3 w Wab? Walb Wadh?
I \I/ 5 It - E - 3EI1
‘\—--—__//
h ,
| [ |
\ |
w w ) )
4. . \|/ \|/ y Wall—a) Wall—a) LV&E(SE _ ‘[‘ﬂ‘,:]l
a 5 -1 - _
N S |’$ 24 EI
A
| £ |
5. W W E W E W _
N 1/3 l l 1/3 (.
| £ :
— w/m r/ R R
6 -152 W -152 W -
. P I:‘B
| L |
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2). Net bending moment:

M_ﬁ w MB
A T C M=+
1) g
wl/s
+
0 0
wys| .~ ENRYZ
Net BMD
Ma g w/m M
N
{4 )
VR R R ' ' 2
r . - - S M =+ -
A B c 24
2 | L |
wl/ 24
A
OI/ \l 0 p/
wl/12| | wb/12
Net BMD
3). Simply supported beam and Fixed beam:
Sl.no Simply supported beam Fixed beam
1. Ends are simply supported Ends are fixed
2. Ends are free to rotation Ends are restricted against rotation
Slope at the ends are zero
3. Slope at the ends are maximum
Moment at the ends are zero Moment at the end is maximum
4, Moment at the centre is much reduced
Moment at the centre is maximum Deflection at the centre is less
5. Deflection at the centre is more
6. It is a determinate beam. It is a indeterminate beam.
7.
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4). Free BMD & Fixed BMD:

SI. Free BMD Fixed BMD

no

1) The bending moment diagram drawn The bending moment diagram drawn only for
considering the beam as a simply supported the fixed end moments are called fixed

2)

3)

beam is called free bending moment diagram. | bending moment diagram.
It is denoted by p diagram It is denoted by W’ diagram.

It is sagging bending moment It is hogging bending moment.

w/m M [ Ma

4
N
ﬂfel( 2 R PR B A4 ¥ ¥ 4 b & N
A’ ~B
whl/8
Ma Mz
e d 1
+ wejizl 0 e wh/12
Free BMD Fixed BMD

QUESTIONS

Two mark Questions:

1)
2)
3)
4)
5)
6)
7)
8)
9)

Draw the bending moment diagram-for the fixed beam’carrying UDL throughout.

What is the fixed beam and How is differ from Simply supported beam?

What will be slope at the fixed end of the fixed beam carrying UDL throughout its length?
Draw the BMD for a fixed beam subjected to a point load at the mid-span.

State the maximum deflection value in a fixed beam subjected to a UDL throughout the span.
State any two advantages of a fixed beam.

Write any one advantage of a fixed beam compared to simply supported beam.

Define free BMD.

Show that the area of free BMD and fixed BMD in a fixed beam are equal.

10) Define Free BMD? (unit 2.1)
Three mark Questions:

1)

2)

3)
4)

Calculate fixed end moment and maximum deflection in a fixed beam of span 5m subjected to
a central point load of 30kN. Take El = 1.20 x 10" kNm”.

A fixed beam of 6m span subjected to a UDL of w/m over its full length. The net BM at the
centre is 30kN/m. find the value of w.

Show that the area of BMD and fixed BMD in a fixed beam are equal.

State the different method of Analysis of Indeterminate structures.
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Ten mark Questions:

1) A fixed beam of span 9m is subjected to an UDL of 20kN/m over the entire length. It is also

carries two concentrated loads of 10kN each at 3m from the ends.
i Determine the values of fixing moments.
ii. Sketch the BMD marking the maximum values there in.

2) A fixed beam of 12m span carries two point loads of 60kN and 30kN at distance of 3m & 6m
from left end support respectively. Draw the SF and BM diagrams, using area moment
method.

3) A fixed beam of span 8m is subjected to an UDL of 4kN/m over a length of 4m. Symmetrically
placed at centre portion. Determine the support moments and draw the BMD.

4) A fixed beam of span ‘I’ carries a non-centric concentrated load of ‘W’ at distance ‘@’ from the
left support and ‘b’ from the right support. Derive the expression for the fixed end moments
using Mohr’s Theorems (Area-moment method).

5) A fixed beam of span 5m carries two equal point loads of 20kN each at 2m from each end.
Find the fixed end moments. Draw the SFD and BMD.

6) A fixed beam of span 6m carries a central point load of 20kN in addition to an UDL of 10kN/m
over the entire span. Calculate the fixed end moments. Draw the BMD.

7) A fixed beam of span 6m carries a central point load of 30kN and 50kN at 2m and 4m from the
left support respectively. Find the support moments and draw SFD and BMD.

8) A fixed beam of span 5m carries a central point load of 16kN. Determine the fixing moments
and draw SFD and BMD. Find the maximum central deflection.

9) A fixed beam of 6m span subjected to a two concentrated load of 30kN at a distance of 2m
from both ‘ends: Draw SFD and BMD.

10) A fixed beam of span 8m carries an UDL of 45kN/m over the entire span. It also carries two

point loads of 150kN each at 2m from the ends. Calculate the support moments. Draw the
BMD.
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2.2. CONTINUOUS BEAMS
THEOREM OF THREE MOMENTS METHOD

Introduction to Continuous beams:

When the beam has more than two supports, it is called as continuous beam. Hogging moment will be
developed at the intermediate supports. Hence, it is stiffer and stronger than other beams.

It is statically in determinate beam. The slope and deflection are less. It can carry more loads than
other type of beams. Continuous beams are economical.

()
e -.J'_._J_'.j*ﬁ H_’J, +%

Ra L Rz
‘Fz;g

Degree of indeterminacy of continuous beam:

The difference between number of known reaction components and number of known static equation
is called Degree of indeterminacy.
i.e. D.I. = (No of known reaction components — No of known static equation)

The degree of indeterminacy is depend upon the end conditions, no of spans and type of supports as
given below.

a. Two span continuous beam:

1. Continuous beam with both end simply supported:

(et 1

A

7

No of unknown reactlo‘n components (RAﬂﬂB, ﬁc and Mg) =4
No of available static equilibrium Equations (3y=0, Sy =0) =
Degree of indeterminacy =(4-2) =2

2. Continuous beam with one end simply supported and other end with overhanging:
w C%B:a v/ MCD

C \|4 v ¥ v |

Af B cT o

[# L . X

Ry - ? Rs - 2 Re- ?
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No. of unknown reaction components (Ra, Rg Rc & Mg) =4
No. of available static equilibrium egns (3y=0, >y=0) =2
Degree of indeterminacy =(4-2)=2

3. Continuous beam with one end fixed and other end simply supported:

ﬂis=.D

mﬂin {1'/"‘ Iid M0
C v : ¥ 3* a \I/ﬁﬁ 2 )
Rs -

Y

Al

Ra-? Re-2

No. of unknown reaction components (R, Rg, Rc & My, M) =5
No. of available static equilibrium egns (3y=0, 3y=0) =2

Degree of indeterminacy =(5-2)=3

=

A 3 H CT D
&7 Y Red

No. of unknown reaction components (R, Rg, Rc & My, M) =5

\\
le
e
+
e—
P
2
5
S
=

No. of available static equilibrium egns (3y=0, 3y=0) =2
Degree of indeterminacy =(5-2)=3

5. Continuous beam with both ends fixed:

m}{ =7

C T () o 94')

r ,|<¢¢¢;C
y L CH [

Rz -? Ry - 2 Rc_?

No. of unknown reaction components (Ra, Rg Rc, Ma, Mg & M¢) =6

No. of available static equilibrium eqns (3y=0, 3\ =0) =2
Degree of indeterminacy =(6-2)=4
THEORY OF STRUCTURES Page 94

www.binils.com
Anna University, Polytechnic & Schools



b. Three span continuous beam:

1) Both ends are simply supported:

“‘(" ?B i D/ym
s =

No. of unknown reaction components (Ra, Rg Re, Rp, Mg & M¢) =6

No. of available static equilibrium egns (3y=0, > =0) =2
Degree of indeterminacy =(6-2)=4

General methods of analysis of continuous beam:

Method of analysis of continuous beam.
A. Theorem of three moments method
Moment distribution method
Area moment method
Slope and deflection method
Strain energy method
Khani’s rotation method

G mMmOoOO W

Column analogy method
H. Influence line method
Theorem of Three Moment’s Method (or) Clapeyron’s Theorem of Three:-Moment Method:

In this method Mohr’s theorem | & Il are used for determinate the support moment of a continuous
beam. It is based on the geometric condition of the deformed continuous beam.

This method was introduced by Engineer Clapeyron’s using three support moments. Hence, it is called
Clapeyron’s theorem of three moment’s method.
Statement of Clapeyron’s Theorem of three moments:

Clapeyron’s theorem states that if a beam has ‘n’ supports, the end being fixed than the same number
of equations required to determining the support moments may be obtained from the consecutive
pairs of spansi.e. AB— BC, BC—CD, CD — DE and so on.

ﬂic>

Continuous beam ABC loaded as shown in fig. .
B D w/m
Gu,q
[ ¥ \lf v 4 ¥ 4 |

G

L L
. C . Cz
ai az
. —x
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Let,

Ma, Mg, M¢ are the support moments.

My () +2ma (324 2) = |25 4+ Soa%a]

I I ol lply

Theorem of three moments equation

When,
I1 = |2 =
6&-131 6“’232
MA,I1+2MB(|1+|Z)+MC|2=-£__|_ :
1 2

Where,

&t = area of free BMD for span AB
i, = area of fixed BMD for span BC
X, = c.g of BMD from left end (A)

X, = c.g of BMD from right end (C)

Application of Clapeyron’s Theorem of three moments:

The following solved problems are the examples for the Application of Clapeyron’s Theorem of three

moments.

Area of free BMD for standard cases:

1) Simply supported beam with'central point load:

Max B.M =~ W
wi Wit " l . C
Area,a=Yx|x—= B H +
4 g
x = — centroid from supports.
tax ex[ﬁ]xi Mmax = W4
0% I?.-{.:#:EWLE nex
L : B
— +
Sax _3 w2
I 8
b2
2) Simply supported beam with UDL of w/m over its entire span:
e
Max B.M = “? w/m
2 wi®  wi®
Area a =E ® 1 x ?: 12 ¢ ¢ ’b ‘]f 'L \L
: 1 £ ®
X = — centroid from either supports
Wit] i Moax, = WE/8
R Gax _ [?]}C _ ﬂ
oo : - : - 4 -
sax _wi®
I~ 4
[y2
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3) Simply supported beam with non — central load (W):

Wab

1
4

Max B.M =

Wab Wab
Areaa=lix|x——; a=—=-

Centroid from left end x, = [::E]

— [i14o
Centroid from right end x; = [T]

H-’ah] l+a

6ax, & ><[ x —] Wab(l+a)
o% —= from left end A = 2 i ==

k] 7
L L L

gax, Wall-al(l+a) Wa(l®-a®)

1 1 1
4 4 L

tax, Wall®-a%)
== - from left end

1
4

6ax, Wb(I*—5%)

e from right end

L L

w
a \I/ b
AT C T8
i
Mc = Wab/l
/_\
(raf3) 1 6/3)

TWO SPAN CONTINUOUS BEAM

TYPE — 1 Both Ends Are Simply Supported

Problem 1:

A Continuous beam ABC is Simply Supported at A and C such that AB = 6m and BC = 5m. The span AB
carries an UDL of 20kN/m and the span BC carries a point Joad of 50kN at the centre. Find the support

moments by usingitheorem of threg moments,draw 'SFD and BMD. 5 £ SORN

Solution:
1) Simply Supported beam moments:

Considering a each span as Simply

Supported beam and draw free BMD

Span AB:

T8~ 8 m
Span BC:
M =":: =2 %2 _ 62.5kNm

Using theorem of three moments method.

2) Support moments:

) ¢{+$* l

Jm Cll\

A

6m

w/m
N
fE,

Ra = wly/2 Rs = wly2
Mpax = wP/8
. S

Span AB & BC
AB=l,=6m; BC=l,=5m Mrax = wl/d
Since end A & C are simply supported +
Ma=Mc=0 X
BMD
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Applying theorem of three moment equation

MAI1+2MB(I1+I)+MCI2—-6[

2

lf%x 6:-::[:'_]'- f%} N f;x 5x 22 s) f%}l

0+2Mg (645)+0=-6

22 M; = -1548.75
M = 70.40kNm.

Draw SFD and BMD:

20.€Wm SORN
+ 4 * \L
C’|\
Ry = 48.27 Rs = 110.73 Re = 11.00
48.27 39RN 39RN
BN +
+
0l 0
;I
B 11RN 11REN
7173EN
SFD

BMD

Final support moments:

MA =0
Mg = - 70.40kNm

Mc=0
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Reactions:

support A B C
Reaction due to free BM | +60 +60 +25 +25
I W
W—,
Reactions due to fixing | -11.73 +11.73 +14 -14
moments

J"’IA “u'-’fB J"’I.B "‘u'-’fc
’

1
o | 2

Net reactions 71.72 | 39
RA = RC -
48.27kN Re=110.73kN 11kN
Alternate method:
For span AB
20RN/m
Taking moment about ‘B’ f
Z AL Ma
_ P _ N
g ? om
Ma +w. D35> Ry x | B _
- Ra=48.27 Re=110.73

&
0+20x6x—-=Ryx6+70.40

Ra = 48.27KN.
For span BC

Taking moment about ‘B’ SORN

MB+RCXI:[#I,-"%+Mc gmﬂ l L‘HCQ
“ C
T = ]

70.40 +Rcx5=50x=+0

Rs=110.73  R=10.92 = 11
Rc = 11kN

Rg = Total load — (Ra + Rg) = (20x6x50) — (48.27 + 11)
Rg = 110.73kN

Net BM:

Max BM will occur at x distance from A,

71.73 x = (6-x) (48.27)

=289.62 —48.27x

120x =289.62
289.62
X =
120
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X =2.40m

MA =0
2.40
M, = 48.27%2.40- 20%2.40x—— = 58.25kNm
Mg = - 70.40kNm
s s

Mp = Rex = = 11x = = 27.50kNm

Draw BMD
58.25kRNm
27.50{5\@?:
+
+
0
70. 40{,‘)\@:
Net BMD

Problem 2:

A continuous beam ABC of length 8m has two equal spans. The span AB carries an UDL of 20kN/m
over its entire length and the span carries a point load of 20kN at 3m from B. Draw SFD and BMD. Take
ends A & C are simply supported. Apply the theorem of three moments.

Solution:
i) Draw free BMD*for each span
For span AB
20RN/m 20RN
wi®  20x4? ‘['
MAB :?:—: 40kNm
A B C
For span BC | 4m i 3m | Iml
20%3x1
Mgc =0 = === = 15kNm
ii Support moments:
)_ Bp ) *1 Free BMD 2
Applying theorem of three moment equation for span AB & BC
MA |1 + ZMB (|1+|2) + MC |2 =-6 [% + %
F1 bz
(Or)
Ma I+ 2Mg (I;+];) + Mc |, = - [Eﬂ,"x" +@ —+(1)
I..l_ I'E
Since the ends A and C are simply supported.
Ma=Mc=0.
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Using formula for standard cases:

g

. . . . eax wl
i Simply supported beam with UDL over entire span,—/— = e
T, 20waf
o 2 = T = 320

ii)simply supported beam with non-central load

Bax Whil*—Bb%) .
—— =—————from right end

k]
L L

, BagEy  20x1(47-1%)
0% = =80
Iy 4

Substituting in equation (1)
MAX4 + ZMB (4+4) + MCX4 =- [320+80]

0+ 16Mz+0=-400

Mg = —=2 — _ 25kNm
16

Reactions:

20RN/m
Consider span AB (2 {‘ Mz
Fayal
Taking moment at B A m B

4
. g ? Ra=33.75 R5=57.50
A+¢ =Ra X1 + My

20x4

0+ =4 Ry +25

E
s

Ry= 22725 _ 33 75kN
2

Consider span BC
Taking moment about B
Rex |+ Mg=Mc+ (W xa)
Rcx4+25=0+ (20 x 3) 206N

Re=2—2% _ 8 75kN

2v=0 4 ‘CMS 'BT 3m ‘LI:JFCOQ

|
Ra+Rg+R¢ = Total load Rz=57.50 Rr=8.75

Ra = Total load — (Ra + Rg)
Rs =(20x4) + 20 — (33.75 + 8.75)

Rs = 57.50kN.
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Draw SFD & BMD

I | |
R2=33.75 Rz=57.50 Re=8.75
33.75 11.25 11.25

A +
0 — 10

B 8.75 8.75
46.25
SFD
40 Nm
2 m
15kRNm
0 0
BMD
Problem 3:

A two span continuous' beam /ABC of uniform flexural rigidity.is supported to UDL of w/m. The two
spans AB = BC = |. Determine the support moments by using Clapeyron’s Theorem of three moments

method. Ends A & C are simply supported Draw BMD.
Solution:

Span AB=BC=1

L. Free Bending Moment Diagram:

.'|z
B.M for span AB: Mg = 1"'?kNm

4T
B.M for span BC: Mg = 1h?kNm

1. Support Moments:
Ends A & C are simply supported:

Ma=Mc=0

Applying theorem of three moments
Spans AB & BC

AB=1,=I;BC=1,=1I

Applying Clapeyron’s three moments equation:

Mol + 2 (l#) + M b = |

1
o | 2

Ba, x, Ba, X,

1
L

Wuy’m
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Since spans AB = BC = | and carries equal UDL of w/m

M=t
I

L 4

M l1 + 2Mg (I:#+,) + Mc |, = [ﬁa_x + 6&111_1]

by Lo

wi® wi®
0+2Mg(l+l)+0= L

wi®

0+4Mp.l+0=-—

M P 1 “1
= - X— = - ——
B 3

1
z T4 g

Draw BMD as shown in fig.

(u;fm
2 Reosgasgganancon,

Free BMD

AN

0 0
Support BMD

wl/8 wl/8 wl/8

0

BMD

Results:
Final moments
MA =0

M wi®
B™ g

MC=0
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Type Il One End Simply Supported

and Other End With Over Hanging

Problem 4:

A continuous beam ABCD is 12m long is simply supported at A, B & C span AB is 6m long and carries a
point load of 10kN at its centre, span BC = 4m. Carries UDL of 2kN/m to its full length. Span CD carries
a point load 5kN at free end D. Draw BMD by using theorem of three moments.

Solution:

i.  Draw free BMD for each span: 10RN SEN
Span AB

Wi _ 10x6
MAB_T_ . = 15kNm

Span BC

Mc=-W.a=-(5x2)=-10kNm

ii. Support moments:

Applying theorem of three moments equation

Span AB & BC X X,
. Free BMD
My |y + 2Mg (I+14) % M 1= -[6”'1‘-1‘- yriiaal 5 ()
b | |
End A is simply supported
ooo MA =0
Supported C is with over hanging
oooMC=-5X2 = - 10kNm
Using formula for standard cases
gax, 3IWI*
1. Simply supported with central point load, Efr' =
0 82:F _ 3x10x6" _ 135
1‘_ B
. . Bax wi®
2. Simply supported with UDL, — = :
0 E"E?-x_?- - E -
L T s T 32
Substituting in equation (1) 10RN
Ma Mz
Max6 + 2Mg (6+4) + Mcx4 = - [135 + 32] g Q
B
0+20Ms+(-) 10 x4 =- 167 A1 6m T
=3.94 =3.94
20Mg=-167 +40=-127 Ra s
Ms = —" = - 6.35kNm
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Reaction:
Consider span AB

Taking moment about B

wi

MA+ :RAXI+MB

-
r

106
=Rax6+6.35

-
&

0+

6 Ry = (30 - 6.35) = 23.65kNm

2555 _ 3.94kNm

RA:

Consider span BCD

Taking moment about B

4
Rex4 + Mg = (2x4x=) + 5x6

4R.+6.35=16+30=46 3.94 3.94 3.10 5 + d
6—6.35 *
Re= (557) =900k 0 }\\ ’
- 4.90
Sy =0 6.06 6.06

Ra+ Rg+ Rc = Total load
Rg = Total loads — (Ra + R¢)

Rg = (10 +(2%4)+5)

—(3.9449.90)
Rg = 9.16kN.

Draw SFD & BMD:

Problem 5:

A continuous beam of ABCD of length 12m is simply supported by three supports at A, B and C with an
equal spacing of 5m. It carries an UDL of intensity 20kN/m over the two spans. There is a 30kN load on
the free end, D. Analyse the beam using Clapeyron’s Theorem and draw SFD & BMD.

Solution: (201{.%/?!: 30RN
1. Free BMD for each span:
A D
Span AB & BC 2m |
wiZ | 1 | '
Mag = Mgc = =
22 _ 65 50kNm 62.50kNm 62.50RNm
B
+ONgFSe + 60RNm
Moment at C *q, bd; +
M 30x2 = - 60kN 0 0
c = - X/ = - m
x; BMD x,
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2. Support moments:

Applying Theorem of three moment equation for span AB & BC

6a, X, &a :J:z

_|_

MA |1+2MB(|1+|2)+MC |2:'|: _}(1)

Since end A is simply supported, M, =0

Support ‘C’" is with over hanging M¢ = -30x2 = -60kNm

For standard cases

Ezx wit

a) Simply supported with UDL, — = =

62,x%, bO,xg; 20XE

i i 4

Substituting in equation (1)
Max5 + 2Mg (5+5) + (-60x5) = - [625 + 625]

0+ 20Mg—300 =-1250

Mg = === = - 4750kNm

&

Reactions:

Consider span AB taking moment about B

M, + —RAXIXMB

2052

0+ =5Ra+47.50 A

s

20&W/m

R, = 204720 ':?'5” = 40.50kN ‘|E :i! a

Consider span BC: Ra= 40 50 Rz= IO{.{,‘N
Taking moment about B
2 30
R+ Mg = (222 + (30%7) 20RN/m ‘fw
B
Rcx5 +47.50 = (250+210) = 460 g AAANAAANNAANNS
4650 —47.50 Sm 2m |
Rc = (T) =82.50kNm I
Rz=107RN Rc=82.50
2v=0
Ra + Rg + Rc = Total load
Rg = Total load — (Ra+R¢)
Rs = (20x10) + 30 — (40.50+82.50)
Rg = 107kN.
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Draw SFD and BMD:

| | |
R3=40.50 Rz=107EN R, =82.50

40.50 K‘m
I\ + 30
_I_

TN N

Type Il One End Fixed And Other End Simply Supported

Problem 6:

A continuous beam ABC of span 10m is fixed at end A and simply supported at C span AB is 4m long
and carries an UDL of 30kN/m over entire span and span BC carries a point load of 60k6Noat 2.5m from
B. Determine the support moments by using theorem of three moments. RNa kN

Solution:

l. Free BMD for each span

For span AB

Span BC

Mg = Wab _ EDXE;XE.E - 87.50kNm

1
4

1. Support moments:
Since end A is fixed,

Assume an imaginary beam A'A
of span I =0m
0% MAl =0

Applying Clapeyron’s three moment

x;
Free BMD
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Equation for span A'A and AB

A'A=1,=0,AB =1, =4m,

Bag g
_|_

b}
Ly Ly

-

Ma lo+ 2 (lgth) + M | = | = ()

For standard cases:

[<25%<] = 0 (N load)

‘o

Gax wit
— =
L

i) Simply supported with UDL, — =—

2
ba, x, Foxa®
ooo|: 1_ = = 2 =480

Substituting in equation (1)

Ma'xly + 2M, (0+4) + Mgx4 = - [0+480]
0+ 8M, +4Mjg =-480
2 Mp+ Mg =-120 - (1)
From span AB & BC
Applying Clapeyron’s three moment equation for span AB & BC
AB=I;=4m, BC=, =4m

Since end C is simply supported, Mc=0

My |y + 2M, (I#,) + Mc |, = -[“‘-x‘- + E} = (I1)
2

7
Ly

For standard cases:

1B

; . bax wl
1. Simply supported with UDL, —— = -
2 [srz._x‘-_] _ F0xa® _ 480
Iy 4
gex Wo(1*—b"
2. Simply supported with non-central load, — = Whli k)
ta, T, 60x3.5x(6°-3.5%
e ) _831.25

I &
Substituting in equation (Il)
Max4 + 2Mg (446) + Mcx6 = - [480 + 831.25]

4M, + 20M; + 0 = - 1311.25 —+(2)
Solving equation (1) & (2)
(2) —  4M,+20Mg=-1311.25

(1)x(2) = -4Ms—2M; = -240.00
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0 +18 Mg =-1071.25

Mg = 225 _ _59.91kNm
i8

Substituting in equation (1)
2 My +(-59.51) =-120
Ma =-30.25kNm

Final support moments:
M = - 30.25kNm

Mp = - 59.51kNm

Mc=0

Reactions:
Consider span AB
Taking moment about B
MA+(30><4)><3= Rax 4+ Mg
30.25+240=4 R, +59.51
R = 52.68kN
Consider span BC:
Taking moment about B:
Rcx 6+ Mg=Mc+60x2.5
6 Rc x 59.51 =0+150

(150-59.51)
Rc = — 2 - 15.08kN

2v=0
Ra + Rg + R¢ = Total load
Rg = Total load — (Ra + R¢)
= (30x4) + 60— (52.68 + 15.08)
Rg=112.24kN.
Draw SFD & BMD:

THEORY OF STRUCTURES

gﬂfﬂ [3 o Mz

ANNADNDN a

Afs B
4m

R31—52.68 Rp=112.24

(M)

|
Re=112.24 Rc=15.08

fjoﬁp'f,fm
s
dm mi 3.5

a
B
i 2-5

il

52.68

44.92 44 .92
R i
0

i 1508 ——— 15.08

67.32

o 0
BMD
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Problem 7:

A two span beam ABC of length 9m is fixed at ‘A’ and simply supported at ‘C’. The span AB is 6m long
carries a point load 40kN at 2m from A. The span BC is 3m long carries an UDL of 20kN/m. Find the
support moments using Theorem of three moments method and draw SFD and BMD.

Solution:

i Free BMD: 40RN [20ﬁ?f/m
Span AB,a=2m, b=4m
%

My = Wab 4[&:-:62:-:4: 53.33kNm A T

B C

| 2m | 4m 3m

Span BC
53.33KNm

=] =] +

* 4 ‘L‘
iii. Support moments: az

Since end A is fixed, assume an imaginary beam A'A of span (f+a;f3| (Cr6/3 02 |
A, | |

lop=0m.
Free BMD
Applying Clapeyron’s three moment equation for span A'A and AB

A'A=1,=0,AB =1, =4m,
Ma Iy + 2Ma (I + 1) + Mg | = - [EEDID + 5] )
]
For standard cases:
[@ =0 (no load)
‘o

tax Whil*-p")

1
4

Simply supported with non-central load, from end B

LED] A0walst-4f
[E’“‘-f} = }_533.33

Substituting in equation (1)
Mt x lg + 2M, (0+6) + Mg x 6 = - [0 + 533.33]
0+12 My +6 Mg=-533.33
2Mp+Mp=-88.89 —*(1)
Applying Clapeyron’s three moment
Equation for span AB and BC
B=Il,=6m,BC=1,=3m,

Since end Cis simply supported, Mc=0

gay x + By Xy

|.._ Lo

MAI1+2MB(I1+I)+MCI2--[ —+ (1)
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For standard cases

tax Wall®-

z
Simply supported with non-central load, = —E} from end A.

1
4

2rgt—g?
[6“1‘-“4‘-] =28 ) - 426.67

B
wl

i Simply supported with UDL, EETE =
0% [ﬁ] = @ =135
Iz
Substituting in equation (1)
Mp X 6+2 Mg (643) +0=-[426.67 + 135]
6 M, + 18 Mg =-561.67
Ma+3 Mp=-93.61 = (2)
Solving equation (1) and (2)

(1) —+2Mp+ Mz =- 88.890
(2) x2 —#2Ma+6Mg=-187.223
0 -5Mp=- 98.33
Mg = - 19.67kNm
Substituting in equation (1)

2 Ma 4 (-19.67) = - 88/89
M = - 34.61kNm
M, = - 34.61kNm
Mg = - 19.67kNm
Mc=0

jii. Reactions:
Consider span AB taking moment about B

M
MA+W.b=MB+RAXI g

A
34.61 + (40x4) = 19.67 + Ry x 6 jﬁ

[
Ra = 29.16kN R5=29.10

Consider span BC taking moment about B

12

4

Rex |+ Mg = Mc +

"
=

Rox 3 +19.67 =0 + 2% g Q

(90—15.67
Rc = T} = 23.44kN
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2v=0
Rg = Total load — (Ra + R¢)

Rg =40 + (20x3) — (29.16 + 23.44)

Rg = 47.40kN
Draw SFD and BMD
40RN [.zogw/m
jﬁ B C
| 2m | 4m 3m
29.16 29.16 36,56

+ +

0 - - 0
10.84 10.84 \123.44

STFD

BMD
Problem 8:

A continuous beam ABC of uniform section, with span AB as 6m is fixed at A and simply supported at B
and C. The beam carries an UDL of 10kN/m and span BC carries an UDL of 5kN/m. It also carries a
point load of 20kN at 2m from the end C. Find the support moments using three moment equation.
Draw SFD and BMD.

Solution:
i. Free BMD:
Span AB
p ¢a,
wi®  1oxs®
MAB :?:—: 80kNm
X,
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I=6m;a=—=E=2m
3 3
12 5xe®
Due to UDL =—==——=22.50kNm
Due to central point load = W:Ib = mx;x: =26.67kNm

Draw free BMD

ii. Support moments:

End A is fixed, hence assume an imaginary beam A'A of span lo= Om
Hence assume an imaginary beam of A'A & C'C
Applying theorem of three moments equation span A'A & AB,
A'A=lo=0m My=0
AB=1,=8m

MAf|o+2MA(|o+|1)+MB|1=-[% + i} =)

7
‘o i

|:‘5"'3|:|I|:| =0
Lo Vﬂr’/fm
For standard cases:
. . A ’ﬁ C 1‘3

Simply supported beam with UDL, | T l

[6“1‘—1_‘—] - “4—5 - 19:35 = 1280 Mmar=wE /8
Substituting in equation (l) /_‘\
0+ 2 M, (0+8) + M, x 8 = - [0+1280] L K2 !

16 Ma + 8 Mg = - 1280
2Ma+Mg=-160 — (1)

Applying theorem of three moments equation for span AB and BC

AB=1,=8m,BC=l,=6m, W

Since ‘C’ is simply supported M¢ =0 a J, 6
. B h
Mali+2Mg (I3 +15) + Mc I = - [E.E,‘_L_ + @ —= (1) [
| z
For standard cases: M~Wab/l
+

Simply supported beam with UDL

GaF _wi o4

T o4
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Simply supported beam with non-central load

|=6m,a=4m, b=2m,

Bax Wh(l*—b%)
— =—"—""fromend ‘C’

e %y [W:E‘ LW [:z—b”‘)] _ [5:-:55 20:-:2[5“—:“]]
“la I I &

::'.
=[270 +2013.33] =483.33
Substituting in equation (l1)
Max 8 +2 Mg =-[1280 + 483.33] =- 1763.33
8 Mp+28 Mg =-1763.33 —*(2)
Solving equations (1) and (2)

1) x28 =56 M, +28 Mg =-4480.00
2) —+ 8Mp+28Mg=-1763.33
48 Mp+ O =-2716.70
My = - 56.60kNm

Substituting in (1)
2M,+Mg=4160 (1)
2 x (- 56.60) + Mg = - 160
Mg=-160+113.2 = - 46.80
Mg = - 46.80kNm

M. Result:
Final Support Moments:

Ma = - 56.60kNm

M = - 46.80kNm QMJ
Mc =0 ﬁ

Draw BMD as shown in fig. Ra=
Reactions:
Consider span AB

Taking moment at B

C 2
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wi®
MA+,-|_ =RAXI+MB
-

z

108
56.60 +

— =8 Rp+46.80
Ra = 41.23kN
Consider span BC:

Taking moment about B

2z

wl
Rex |+ Mg=Mc+(Wxa)+—

Iz

BME
Rcx6+46.80=0+(20x4) +—;
Rc =20.53kN
2v=0

Ra + Rg + Rc = Total load

Rx=41.23 Rz=68.24 R;=20.53
Rg = Total load — (Ra + R¢)
41.23 + Rg + 20.53 = (10x8) + (5x6) + 20 41.23 20.47
[ .47
Rs = 68.24kN. + +
o' 0
Draw SFD .| 10.53%
Net BMD: 38.77 20.53
Mc=0 STD
Mo = 20.53 x 2 (5’? ) = 31.06kNm 28.326Nm 31,06RNm
- K + +
Ms = - 46.80kNm 0 0
Mg = Ry % 4 — My - — \/ﬁ?ﬂ’
N 46.80E'Nm
10%4° 56.60RNm
= RAX4—56.60' 5 :Bm‘ﬂ
= (164.92 — 56.60 — 80) = 28.32kNm
Ma = - 56.60kNm
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Type — IV One End Fixed and Other End With Over Hanging

Problem 9:

A continuous beam ABCD is fixed at A and simply supported at B and C. Span AB is 6m long and carries
point load of 30kN at its mid span, the span BC is 4m long carries an UDL of 10kN/m over its entire
span, span CD is 2m long carries a point load of 5kN at free end D. Find the support moments by
Clapeyron’s theorem of three moments. Draw SFD and BMD.

Solution:
— 306N
l. Free BMD:
Span AB
1 106

Mg = L = ; = 45kNm

Span BC
wi®  10xa®
MBC =? =——=20kNm

Support ‘C’" is with overhanging

oooMCD='5x2='10kNm

Free BMD

Il. Support moments:

End A is fixed, introduce an imaginary beam A'A of span
lo = 0m; Mp'=05a0 5,0
Applying theorem of three moments equation span A"Aand AB

:|0,AB:|1:6m

MA|0+2MA(IO+I1)+MB |1__|:EIE ‘TD + 4'] _}(I)

[GEDID -0

:I:l
For standard cases:

bzx

Simply supported with central load, [

[E}:%xsoxszﬂos

Substituting in equation (l)

3 2
==WI
=]

[

0 +2 My (0+6) + Mg x 6 = - [0+405]

12 Mp+6Mg=-405 —+(1)

(2) Applying theorem of three moments equation for span AB and BC.
B:|1:6m, BC:|2:4m,
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M = - 10kNm

Bay ¥y

MAI1+2MB(|1+|2)+MCIZ=-[

For standard cases

Simply supported with central load, [GE—I = Z wi?

[#2:%] =2 x 3062 = 405

Ly

.15
Simply supported with UDL, [E] = “4

Substituting in equation (1)
6 Mp +2 Mg (6+4) + 4 x 10 = - [405 + 160]
6 Ma+20Mg=-65+40=-525

6 Ma +20Ms=-525 —(2)

Solving equation (1) and (2)
1. 12 Ma+ 6 Mg=/-1 405
2. x3 =12 My +40 Mg = - 1050

34 Mg =- 645

Mg = - 18.97kNm
Substituting in equation (2)

6 My + 20 x (- 18.97) =-525

6 Mp—379.40=-525

_ —525+379.40

M, = =-27.67kNm
&

M, = - 24.27kNm

M. Reactions:
Consider span AB
Taking moment about left of ‘B’

Ma+W == Ry x |+ Mg

24.27 + 30 x

B |

=6 R, +18.97

ggﬁl

o E] )

30EN

| om |

| |
Rx=3.94
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6 Ry =99.85

Ra = 16.47kN

Consider span BCD
Taking moment about right of B

chI+MB=w|%+W(I+a)
ARc+18.97 =10 x 4 x > + 5 (4+2)
4R +18.97 = 110

(52-8
Re="—; . 22.75kN

Zv =0
Rg = Total load — (Ra + R¢)
Rg = 30 + (10x4) + 5 — (16.47 + 22.75)

Rg = 35.78kN

Final support moments:

Ma = - 24.27kNm
Mg = - 18.97kNm
Mc =-10kNm

Draw SFD and BMD:

30KN SEN
10KN /m
v
ANNA
A B C D
" om 4m 2m!
Rs=3.94 Rz=3.94 R-=3.94
22.25
16.47 16.47
N\ o
+ +
0 0
13.53 13.53\
SFD 17.75
45k Nm
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Type -V Both Ends Fixed

Problem 10:

A continuous beam ABC is fixed at A and C simply supported at B each span AB and BC is 6m. The span
AB carries an UDL of 20kN/m and span BC carries a point load of 60kN at mid span. Using theorem of
three moments find support moments. Draw SFD and BMD.

Solution:

i. Free BMD: ﬁﬂi’i&‘f
Span AB

ii. Support moments: 0

. | o [ BMD |
Since ends A and C are fixed, assume an imaginary spans A"A & CC - of each length I, = Om

and I3 =0m
MA' = O, Mc' =0
Applying theorem of three' maments forsspan/A'A and AB

MA Io"‘ZI\/IA(Io‘|'I)+|\/|B|1__|:E'E ID+ 4-] _}(I)

|:6-rznxn -0

3
‘o

For standard cases:

Substituting in equation (l)
Ma lo+2M, (0 + 6) + Mg x 6 =- [0 + 1080]
0+12 My+6 Mg=-1080
2M,+Mg=-1080 — (1)

(1) Applying theorem of three moments equation for span AB and BC.
B:|1:6m, BC=|2=5m,

B2, X, + B2, X,

L._ Lo

My + 2 (1 +15) + Mc | = - [ = ()
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For standard cases:

r-d
Simply supported with UDL, [ﬁ] = “T‘

bax

Simply supported with central point load, [— =§ wi?

[@] =2 wir=-2x60x6%=810
i B g
Substituting in equation (Il)
Ma X 6+ 2 Mg (6+6) + 6 Mc = - [1080 + 810]
6 Mp+24 Mg +6 Mc=-1890
Ma+4 Mg+Mc=-315 —+(2)
Applying theorem of three moments for span BC and CC*

BC=1,=6m;CC'=l3=0m, M =0

Ms b+ 2Me (1, + ) + Mct |y = - [€252 4 25552

7
bz i3

We know,

[5“_1:‘_1] zg Wi 2 2360 % 6 = 810kNm from end C

Iy B

[6&515 -0

:5
Substituting in equation IlI
Mg X 6 + 2 Mc (6+0) + 0 = - [810 + 0]
6 Mg+ 12 Mc=-810
Mg+2Mc=-135 —(3)
Solving equations (2) and (3)
(3) — Mg +2 Mc=-135

(2) x2—+2Mp+8 Mg+2Mc=-630
(Solving 2&3) -2 My—7 Mg+ 0= 495

ZMA+7MB+0:'495 _}(4)
Solving (1) and (4)
(4) > 2Mp+7 Mg =-495

(1) _}ZMA+ MB='180
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6 M; = - 315

Mp = — 2_15 - -52.50

Mg = - 52.50kNm
Substituting in (1)

2 Mj +(-52.50) = - 180
[—1B0 +52.5)
Mp="——F—""=-63.75kNm
M, = - 63.75kNm
Substituting value of Mg in equation (3)
Mg +2 Mc=-135 —(3)
-5250+2Mc=-135
Mc = - 41.25kNm

Reactions:

support A B C

Reaction due to simply | +60 +60 +30 +30
wl W

’
2 A

supported beam

Reactions due ‘'to" fixing | -1.88 +1.87 +1.88 -1.87

moments
Mg~Mg Mg~Mg

’ 1
L

7
bt | z

Final reactions +58.12 61.87 | 31.88 28.13

Ra,Re& R¢ = R R
A NB C A 93.75 R, C

Result:
My = - 63.75kNm
Mg =-52.50kNm

Mc = - 41.25kNm
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Draw SFD and BMD

f 1 |
Ra=58.12 Rz=93.75 _Rc=28.13

58.12
31.87 31.87
+ +
0
28.13 28.13
61.88
SFD

63.75 920 m Eﬂﬁ,'Nm

RN :I/ - vAﬂ41.25ﬁ$fm

BMD

Problem 11:

A two span continuous beam of 4m and 6m spans are fixed at both of its end. The size of the beam is
uniform in both spans. The span AB is 4m carries an UDL of 24kN/m throughout its length. The 6m
span carries two point loads of 30kN each at its one third points. Find out the support moments by
Clapeyron’s theorem of three moments.

24 m 30, 30
I.  Free BMD ( RN/ kN QN\
Span AB - i — '
A B \ C
“-:: 24){4: f E} 4m 2m | .2m |2":C.\l ET
Mas = ——=—_— = 48kNm ' B '
Span BC 60RNm  60RNm
+
i 48 m
I=6m;a=§=§=2m T 'a;
‘ai
Mec = w.a = 30x2 = 60kNm 0 0

[ 2m | 2m  3m | 3m |
Draw free BMD. ' ' ' | '

Free BMD
1. Support moments:

End A and C are fixed
Hence assume an imaginary beams of A'A & C 'C
A'A=1o=0m; C'C=13=0m; My =Mc =0
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Applying theorem of three moments equation Span A’A and AB,

B=|1=6m

Mp lo+2Mg (lo + 1) + Mg |, = - [E'ED"‘D Ea, I_}

‘o i

]

Bay x| _ . Ga,x,| wl _243{45_
[ :4} =0; [ :._4]_ s - 4 38

o

0+2 M, (0+4) + Mg x 4 =-[0 + 384]
8Ma+4 Mz=-384
2Mp+Mg=-96 —+ (1)
Applying theorem of three moments equation for span AB and BC

B=|1=4m,BC=|2=6m,

MA|1+2MB(|1+|)+MC|2__[GE o4 ee?x—z}

[ Lo

1 4 W
az:(m+b}) h=2ﬂ+6><60=240 a \L

6o, %; _6x28003 _ U | W, Wb
Iy 6 T
0 0

4 My + 2 Mg (4+6) + 6 M = - [384 + 720]
L2
4 M, +20 Mg+ 6 Mc =- 1104 BMD

2 Mp+10 Mg + 3 M¢ =-552 —(2)
Applying theorem of moments equation for span BC and CC

C=1l,=6m,CC'=1;=0m,

MB |2+2MC (|2+|3)+ MC |3:_ [63111 E'EEI_E]

bz =

B2y Xq _ Bx240x3 _ = 720; Bagxy _
Iz & Iz

=0;

6 Mg + 2 Mc (640) = - [720+0]
6 Mg+ 12 Mc=-720
Mg +2 Mc=-120 —+(3)
2Ma+ Mg =-96 —* (1)

2 Mp+10 Mg +3 M¢=-552 —+(2)
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Mg + 2 M¢ =-120
Solving equations (1) and (2)
(2) =
(1) = 2Ma+ OMg
0+ 9Mg + M =-456
3 Mg+ Mc=-152
Solving equation (3) and (4)
(4)x2—=+6Mg+2M:=-304
(3) — Mg+2Mc=-120

5Mg+0 =-184

Ms ='15ﬁ - -36.80kNm

Substituting in (3)
Mg +2 Mc = - 120
-36.80+2 M¢=-120
2 M¢=-120+36.80

2 Mc=-83.20

83.20
Mc = ——— = - 41.60kNm

Substituting Mg in (1)
2Mp+Mg=-96
2 M, —36.80=-96
2Mp=-96+36.80

2Mp=-59.20

My = —22 = 29.60kNm

r

Draw BMD as shown in fig.

—(3)

2 My +10 Mg +3 Mc=-552

=-96

—(4)

(24.§w/m 30KN 306N

W
N
I\
M

B
4m

2m i 2m I2.’:'::0

60KNm_ 60RNm

| 2m | 2m | 3m I 3m |
Result: Free BMD
Final support moments 60RNm 60k Nm
Mj = - 29.60kNm 29.60 4?5...?’{'\'35_3 + 41. 606 Nm
Mj = - 36.80kNm ‘E‘r"'r";ly \/ 0
M = - 41.60kNm Net BMD
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Three Span Continuous Beam
Problem 12:
Draw BMD for a continuous beam ABCD as shown in fig by theorem of three moments method.
Solution:

l. Free BMD
Span AB

( 206N/m 100RN 120RN

Megc = H’:zb _ 100 x3x2 = 120kNm

L 5 90

Span CD

1 120x=4
MCD=%= 4}( = 120kNm 0

Free BMD

1l. Support moments:

Since ends A and D are simply supported
Ma=0; Mp=0

Applying theorem of three moments for span AB.and BG
AB =1, =6m,;BC=1,=5m,

Ba, X,

MAI1+2MB(I1+|2)+M(:|2='|: " +@

Ly Lo

= (1)

For standard cases

B
Simply supported with UDL, [ﬁ] = “T from end ‘A’

— 5 =

bz, x, wi 206
i -1080
i, 4 4

Simply supported beam with non-central load

|=5m,a=3m,b=2m,

Wh(1® —p2
[Eﬂf—f] = [— - :I] fromend ‘C’

L

1

J— 2 z
6a % |:Wbl,_. - ]]
b

[mux:[sﬁ—:“j

- ]=840

Applying theorem of three moments:
0+ 2 Mg (645) + Mc x5 =-[1080 + 840]

22 Mg +5 Mc=-1920 —+(1)
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Applying theorem of three moments for span BC and CD
BC=1,=5m,CD=13=4m,

M[):O

MB|2+2MC(|2+|3)+MD|3=-[@ ()
] -]

For standard cases:

Simply supported beam with non-central load

|=5m,a=3m,b=2m,

Wall® —a?
[E“f_f] = [—E' - - :I] from end ‘B’.

L

i i 5

6a, %7 _ [Wrz[:“—a‘]l] _ [muxm}.“—a“)] _ 960
b

Simply supported with central point load, [ﬂ} =§ WI%fromend D

[@] =2 wiz=2x120x4%=720
Iy B ]
Substituting in equation I
5 Mg+ 2 Mc(5+4) + 0 =-[960 + 720]
5 Mg+ 18 M =/- 1680/ —* (2)
Solving equations (1) and (2)
(2) x 22 =+ 110 Mg + 396 M = - 36960
(1)x2 —-110 Mg+25M =- 9600
0 +371Mc=-27360
—27380

Mc = =-73.75
371

M = - 73.75kNm

Substituting value of M¢ in equation (3)

5 Mg + 18x (-73.75) = - 1680

100EN 120N

Gy L1

5 M = - 1680 + 1327.5 = - 352.50 a
M, =¥ =-70.50

Mg = - 70.50kNm

Draw SFD and BMD:

B I .FmCT 4m T:D
120K Nm 120KNm
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Result:
Final support moments:
MA =0

Mg = + 70.50kNm

Mc = - 73.75kNm
Mp=0
Propped Cantilever Beam
(By theorem of three moments method)
Problem 13:

A cantilever beam of span 6m is propped at 2m from free end it carries an UDL of 12kN/m over its
entire span. Determine

a. The prop. Reaction
b. Support moments and
c. Draw SFD and BMD by theorem of three moment method.
Given:
Span | = 4m; Projection = 2m; UDL, w =12kN/m (.Izﬁm’/m
Solution: -
A B C
i. Free BMD: L& i 4m | _2m
Span AB | 6 |
| |
wi® 12x4®
Mimax = e = = = 24kNm; Izﬁw/
. m
M (
Span BC g
B C
wx®  12w2? 4m 2m
Mg = - - - 4 =-24kNm I 1 i
2 2 % %
iii. Support moments:
Since end A is fixed assume an imaginary beam of A'A
A'A =1y =0m;
Applying theorem of three moments equation of span A'A
M, =0m; AB=1, =4m
B2y Xg 6@, X,
MA'|0+2MB(|0+|1)+MB|1='[,_ + — = (I)
] it |
For standard cases:
BagFg| _ A, [Bm.m]  wi®  12x4®
[ :,:]_O' [ :._4]_ s - s o192
0+2M,(0+4) + Mg x4 =-[0+192]
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M, + 4 Mg = - 192

2 M, + 4(-24) =- 192

—192 +9&
My =———— = - 48kNm

iii. Prop reaction:
Let Rg = prop reaction at B; R, = reaction at A

Taking moment about A
&
Rex4+Mp=12x6x=

4Ry +48 =216

—152 +596
= = 42kNm

RB=

Ra = Total load — Rg = (12x6 — 42) = 30kNm

Draw SFD and BMD as shown in fig

(.Izﬁﬁr/m

b i 4m | 2m

Net BMD

iv. Results:
M, = - 48kNm; Mg = - 24kNm

RA = 30kNm,' RB =42kNm.
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HIGH LIGHTS

Statement of Clapeyron’s Theorem of three moments.

MA Il + ZMB(ll +|2) + Mclzz - (

Clapeyron’s theorem states that if a beam has ‘n’ supports, the end being fixed then the same
number of equations required to determining the support moments may be obtained from the
consecutive pairs of spans i.e. AB-BC, BC-CD, CD-DE and so on. Continuous beam ABC loaded as shown
in fig.

Where,

a; = area of free BMD for span AB

a, = area of fixed BMD for span BC

x, = c.g. of BMD from left end (A)

X, = c.g. of BMD from right end (C)

B2,x, 6BO,X,
i W zj
! !

gﬂiSD w/m
¢
-
‘4 I3 ’{B Iz C
2 % 1
o "Cs . Cz
[ &) az
IEI—I ITI

Area of Free BMD for standard cases

7

Sl.no Types of Sax from left Sax from right end
Beam I I BMD
end

w
Simply supported Iwiz EATHE: ® ! c
1. beam with central g g 0 r i
point load ' S b
— 2

BMD

THEORY OF STRUCTURES Page 129

www.binils.com
Anna University, Polytechnic & Schools




Simply supported w/m
. lE- 15 |/_
beam with UDL of wl W S T
w/m # * Aa C[‘ i
Mmax = WE/8
72 gmo
Simply supported W
beam with non- Wa(l® - a®) Wa(* - 5% i \lf b 8
central load ! . = - :
M = Wab/l
4+
(T+as3) T+ 6/3)

QUESTIONS

Two mark questions

1. State the degree of indeterminacy of a fixed beam

2. When a beam is called indeterminate?

3. Give two examples of indeterminate beams.

4. Where the (-ve) moment is maximum in a two span continuous beam having simple supports at the
ends?

5. State the application’of theorem of three.moment equation.for,continuous beams with fixed ends.
Ten mark questions

1. A continuous beam ABCD of length 12m is simply supported by three supports at A, B and C with an
equal spacing of 5m. It carries an UDL of intensity 20kN/m over the two spans. There is 30kN load on
the free end, D. Analyse the beam using Clapeyron’s Theorem and draw the SF and BM diagram.

2. A continuous beam ABC is simply supported at A and C such that AB = 6m and BC = 5m. The
span AB carries an UDL of 20kN/m and the span BC carries a point load of 50kN at its mid - span. Find
the support moments by theorem of three moments. Draw the BMD and SFD.

3. A continuous beam ABC of length 8m has two equal spans. The AB carries an UDL of 20kN/m over
its entire length and span BC carries a point load of 20kN at 3m from B. Draw the BMD and SFD. Apply
theorem of three moments method. End A & C are simply supported.

4. A continuous beam ABCD of length 9m is fixed at A and simply supported at C. The span AB of
length 6m carries a point load of magnitude 40kN at 2m from A. The span BC of length 3m carries an
UDL of intensity 20kN/m. The size of beam is uniform throughout its length. Analyse the beam using
three moments and draw the BMD and SFD diagrams.

5. Analyse the continuous beam shown in fig. By the use of Clapeyron’s theorem of three moments.

Draw the BMD. 206N/m 1006N 120RN

Ve
ﬁ+ A \Ifﬁ*Jn\LZmC" ;L —
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6. Analyse the continuous beam shown in fig. by the use of Clapeyron’s Theorem of three moments.
Take El constants. Draw the BMD.

60&:N 5. EW;” ™

fj *erlr*lj

AA

7. Determine the support moments for the beam shown in figure by Clapeyron’s theorem of three
moments. Draw the bending moment diagram. El is constant.

mﬁ:}v 2&&"(/14':

L *"""*l

8. A continuous beam ABC of length 8m has two equal spans. The span AB carries an UDL of 20kN/m
over its entire length and the span carries a point load of 20kN at 3m from B. Draw SFD and BMD. Take
ends A & C are simply supported. Apply theorem of three moments.

9. A continuous beam ABC of span 10m is fixed at end A and simply supported at C span AB is 4m long
and carries an UDL of 30kN/m over entire span and span BC carries a point load of 60kN at 2.5m from
B. Determine the support moments by using theorem of three moments. Draw BMD.

10. A continuous Beam ABC is fixed at A and C simply supported at B each span AB and BC is 6m. The
span AB carries an UDL of/ 20kN/m. and span BC carries a peint load of 60kN at mid - span. Using
theorem of three moments find support moments. Draw SFD and BMD.

11. A continuous beam ABC of uniform section, with span AB as 6m is fixed at A and simply supported
at B and C. The beam carries an UDL of 10kN/m and span BC carries an UDL of 5kN/m. it also carries a
point load of 20kN at 2m from the end C. Find the support moments using three moment equation.
Draw SFD and BMD.
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3.1 CONTINUOUS BEAMS — MOMENT DISTRIBUTION METHOD
Introduction:

The moment distribution method was first introduced by Prof. Hardy cross, an American structural
engineer in 1930. It is also popularly known as Hardy cross method and widely used for the analysis of
all indeterminate structure like continuous beams and portal frames.

Concept:

» The moment distribution method consists of successive approximations using a series of cycles,
each converging towards a precise final result.

> It is initially assumed that all the joints are fixed or clamped and then the fixed end moments
(FEM) due to external loads are calculated and those calculated moments at every joint are
checked for equilibrium after releasing the initially introduced clamps by applying equal and
opposite moment to balance a joint and evaluating its effects on opposite joints.
The process is repeated till the required accuracy is got.

Fundamental concepts:

1) Beam stiffness

2) Relative stiffness or stiffness ratio
3) Distribution factor

4) Distribution moment

5) Carryover moment

6) Carryover factor

1). Beam stiffness:

Stiffness is a measure:ofiresistance of a structural member fordeflection.
(a). Stiffness of a beam hingedat both ends:

o

Stiffness of a beam hinged at both ends, k = E

4

(b). Stiffness of a beam hinged at near end and fixed at far end (k):

e

Stiffness of a beam hinged at near end and fixed at far end,

4E]
k=

bl
4

2). Relative stiffness:
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The ratio of stiffness of various members meeting at a structural joint is known as “relative
stiffness”.
Explanation:

w w/m
Q\LFQL‘!
4

r ¢ ¢ °

A

For the continuous beam shown in fig, B is the joint where members BA & BC meet.

Stiffness of BA = — (far end A is fixed)

Stiffness of BC = 35

Relative stiffness

Stiffness of BA: Stiffness of BC

4ET 3EI

1 1
4 4

If the beam is made of same material, then relative stiffness

_4EI 3EL

1 : 7
! L

(Or)
Dividing by 4,
Relative stiffness

1 3

I 4

3). Distribution factor:

The ratio of stiffness of a member meeting at a structural joint to the sum of the stiffness of all
members meeting at that joint is known as “distribution factor”.
For ex:

K
D.FBA = %

4). Distribution moment:

The moment shared by a member at a joint in proportion to its stiffness or in relation to its
distribution factor (D.F) is known as “distribution moment”. It is also known as “balancing moment”.

5). Carryover moment:

The moment produced at the far end of a beam due to application of a moment at the near end is
called “carryover moment”.
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i. When the far end is fixed:

;4{1\ Eﬁ?«z/z

The carry over moment is % the applied moment in the same direction.

ii. When the far end is hinged:

¥
o | !
No carryover

There is no carry over.When the far end is hinged.

6).Carry over factor:

The ratio of carry over moment at the far end to the applied moment at the near end is known
as carry over factor.

Carry Qver Moment
Carry over factor = 2

Applied Moment

Sign convention:

Mas A +Mza
¥ 4 ! ED

/
Aﬁ C

The new sign convention different from conventional sign in followed in the process of moment —
distribution method. After the analysis is over, the end moments are converted back to conventional
bending moments by merely changing the sign to the left of each span.

Based on rotational sense, Clockwise moments are +ve, anticlockwise moments are —ve as shown in
figure.

Moment distribution method procedure (Theory):

1) Assume all the supports (joints) are fixed.

2) Calculate the fixed end moments (FEM) due to external loads considering each span
as a separate fixed beam.

3) Calculate the stiffness, relative stiffness and hence the distribution factors of

members meeting at each intermediate joint.

Note:
i. D.F of a member at its fixed end is zero.
ii. D.F of a member at its hinged end is one.
iii. D.F of an overhanging member at its joint is zero.
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4)Prepare a moment — distribution table in tabular form and enter D.F & F.E.M with proper signs.

5) Release each clamped support in succession. Distribute the unbalanced moment at each joint
among the connecting members according to their distribution factor with a sign opposite to the
unbalanced moment. This is called as ‘Balancing the joint’.

6) Do carry over, one half of each distributed moment with the same sign to the farther end of each
span.

Note:

i. Do carry over to farther fixed ends and intermediate supports only.
ii. Do not do carry over to farther simply supported end and farther overhanging ends.
This completes one cycle of moment distribution.

7) The carry over moments in step 6 cause new unbalanced moments. Hence perform distribution and
carry over as explained in steps 5&6 to complete the second cycle.

8) Repeat the process of distribution and carryover until the carry over moments become zero or
negligibly small.

Note:

i. The accuracy depends upon the no. of cycles.
ii. Generally 4 or 5 cycles will be sufficient as the unbalanced moments caused by carryover
decrease rapidly.
9) Stop the process with distributor at the intermediate supports when the end supports are simply
supported.
(Or)

With carry over to the fixed ends'when the supports arefixed.

10) Arrive at the final moments at each joint by finding the algebraic sum of moments in each vertical
column.

11) Change the signs of final moments to the left of the support to get conventional moments.

APPLICATION OF MOMENT — DISTRIBUTION TO TWO SPAN CONTINUOUS BEAMS

Worked examples
CONTINUOUS BEAM WITH FIXED ENDS

1) A continuous beam ABC is fixed at A & C. It is loaded as shown in fig. Calculate the support
moments and draw SFD & BMD. Assume El as constant.

206N /m 126N
3m \|, 3m

Sm 6m R
A ®B C

Step 1: Fixed end moments

Considering each span as fixed.
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Span AB:

Adopting clockwise as +ve & anticlockwise as —ve.

Mas 20kN/m Msz1
A Sm @B
—-wi®* 20 x5
Masg = 12 12
=-41.67kNm
st 20 x 5%
Mea = 12 ot 12
=+41.67kNm
Span BC:
Mﬁf 12EW M "B

B C
—wl 12 =&
Meoc=—~=—3
=-9kNm
+wi +12 =&
Mes ===
=+ 9kNm

Step 2: Distribution Factor

(1) Joint: Only one joint: B

Joint Member Stiffness Relative stiffness 2k Distribution  factor
(k) (D.F)
ﬂ:ﬂ Kga: Kac =Kga + D,FBA:KB;A
B BA ! 5 Kec Tk
(far end A is fixed) iE] aE]
= e =6/11
sE1 _ 481 =8 =645
i & . _Epc
(far end C is fixed) 6:5 =11 D'FBC‘E
BC
=5/11
THEORY OF STRUCTURES  Ppagel136

www.binils.com
Anna University, Polytechnic & Schools




(2) Supports (A & C):

A & C are end supports and they are fixed supports. No distribution is done at the fixed ends and D.F
at the fixed ends are 0.

Step 3: Moment distribution table

(support) A (joint) B (support) C
Member AB BA BC CB
Distribution factor (D.F) | O 6/11 5/11 0
Fixed end moments |-41.67 +41.67 -9.00 +9.00
(FEM)
| Distribution at B 0.00 _ -17.82 -14.85 0.00
Carry Over (C.O)to A& C

891 >7.43
Final moments (algebraic | -50.58 +23.85 -23.85 +1.57
sum)
Conventional BM
(change the sign at left | -50.58 -23.85 -23.85 -1.57
of B&(C)

Moment distribution process (explanation):

e A moment distribution table is prepared and FEM & DFiare entered.
e A& Care fixed supports. Hence there is no distribution at A & C.

e AtjointB,
Unbalanced moment =+41.67 —9.00 = +32.67
o% Balancing moment at B =-32.67

&
| distribution to BA (acc to DFg,) = PPt 32.67=-17.82

| distribution to BC (acc to DFg¢) = 15—1 x -32.67 =-14.85

These values are entered in second step at table. (acc — according)

e The far ends A & C are fixed. Hence one half of distributed moments with the same sign are
carried over (C.0)to A& C.

C.OtoAfromB=-17.82 x % =-8.91kNm
C.Oto Cfrom B =-14.85x % =-7.43kNm
These values are entered in the third step.

e Since there is no chance for further distribution or carry over, the process comes to a halt and
the process is stopped.

e To get the final moments, all the moments at each support are algebraically added.

e To get back the conventional moments, the sign of final moments to the left of each support
are changed. (Here +sign to — sign).
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BMD:

Superpose the free BMD & fixed BMD.

Free BMD:
Span AB
+wi®  +20 x5°
Max free BM at D = =
B B
=+ 62.5kNm
Span BC

+Wi +12 = &
Max free BM atE=T= 2

= 18kNm

Fixed BMD:
Ma =-50.58kNm
Mg = - 23.85kNm

Mc = - 1.57kNm

SFD:
Let V,, Vs & Ve be'the vertical suppoftreactions.
(i). Taking moments about B & considering left of B.
RaX5—=Mu—(20%5x5/2) + Mga =0
5Ra-50.58 - 250 +23.85 =0

Ra=55.35kN(T)

(ii). Again taking moments about B & considering right of B.

-Rex6+Mp+12x3—-Mg=0
-6R¢+1.57 + 36 —23.85 =0
Re= 2.29kN(T)
From2,=0
Ra+Rg+Rc—20x5-12 =0
55.35+R3+2.29-100-12=0
Rg= 54.36kN

Shear force (Vy):
V, =+ Ra=+55.35kN

Vg(L)= + Ry — 20 x 5 = + 55.35 -100
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= - 44.65kN
Vg(R) = + Ry -20 X 5 + R = + 55.35 — 100 +54.36
=+9.71kN
Ve(L) = Vg(R) = + 9.71kN
Ve(R) = Ve(L) - 12 =+9.71 - 12
=-2.29kN
V(L) = Ve(R) = - 2.29kN
Vc(R) =0

Complete SFD.

Results:
ZOE‘W/m IZEJSV
3m\|{ 3m R
D E

Loading diagram

\44.65 — 1229

CONTINUOUS BEAM WITH SIMPLY — SUPPORTED ENDS
2) For the continuous beam ABC shown in fig, find the support moments by moment — distribution

method. Draw BMD.
8KN 15kN

2m \l, 2m 3m 4m

fe T = 1

A B
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Solution:

Step 1: Fixed end moments

Considering each span as fixed.

Span AB

SIEJW Mza

2m \|,2m 7

M

4

4im

h&b&ﬁ

tB .
MAB=%= _BX4=-4kNm
MBA =% =+4 kNm
Span BC
15kN
MBC { MC;E

3m 4

EANTOO

-Wab® -15x3 x4t

:2 - 'I'Irﬂ
=-14.69kNm
+Wa b +15 x3%x &
cB = el = -z =+11.02kNm
Step 2: Distribution Factor (D.F)
(1). Joint: Only one joint B
Joint Member Stiffness Relative stiffness zk Distribution  factor
(k) (D.F)
KBA:E Kga : Kgc =Kga + D.FBA:K::;A
B BA . Kac =
== 381 38
: =7/11
(since far end A is 7 =7+4 /
simply supported) ) Kgc
7:4 =11 D.FBC = E
3EI
BC~ T,
3EI =4/11
BC =T
(since far end C is
simply supported)
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(2). End supports (A & C)
A & C are simply supported ends. The distribution factor is 1.
0% D.FAB =1 ; D.FCB =1

Step 3: Moment — distribution table

(support) A (joint) B (support) C
Member AB BA BC CB
Distribution factor(D.F) 1 7/11 4/11 1
Fixed end moments (FEM) -4.00 +4.00 -14.69 +11.02
Release simple supports A & C.

+4.00 COtwB .00 -5.51 <L 0wk 11.02

Adjusted initial FEM 0.0 +6.00 -20.20 0.00
| distribution at B +9.04 +5.16
Final moments (algebraic sum) | 0.00 +15.04 -15.04 0.00
Conventional moments 0.00 -15.04 -15.04 0.00

Moment distribution process (Explanation):

e A moment distribution table is prepared and FEMs & DFs are entered.

e A & Care simply supparted ends. The BM.at A & C should be 0. Hence.A.& C are released by
applying balancing moments of 4.00kNm at A and -11:02kNm at C and half their amounts are
carried over with the same sign to B and thus the FEMs are adjusted and entered in the third
row.

e Now the joint B is unbalanced

Unbalanced momentatB  =+6.00 —20.20 = -14.20kNm
o% Balancing moment at B= + 14.20kNm

. 7
| distribution to BA (acc to DFg,) = +14.20 X3 = 4+9.03 kNm

. 4
| distribution to BC (acc to DFgc) =+14.20 X1 = +5.16 kNm

e Since there is no chance for further distribution & C.0O, the process is stopped.
e To get the final moments, the moments at each support are algebraically added.
e To get back the conventional moments the sign of final moments to the left of each support
are changed. (Here +sign to —sign).
BMD:

(1). Free BMD

Consider each span as simply supported.

Span AB
M max =ﬂ = TExE = +8kNm
4 2
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Span BC

Mmax = +H:Eb = ks };3 X2 =+25.71kNm

Complete free BMD
(2). Fixed BMD
Mp=0
Mg = -15.04kNm
Mc=0
Complete fixed BMD.
Superpose fixed BMD over free BMD to get BMD.

Complete final BMD

RN 15kN

2m \l 2m 3m 4m

[« = ]

A B

+8 +25.7
Free BMD
‘ -15.03
Fixed BMD

Final BMD
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CONTINUOUS BEAMS WITH OVERHANGS

1) A continuous beam ABCD is fixed of A, simply supported at B, C & free at D. It is loaded as
shown in fig. El is constant throughout. Calculate the support moments and draw SFD & BMD.

16kN

Loading diagram

Step 1: Fixed end moments

Span AB
Mgy 1m |17 3m Mo
L4« (6) E P,
2 :
-Wab® -16 x1x3%
Mpg=—7r—= e =-9 kNm
+Wa'h  +16 x1%x 3
MBA: ) LY s =+3kNm
Span BC
kN /m Mcs
@3 RN/ C
5m
B C
-wi® -9x5"
Mac =—; "1 - 18.75 kNm

z

+wi
MCB = ? =+ 18.75 kNm

9RN/m
D
C 2m

It behaves like a cantilever.
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Mpc = 0 (free end)

Step 2: Distribution factor (D.F)

www.binils.com
Anna University, Polytechnic & Schools

Joint B & C.
Joint Member Stiffness Relative stiffness zk Distribution  factor
(k) (D.F)
BA = ‘},E Kea : Kec =Kea + D.Fga = K;;:
BA 4EI Kec
= 4B 381
(since far end A is| * =5+3 =5/8
fixed) K
. _Epe
B 1:3/5 -3 D-FBC—E
3E1
Kec ==~ 5:3
_ 3EI =3/8
BC iy
(since far end C is
simply supported)
CB 1 1:0 1 D.Fes=1
C
CD 0 D.Fp=0
Step 3: Moment distribution table
A B C
Member AB BA BC CB CD DC
Distribution factors
0 5/8 3/8 1 0
Fixed end moments
(FEM) -9.00 +3.00 -18.75 +18.75 -18.00
Release C& C.OtoB -0.38 -0.75 «—
Initial/ Adjusted FEM | -9.00 +3.00 -19.13
| I distribution at B
+10.08 +6.05
Carry over (To A from | +5.04 - - -
B)
Final moments (%)
(algebraic sum) -3.96 +13.08 -13.08 +18.00 -18.00 0
Conventional -3.96 -13.08 -13.08 -18.00 -18.00 0
moments
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SFD:

Left of B

Considering left of B and taking moments about B.
Ma+Rax4-16x3+Mz =0
-3.96 + Ry x4-48+13.08=0

4R, =38.88

Ma

Ra =9.72kN(T)
16kN

g ﬂ Im l 3m

14

Pa,

Considering right of B

Q= h_;"ﬁ

9kN/m
F D
Sm 2m
B C

Taking moments about B
-Mg+9%x7%x7/2—Rcx5=0
- 13.08 + 220.5 -5R¢ =0
Rc=41.48kN(T)
From2,=0
Ra+Rpg+R=16+9x7
9.72 +Rz+41.48=79
Rg =27.8kN
Shear force (Vy):
Va(L) =0
Va(R) =+ Ry =+9.72kN
Ve(L) = Va(R) = + 9.72kN

Ve(R) = VE(L) —16=+9.72-16
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=-6.28kN
Vi(L) = Vg(R) = - 6.28kN
Vi(R) = VE(R) + Rg =- 6.28 + 27.8
=+ 21.52kN
V(L) = Vg(R) =9 x 5 = +21.52 — 45
=-23.48kN
Vc(R) = V(L) + Rc=-23.48 +41.48
=+ 17.7kN
Vp =0
Complete SFD.
BMD:
Span AB — free BMD (sagging BM)

Max free BM for span AB

+Wab +16x1 %3
- - 4

=+ 12kNm
Span BC

Max free BM for span BC

_+wi® 49w st
T8 8
=+28.13kNm

Span CD
No free BM since it behaves like a cantilever.
Fixed BMD (hogging BM)

At support AM, =-3.97

At support B Mz=-13.06

At support C M =-18.00

Complete BMD by superposing fixed BMD over free BMD.

Final BMD:
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+
+0.72[+ |o.72 h\ 17.7'\

-6.28] ¢ 58 - | 23.48
SED
+
‘h 28.13 \{8.0
‘@06 :
3.97[/_l12.00
BMD

TWO - SPAN CONTINUOUS BEAMS
(El not constant: EConstant, | Varying)

4. Find the support moments for the continuous beam loaded as shown in fig.

1
qu m l 3m * ¥ ¥ 1 ‘C
B A
4m ) 4m
1.571 2T
Solution:
Step 1: Fixed End Moments:
Span AB: Mo 10KN Maa
_ Wab® g )
Mag e \l im 3m r/
10x1x(3)" \l 4m
= -T
=-5.63kNm.
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Mga =+ 2
L 10x1% 3
TR
=+ 1.88kNm.
Span BC:
wi? M SKN/m mcfﬂ
Mac =- 12 y N
= N\
_ 5)(.:4}5 ': ‘L ¢ ‘I’ Jf $ ’L A
BRET y N
4m
=-6.67kNm.
M _ow?
ce BT
=+6.67kNm.
Step 2: Distribution Factors (DF):
1. Joints (Only one joint B)
Joint Member Stiffness Relative Stiffness Yk D.F =k/Yk
3EI k
on=r DFon =T
) - 5
BA (sinceA is simply ==
supported) 25
_ 3E(1.0)
- 1 Ksa:Kac
_45El 9+16
B E _4S5EL BEI =25
4 4
_ 3T 45:8
BC = kg
(si Clis fixed) PFec T Ik
BC e B (ie) 9:16 s
= 25
_BEL
!
2. End supports:
i.  Alissimply supported o%DFss =1
ii. Cis fixed 0% DFe =0
Step 3: Moment Distribution Table:
A B C
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Member AB BA BC CB
Distribution Factor 1 9/25 16/25 0
FEM -5.63 +1.88 -6.67 +6.67
Release A& C.OtoB +5.63 2.82

—_—
Initial / Adjusted FEM 0.00 +4.70 -6.67 +6.67
| — distribution at B +0.70 1.27 =
C.OtoC —> 0.64
Final moments Y, 0.00 +5.40 -5.40 +7.31
Conventional moments 0.00 -5.40 -5.40 -7.31

Moment Distribution Process :( Explanation)

e The FEM & DF are calculated and are.entered.in.the moment.distribution table.

e Since Ais aisimple support, it/is released to make the moment zero. Half the moments is

carried over to B. thus the FEMs are initially adjusted.

e Since B is unbalanced, it is balanced and distribution is done to BA & BC according to DF.

e One half of the balanced moment is carried over to C from B.

e Since there is no chance for further distribution or C.0, the process is stopped.
e To get the final moments algebraic sum from adjusted FEM is done.
e To get back the conventional moments the sign of moment is changed at the left of each

support.

BMD
1. Free BMD

Maximum free BM for span AB =+

10x1x3
&

=+

=+7.5kNm

Pt

Maximum free BM for span BC = +%

5 x4
]

=+

=+10kNm
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2. Fixed BMD
MA =0

Ms= - 5.40kNm
M, = - 7.31kNm

3. Final BMD

SKN/m .7
li&w 5.40fNm ‘1/ 31 Kofm
1 LY
~ Im 3m :. i \|, J, ; "4
| ¢ /
Im — 4m '

Final BMD

TWO - SPAN CONTINUQUS-BEAM

(EFnotconstant, I'Varying)

5. Find the support moments for the two-span continuous beam ABC shown in fig. Also draw BMD.
10kN/m

ﬁj *@V/; J,J,J,*C

4m ) 6m
31

2r
II not constant

Step 1: Fixed End Moments:

Msze Mcs
Span AB: C 10RN/m % >
y v
No loading in span AB y ¥y ¥ 1 1 A
y -
0% MAB =MBA=O ‘{B om C/
Span BC:
Mec= -
_ 10x82
T
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12

= + 30kNm

Step 2: Distribution Factors (DF):

i.  Joints (only one joint B)

Joint | Member Stiffness Relative Stiffness Yk D.F=k/Yk
4E1
BA KBA::E.,,,I} Kga : Kac )
_Elad) _kga
T s DFga = Tk
_2H _BEL SEI =
T4 Ta s T
k
) 4+3 DFgc = %
B 3Er g g 3
B Kec ==~ s =7 =7
3E(30)
== 24 :18
SE! .
= (i.e.) 4:3
ii. Supports:
1. Ais fixed 0% DFag =10:
2. Cissimplysupported’ % DFg =1.
Step 3: Moment distribution Table:
A B C
Member AB BA BC CB
Distribution Factor 0 4/7 3/7 1
FEM 0.00 0.00 -30.00 +30.00
Release C& C.0to B -15.00 -30.00
Initial / Adjusted FEM 0.00 0.00 -45.00 0.00
| - distribution +25.72 +19.28
COtoA +12.86
Final moments Y +12.86 +25.71 -25.71 0.00
Conventional moments -12.86 -25.71 -25.71 0.00
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Moment Distribution Process: (Explanation)
e A moment distribution table is prepared. The FEM & DF are entered.
e Since Cis a simple — support, to make the moment zero, it is released by balancing it and half
the balanced moment is carried over to B and thus the FEM are adjusted.
e Now | distribution is done at B.

e Since ‘A’ is a fixed support, half the moment is carried over to A from B.

e Since there is no chance for further distribution & C.0O, the process is stopped.

e To get final moments, add the moment algebraically from adjusted FEM.

e To get back the conventional moments, the signs in the left support moments are changed.
Step 4: BMD

1. Free BMD: (sagging)
Maximum free BM for span AB = 0 (since no loading)

.'|z
Maximum free BM for span BC =+?‘

_loxe’
B
= +45kNm.
2. Fixed BMD: (hogging)
Ma=-12.86kNm.
Mg= - 25.72kNm.
Mc= - OkNm.
Final BMD:
10KN/m

*»Ifi«J,J,Jf

I W N N, W

am ) 6m

THREE SPAN CONTINUOUS BEAMS

6) A continuous beam ABCD is fixed at A & D. It is loaded as shown in fig. Calculate the support
moments by moment distribution method. Sketch BMD.

6k /m 12RN 10KN/m
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Solution:

Step 1: Fixed end moments (FEM)

Considering each span as fixed.

Span AB

& Me o 6RNm 5"‘3

sm

M —wi® -5 =8
ABT 97 T 1z

=-32kNm

M +wi®  #exst
BAT 43 T 12

=+ 32kNm

M 12kN Mes

—erit

6m

-Wil —12 =&
Mpr=——=
BC g g

=-9kNm
MCB :% =+ 9kNm

Span CD

Meo  p10RN/m 5'423

m
—-wi® -10 x7¢
Meo = 12 T 12
=-40.83kNm
swi® #10 x7F
=T T g
=+40.83kNm
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Step 2: Distribution factors (D.F)

(1). JointsB & C

www.binils.com
Anna University, Polytechnic & Schools

Joint Member Stiffness Relative stiffness zk Distribution  factor
(k) (D.F)
BA = ‘},E Kea : Kec =Kea + D.Fga = K;;:
BA 4EI Kec
= 481 $EI
B B8 =6+8 =3/7
4E1
Kee ==~ 6:8 D.F.. = X8
BC _ ﬂ = 14 -I'BC Tk
T s
=4/7
CB KCB =ﬂ KCB: KCD 7+6 D-FCB= 7/13
AEI
e SEL 2R 13
C 6 7
Kep = 41£ 7:6
CD _ q-lﬂ D.FCD= 6/13
To7
2) End supports (C, D):
End supports C & D are fixed, o% no distribution is done at C & D
0% DFAB = 0, DFDC =0
Step 3: Moment distribution table:
A B C D
Member AB BA BC CB CcD DC
Distribution factors
(DF) 0 3/7 4/7 7/13 6/13 0
Fixed end moments
(FEM) -32.00 +32.00 -9.00 +9.00 -40.83 +40.83
| distribution -9.86 -13.14 +17.14 +14.69
Carry over(C.0) 493 — +7.35
Il distribution +8.57 A><-6.57 \
-3.67 -4.90~_ _ +3.54 +3.03_
c.o 184 _— +1.77% a -2.45 N\r1.52
Nl distribution -0.76 -1.01 \_ +1.32 +1.13
co 038 — +0.66 o~ *-0.51 NW
IV distribution -0.28 -0.38 +0.75 -0.24
Final moments (%)
(algebraic sum) -39.15 +17.43 -17.43  +22.22 -22.22 +50.27
Conventional -39.15 -17.43 -17.43 -22.22 -22.22 -50.27
moments
THEORY OF STRUCTURES Page 154




Moment distribution process (Explanation):

e The FEM and DF are entered in the table.
e The distribution and carry over process is continued upto IV distribution.
e Since the C.0 moments after Il distribution is very small, the process is stopped up to
IV distribution. (Normally four distributions will be sufficient).
BMD

1). Free BMD

Span AB

+wi® 46 =8

g =]

Max free BM at E =

=+ 48kNm

Span BC

+W1 #12 x6
Max free BM atF=T=T

=+ 18kNm

Span CD

T os1p x7*

g

+wl

Max free BM at G =

= +61.25kNm
2). Fixed BMD
M, = - 39.15kNm
Mg = - 17.43kNm
M = - 22.22kNm
Mp = -50.27kNm

Superpose fixed BMD over free BMD to get BMD.

126N

6KNm 106N /m
39.;5@%: ( 15.09Nm | 21.756Nm f 0. 27RNm
- N
, b o ok bk ok ah b bk 4
™ .

B C
Loading diagram

50.27
39.15 ENm
ENm
Results: BMD
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HIGH LIGHTS

1. a) Stiffness factor (k)

_4EI

1
4

i. When far end is fixed stiffness factor

ii. When the far end is hinged stiffness factor = 313

L

b) Relative stiffness

i When the far end is fixed relative stiffness =

ii.  When the far end is hinged relative stiffness =

| B2

c) Carry over moment

Carry over moment = carry over factor x applied moment.

2. Carry over factor

Carry over moment

Carry over factor (COF) =

Applied moment

a. When the far end is fixed, COF = %4
b. When the far end is hinged, COF =0

Distribution Moment

Distribution moment = distribution factor xapplied moment.

Distribution factor (DF)

Etif fness Factor of any member

Distribution factor =

Total stif fness

E.g.
In figure,

DFoa = Distribution Factor for member OA
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- Xoa
DFoa= kg

Iy _Kop
I DFos 5

- Koc
DFoc = Ik

QUESTIONS

Two mark gquestions:

1)

2)
3)
4)

5)
6)
7)
8)

Where the (-ve) moment is maximum in a two span continuous beam having simple supports
at the ends?

Define stiffness factor.

Define distribution factor.

Where the hogging (-ve) moment is maximum in a two span continuous beam, having simple
supports at the ends?

Give examples of indeterminate beams.

State any two methods of analysis of indeterminate structures.

Define Distribution factor and Distribution moment.

What is Carry over factor?

Three mark questions:

1)
2)
3)
4)

5)

A three span continuous beam with hinged endsjcarries UDL on its interior panel only. Draw
the shapes of the SF and BM diagrams with proper signs (values heed not be mentioned).

How do you analyse a continuous beam by Hardy cross method?

Prove that the stiffness of a simply supported beam of uniform cross section is 3EI/I.

Derive and expression for the stiffness of a beam when it is simply supported at both the
ends.

Derive the expression for the stiffness of a beam when it is fixed at one end and freely
supported at the other end.

Ten mark questions:

1) A continuous beam of ABC, simply supported at A and C, carries an UDL of 20kN/m on AB =
6m and carries a central point load of 120kN on BC = 6m. Take El as constant. Draw SFD and
BMD by moment distribution method.

2) A continuous beam of ABC, fixed at A& C, carries a point load of 5kN at 4m from A on the span
AB = 6m and carries an UDL of 1.5kN/m on the span BC = 4m. Take El as constant. Draw SFD
and BMD by moment distribution method.

3) Compute the support moments by Hardy cross method for the two span continuous beam
ABC with simply supported ends. All carries an UDL of 20kN/m. BC carries a point load of 90kN
at 2m from B. Iga = |, lgc = 21.

4) A beam ABCD, 9m long is simply supported at A, B and C, such that the span AB is 3m, span BC
is 4.5m and the overhanging CD is 1.5m. It carries an UDL of 30kN/m in span AB and a point
load of 10kN at the free end. The Ml of the span AB is | and in span BC is 2I. Compute the
support moments by moment distribution method.
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5)

6)

7)

8)

9)

A continuous beam ABCD has three equal spans AB = BC = CD = 4m. It is simply supported at
the ends A & D. AB carries an UDL of intensity 20kN/m; BC carries a central point load of 40kN;
span CD carries an eccentric point load of 30kN at 1m from D. The flexural rigidity, El is
constant. Analyse the beam by Moment Distribution method (3 cycles sufficient) and draw the
SF & BM diagram.

A continuous beam of ABC, fixed at A & C, carries an UDL of 30kN/m on AB = 6m and carries a
central point load of 180 kN on BC = 6m. Take El as constant. Draw SFD and BMD by moment
distribution method.

A continuous beam of ABC, fixed at A and C, carries a point load of 5kN at 4m from A on the
span AB = 6m and carries an UDL of 1.5kN/m on the span BC = 4m. Take El as constant. Draw
SFD and BMD by moment distribution method.

A two span continuous beam ABC is fixed at support A and simply supported at support C. AB
= 8m; BC = 4m. Span AB carries an UDL of 16kN/m; BC carries a central point load of 80kN. Ig
= 1.5 lgc. Analyse the beam by moment distribution method and draw BMD.

Analyse the continuous beam shown in fig. By moment distribution method. Find the support
moments and draw the BMD. Assume El as constant.

30#{3\( 2.§gv/m 2RN

e et

3m 1Im

10) Analyse the continuous/beam shown in fig. By moment distribution‘'method. Draw the BMD. El is
constant.

ERYL Y

11) Using Hardy cross method, determine the support moments and draw the BMD for the continuous
beam shown in fig.

206N/m 100RN

A2 ki;_- ¥ 3m 2m E
4dm Sm

ET - Constant

»

h . Y
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3.2 PORTAL FRAMES MOMENT DISTRIBUTION METHOD
Frames:

A structure built — up of several members (beam over columns) joined together by rigid at their ends
to support the external loads (vertical and horizontal) is called a frame. It is an indeterminate
structure.

Types of frames:

Frames may be classified as
1. Based on bays
(i) Single bay single storey frame (Portal frame)
(i) Single bay multi — storey frames
(iii) Frames multi bay frame
2. Based on storey

(i) Single storey frame
(i) Multi storey frame
B C
Storey 4
Beam
{3 % C Storey 3
P Storey 2
colfumn QR
4 r Storey 1
Bay 1
A D A D
rr

' o b) Single bay
Y S‘l-?:g& anﬁa me multistorey frame
Storey 4
Storey 3 jmm
Storey 2 Column
Bayl | Bay2 X

Storey 1

> - ¥

Eﬂ_‘-ﬂ-'{) ﬁﬂ_‘)l' Fr o Forra 7r
multistorey frame d) Multistorey frames
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a) Single bay frame:

When a frame consists of single bay it is called single bay frame. It may be of single storey or multi-
storey as shown in fig.
When a frame consists of single bay with multi-storey as shown in fig.

b) Multi bay frame:

When a frame consists of two or more bays it is called multi bay frame. It may be of multi bay multi-
storey frame as shown in fig.

Portal frame:
A frame consisting of beam resting on columns with rigid joints is known as portal frame.
Classification of portal frame:

Portal frame classified as
a) Symmetrical portal frame
b) Unsymmetrical portal frame
c) Sway type portal frame
d) Non - sway type portal frame

a) Symmetrical portal frame:
A portal frame, in which both the columns are having of the same length, geometry shape,

similar end conditions, moments of inertia, modulus of elasticity and subjected to symmetrical loading
as shown in fig. is called symmetrical portal frame.

W
l C Beam w/m
B peH H B - f— C
I|"""'lll-u.,.__Il_,..u-l-""""“I J
j; 27 ’\\ f.f J“_h -’—-.*7-‘\
! 11 { 21 \
! iE \ !
| L )
1 Fi \‘ 4
. I
A iﬂ Artr r7ro

a) Symmetrical portal frame
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b) Unsymmetrical portal frame:

A portal frame, in which both the columns are not having of the same length, geometry shape,
similar end conditions, moments of inertia, modulus of elasticity and subjected to unsymmetrical

loading as shown in fig. is called unsymmetrical portal frame.

w

Beam
2 & S . | 6 & @sam—\hu w/m ¢
S~ — e e a \‘ ? ".

! 21 ] P Teme—=m Y
{ ’ i 21 \
| ! \ :

4 \ Y column

\ Arr>

b) Unsymmetrical ®ortal frame

c) Sway type portal frame:
In case of unsymmetrical portal frame, the frame deflects horizontally. The frame having horizontal

deflection is called sway type portal frame. In this case sway moments are considered. If the
symmetrical portal frame is loaded asymmetrically sway moments are also considered.

These may be classified into
i) Puresway frame

ii) General sway frame
—n Sway ¥— _,Suﬂ‘_
w >| 4 A C = 7
— 3 Sway ¥— L A ’
w—y—— =3 Sway ¥ S ’
B I, 5 C /’ I
f
f, IJ‘ ra 4 f;
) 7 ' V
! I I
qy f © ’
I I Art
ﬂ& 7D
7>
—\)Sﬂ.ay = — .S'wa_a);‘_
B . f
l, Iz /!
7
/ /
R F
Portal frame with sway Ly !
I Is If;
s
D
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d) Non — sway type portal frames:

In case of symmetrical portal frame with symmetrical load horizontal deflection will not occur, this
frame is called non — sway type portal frame.

This type of portal frame are analysed as in the case of continuous beams.

4

bt C

Iz

I Iy

w— <

T 1 41
—Cofumn

Artr ¥ 2]

d) Non Sway Type Portal frame

Analysis of symmetrical (non — sway) portal frames by moment distribution method
Problems: WORKED EXAMPLE 1

A portal frame ABCD is shown in fig. AB is loaded with central point load of 40kN at 8m and BC is
loaded with an u.d.l of 30 kN/m throughout and CD is loaded with the same central point load of 40kN
at 8m. If El is constant throughout. Calculate the bending moments in the frame and draw the BMD.

(- 30kNm

6m
ET constant

8m 40kN
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Solution:

Stretch out the frame horizontally. The frame is equivalent to a continuous beam as shown in

fig.
30KN/m
40kN ( 40kN
1 D
8m 6m 8m
8 C
Step 1: Fixed end moments (FEM)
Consider each span as fixed:
Span AB
M M
”g 10kN Nl
1, ,L A
ﬁj 8m
Map = % _ —4DB>< 8
=-40kNm
Max = % _ +4qu 8
=+ 40kNm
Span BC
5"466 30KN/g,
—wi®  —30 xe®
=- 90kNm
+wi® 430 xE"
Mes =5 =73
=+ 90kNm
Span CD
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M 40N My,

o |

) TR 4

-Wi —-40xE
Mo ===
=-40kNm
+Wi +40 8
Moc =——=—4
=+ 40kNm

Step 2: Distribution factors (DF)
(1) joints (B, C)

Joint Member Stiffness Relative  stiffness Yk Distribution factor
(k) (D.F)
Kga = 41£ Kaa : Kac =Kga + D.Fgs = Kpa
BA s Kac Ik
=% S5 4EL
B B € =6+8 =3/7
Ko = 4E1 «
BC= : — SBC
BC 4EI °:8 =14 D.Fec = Tk
A 9
=4/7
KCB=E KCB: KCD 8+6 DFCB:8/14
CB _ 4EI
Y EL L 3E 14 =4/7
C 6 8
4EI
Keo =—~ 8:6
4EI D.Feo= 6/14
cp iy
=3/7

(2)End supports (A & D)

End supports A & D are fixed. No distribution is done at A & D.

oo DFAB = 0
DFDC= 0
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Step 3: Moment distribution table

A B C D
Member AB BA BC B cD DC
Distribution
factors(D.F) 0 3/7 4/7 4/7 3/7 0
(FEM) -40.00 +40.00 -90.00 +90.00 -40.00  +40.00
| distribution _—+21.43 +28.57 \, 2857 21.43~_
Carry over (C.0) +10.72 -14.29,/ 4+14.29 SNa10.72
Il distribution

4« +6.12 +8.17  _ -8.17 6.12__
c.0 +3.06 -4.09 7\ +4.09 T~ -3.06
11l distribution _F1T5 +234 - -2.34 -1.75
c.0 +0.88 117 a2 +1.17 —~—_088
IV distribution +0.50 +0.67 -0.67 -0.50
Sum s -25.34  +69.80 -69.80 +69.80 -69.80  +25.34
Conventional -25.34  -69.80 -69.80  -69.80 -69.80 -25.34
moments

Moment distribution process (explanation):

e The frame is stretched out and equivalent continuous beam is drawn.

e The FEM & DF are calculated and entered in the moment distribution table.

e The distribution & C.O process;is continued.up to IV distributien.

e Since the C.0/moments after Il distribution is very small,,the 'process is stopped at IV

distribution.

e The final moments are arrived by algebraic sum of the in each column.

e To get back the conventional moments, by changing the sign of moments at the left end of
each span.

BMD:

Free BMD (Sagging):

1 +40x8
Max free BM for span AB = % = TX

=+ 80kNm

+wi®  #30 =

=] ]

Max free BM for span BC =

=+ 135kNm

1 +40x8
Max free BM for span CD = % = 4x

=+ 80kNm
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Fixed BMD (Hogging):

M, = -25.34kNm.
M = -69.80kNm.
M = -69.80kNm.

My = -25.34kNm.

Final BMD:

69. 81 - 1351€Nm - 69. 31
m m
RN RN
RMm SPRN n\
+ /
25.35kNm 25.35kNm
BMD

WORKED EXAMPLE 2

1) Analyse the portal frame shown in fig..by moment distribution methodand draw BMD.

[IO&W/m

El not constant: | varying.

The frame is stretched & equivalent continuous beam is drawn.

Step 1: FEM
Span AB
20kN
Mas M—Bﬁu
.C/I 2m 2m I?
yE 4m BV
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M =5~ =5
=-10kNm
+WIL 420 =4
Mea =5~ =3
=+ 10kNm
Span BC
10kN/m M
¢ ﬂqmmw )
B om C
—wi® —10xE"
Mec = 12 12
=-30kNm
+wi®  +10xET
=+ 30kNm

Span CD (symmetrical)
MCD =-10kNm

MDC =+ 10kNm

Step 2: Distribution factors:

1) Joints (B, C)

Joint Member Stiffness Relative  stiffness Sum Distribution
(k) Tk il
factor(D.F) [EK:]
KBA:E Kga: Kac =Kga + D_FBA:K";“'1
BA 3.lEI KBC Tk
= L
. . 4 ? _ = 3/7
B (As hinged) LCM is 12 units =3+4
9:12 _Epc
AE] _ D.Fgc =
Kec = — i.e. 3:4 =7 T
4E(1.50)
BC =7 =4/7
2
T s
(cis fixed)
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KCB=41£ KCB:KCD 4+3 D-FCB:4/7
CB 4E(1501)
- EEI 3EI -7
& ——
c _ L ¢
T e
(B is fixed) 12:9
4:3
3E!
Ko =
CcD _3EL D.Fp=3/7
4
(D is hinged)
(2)End supports (A, D)
A & D are hinged. oo DFpg =1 DFpc=1
Step 3: Moment distribution table:
A B C D
Member AB BA BC CB CcD DC
Distribution factors
1 3/7 4/7 4/7 3/7 1
FEM -10.00  +10.00 -30.00 +30.00 -10.00 +10.00
Release A & D & C.0"| +10.00 +5.00 -5.00 -10.00
toB, C
Initial/ Adjusted FEM 0.00 +15.00 -30.00 +30.00 -15.00 0.00
| distribution
+6.43 +8.57 -8.57 -6.43
CO (fromBtoC&C -4.29 +4.29
to B)
Il distribution +1.84 +2.45 \ _~2.45 -1.84
c.0 -1.23 &~ w123
Il distribution +0.53 +0.70—_~ -0.70 -0.53
C.0 -0.35 +0.35
IV distribution +0.15 +0.20 -0.20 -0.15
Final moments(2)
0.00 +23.95 -23.95 +23.95 -23.95 0.00
Conventional moment | 0.00 -23.95 -23.95 -23.95 -23.95 0.00
Moment distribution process (explanation):
e The given frame is stretched and an equivalent continuous beam is drawn.
e The FEM & DF are calculated and entered in the moment distribution table.
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BMD:

Since A & D are hinged , A & D are released (balanced) to make the moments zero, and half
the moment is C.O to B from A and llly from D to C. Thus the FEM’s are initially adjusted.
Algebraic sum at the end (Z) should start from here only.

Distribution and C.O process are done at B & C up to IV distribution.

Since the C.O moments are gradually small, the process is stopped at IV distribution.

For final moment, algebraic sum of moments from adjusted FEM are done.

To get back the conventional moments the signs are changed at the left of each support.

Free BMD (Sagging):

1 420 x4
Max free BM for span AB = % = 4><

=+20kNm

+wi®  #10 =8

Max free BM for span BC = s - s

=+ 45kNm

1 +20 x4
Max free BM for span CD = % = ;C

= +20kNm

Fixed BMD (Hogging):

M, =0 (hinged).
Mg = - 23.95kNm.
Mc =-23.95kNm.

Mp = 0 (hinged).

Final BMD:

/N

23.95[ —23.95
ml/ T Nvm
- @ C -
N/m 20/,

+ 1
A D

HIGH LIGHTS

1. Portal Frame:

A Frame consisting of beam resting on columns with rigid joints are known as portal frame.
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2. Symmetrical and Unsymmetrical portal frames:

Sl.no Symmetrical Portal Frame Unsymmetrical Portal Frame
1. Both the columns are same length. Columns are in different length.
w/ unit length
S I S P A
2r
I I

Artr 7D
2. Modulus of elasticity is same. Modulus of elasticity may be different.
3. Moment of inertia is same for both the Moment of inertia may be different.

columns.
4, Both the end conditions are same. End conditions are different.
5. Loading is symmetrical. Loading is unsymmetrical.

3. Sway type Portal Frame:

In case of unsymmetrical portal frame, the frame deflects horizontally. The frame having horizontal
deflection is called sway type portal frame. In this case sway moments are considered. If the
symmetrical portal frame is loaded asymmetrically sway moments are also considered.

These may be classified into
i) Pure sway frame
ii) General sway frame
4. Non - sway type portal frame:
In case of symmetrical portal frame with symmetrical load horizontal deflection will not occur, this

frame is called non = sway type portal frame:
QUESTIONS

Ten mark Questions
1. Analyse the portal frame shown in figure by moment distribution method and draw the BMD.

20 EN/m
T3 E C
im

Im 6m
60&;7\"—"1—;( 21 Lﬁoﬁﬂ\’
TI TI
3m 3m
A 7D

2. Analyse the portal frame shown in figure and draw the bending moment diagram by moment
distribution method.

100RN
B 3m 3m c
21
6m S|
I I 4m
ﬂ& &-ﬂ 4
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4. COLUMNS AND STRUTS

4.1 COLUMNS AND STRUTS

columns and struts — Definition — Short and Long columns — End conditions — Equivalent length /
Effective length - Slenderness ratio — Axially loaded short column — Axially loaded long column —
Euler’s Theory of long columns — Derivation of expression for critical load of columns with
hinged ends-Expressions for other standard cases of end conditions (separate derivations not
required)-Problems- Derivation of Rankine’s formula for crippling load of columns-Factor of
safety-safe load on columns-simple problems

Chapter 4
4.1. STRUTS AND COLUMN

Any member of structure subjected to axial compressive force is known as strut. A strut inclined
at 90°to the horizontal (i.e. a vertical strut) is known as column, pillar or stanchion.

4.1.1.DEFINITIONS

(a) Column: A long vertical slender member or bar subjected to an axial compressive
force is known as column.

(b) Strut: A slender member in any position other than vertical subjected to axial
compressive force is known as strut.

(c) Slenderness ratio: It is the ratio of length of column to the least radius of gyration.
Slenderness.ratio has no unit.

Slenderness ratio =Length of column/Least radius of gyration=L/K

It represents the extent to which the column is long and slender .As the slenderness ratio of
a column increases its compressive strength decreases. A slenderness ratio of 200 is
extremely large for a column.

(a) Buckling load: The maximum axial compressive load at which the column starts
buckling is known as buckling load or crippling load or critical load. Buckling always
takes place about the axis having least moment of inertia. The value of buckling
load is less than the crushing load.

(b) Safe load: It is the load which a column can withstand safely without any
buckling/failure. It is the ratio of buckling load and factor of safety.

Safe load=Buckling load/Factor of safety

(c) Buckling factor: Buckling factor is the ratio of equivalent length to the least radius
of gyration.

4.1.2. CLASSIFICATION OF COLUMNS

Depending upon the length to diameter ratio or slenderness ratio, a column can be
calssified as:

(a) Short column: If the lenth of a column is less than 8 times its least lateral
dimension then the column is said to be a short column.If the slenderness ratio
of a column is less than 32, then the column is also called a shortcolumn.In short
column, buckling is negligible and the column fails due to direct crushing only.
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(b) Medium size column: A column is said to be medium size column if its length
varying from 8 times to 30 times of its least lateral dimension. If the slenderness
ratio of a column lies between 32 to 120, then the column is also said to be
medium size or intermediate column. In these column, both buckling as well as
direct stresses are of significant value. In the design of medium size column, both
the stresses are taken into account.

(c) Long column: A column is said to be long column if its length is more than 30
times the least lateral dimension or the slenderness ratio of the column is more
than 120. In this type of column, direct compressive stress is very small as
compared to buckling stress, i.e., the failure is only due to buckling stress. Hence,
long columns are designed to withstand buckling stresses.

4.1.3. FAILURE OF COLUMN

The failure of a column takes place due to any of the following stresses:
i. Direct compressive stress
ii. Buckling stress
iii. Combination of direct and buckling stresses

(A)Failure of short column

‘

Consider a short column of cross-sectional area
then

A’ subjected axial compressive load p,

. P
Compressivesstress= ry

If the compressive load'is gradually.increased, a stagewwill .be.reached at'which the column
will be at a point of failure by crushing. The stress inducted in the column corresponding to
this load is called crushing stress and the load is known as crushing load (p).

. Crushing load P
Crushing stress = g =—
Ccross section area A

(B) Failure of a long column:

Figure 4.1 shows a long column of cross-sectional area ‘A’ subjected to an axial compressive
load p.In case of long column, the failure is due to crushing as well as buckling (bending).
The load at which the column just buckles is known as buckling load. The buckling load is
less than the crushing load.
Let, p = Axial compressive load
| = length of the column N
A = Cross-sectional area .
e = Maximum bending at the centre of the column P
z = Section modulus in the axis of bending I &

. P
Direct stress, O4= "

. P.e
Bending stress,oy, -—

Stresses at the mid-section of the column are: ' I
Maximum stress,max = Op +0¢ P
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Maximum stress, O min = Op- Oy

If the maximum stress is more than crushing stress, the column will fail. In long columns,
direct compressive stress is negligible as compared to buckling stress. Hence, very long
columns are subjected to buckling stresses only.

4.1.4. END CONDITIONS OF COLUMN

The following end conditions of columns are important:
(a) Both the ends hinged [Fig. 4.2(i)]
(b) Both the ends fixed [Fig. 4.2(ii)]
(c) One end fixed and other end hinged [Fig.4.2(iii)]
(d) One end fixed and other free [Fig.4.2(iv)]

| P P F [ P
L ] N ]
: : 4 J f,,"rq\.f \
l f Y N
\ | f 1 -\\
\ I [ I\
\ I | "l
¥ a \
I | I
| t 7 Co 4]
I | I | |
I
| | I
' | [ | | /
f / |
| / S
I i l/
I F If
L vy L T Iv/ f
& T Tliz‘ .—-'{""v
1B !r ID
B is hinged (i) One end fixed and (i) Both end fixed  (iv) One end fixed and other hinged

other free
Fig.4.2
4.1.5 EQUIVALENT LENGTH OR EFFECTIVE LENGTH

Equivalent length is the length of the long column which is actually involved in bending.
Equivalent length of a column is also defined as the distance between adjacent point of
inflexion®*.The equivalent length of a column is obtained by multiplying it with some
constant factor ‘C’. The constant factor ‘C’ depends on end conditions of the column. If tis
the actual length of a column, then its equivalent length, L=c x
Hence, in case of column with:

(a) Both ends fixed, equivalent length, L =é

(b) Both ends hinged, L =t

(c) One end fixed and other end free, L = j—%
(d) One end fixed and other hinged, L = \/%
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| /
_, / 1 PjL i 4 F

Ip L p

(i) Both ends hinged \ (i) One end fixed and
cther end hinged

5 L

(i) One end fixed and
other and free

Fig.4.3
Table 4.1. Equivalent Length
S.NO. | End conditions of | Relation between | Value of | Crippling load in terms
column effective length “(L) | factor ‘C’ | of
and actuallength (¢) Actual Effective
length length
1. Both ends fixed L=< 1 p_tm’El p_TEl
2 E 2 12
2. Both ends hinged | L=1 1 pT LI p= T El
e T2
3. One end fixed and | L= 2 2 pTEI pTEl
other end free w L
4. One end fixedand | L = \/LE 1 P=27T;E1 Pzﬂ;El
other hinged V2

4.2.0. SLENDERNESS RATIO

We have already discussed in art 22.11 that the euler’s formula for the crippling load

m2EI
Le?

Pe -

We know that the buckling of a column under the crippling load will take place about the
axis of least resistance. Now substituting | = Ak? (where A is the area and K is the least radius
of gyration of the section) in the above equation,

n2E(Ak?) m2EA

LGl
k

Pe =
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Le . . L . .
wheref is known as slenderness ratio. Thus slenderness ratio is defined as ratio of

equivalent (or unsupported ) length of column to the least radius of gyration of the section.
slenderness ratio does not have any units.

Note : It may be noted that the formula for crippling load, in the previous articles, have
. . T Le . .

been derived on the assumption the slenderness ratio == is so IargPe, that the failure of the

column occurs only due to bending, the effect of direct stress (i.e., " ) being negligible.

4.2.1.AXIALLY LOADED SHORT COLUMN

If the line of action of load coincides with the axis of the column, the column is called an
axially loaded column. The load passes through the Centroid of the column section. They
are also known as centrally loaded columns or concentrically loaded columns.

Consider a short column subjected to axial compression P.
Compressive stress, o. = Load/Area = P/A

If the compression is increased, the column fails by crushing. The load corresponding to this
crushing is called crushing load. All short columns fail by crushing.

Crushing load, P.=o. * A
Where o= Ultimate crushing stress in N/mm?
A = Area of cross section of the column in mm?
4.2.2. AXIALLY LOADES LONG COLUMN

Consider a long slender column, perfectly straight, subject to axial compression (P) as
shown in fig 4.1.1.For'small values of P, the column remains/straight. When the axial load P
is gradually increased the column starts deflecting laterally(Buckle). The column will be
under stable equilibrium upto a particular stage and lateral deflection disappear on the
removal of load (P). Further increase in load beyond this stage affect the stability of the
column and lead to failure by lateral buckling.

The axial load just sufficient to keep the column in stable equilibrium with slight deflected
shape is called BUCKLING LOAD or CRIPPLING LOAD or CRITICAL LOAD. The lateral
deflection of the column is known as BUCKLING or (lateral bending)

At buckling load the stress in the column material will be well with in the proportional limit.
Depending upon the flexural rigidity (El), the column will buckle about a plane of least
moment of inertia of the section in a direction perpendicular to the axis. Hence stability is
more important than strength in the design of columns.

4.2.3. COMPARISONS BETWEEN AXIALLY LOADED SHORT COLUMN AND LONG COLUMN

S.No. | Axially loaded short column Axially loaded long column
1 Short column has slenderness ratio | Long column has slenderness ratio greater
less than 12 than 12
2 Failure is due to crushing Failure is due to buckling
3 The cross section of short column The cross section of long column is less
is more compared to short column
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4.2.4. FORMULAE FOR FINDING BUCKLING LOAD IN COLUMNS
The following formulae are used to find out buckling load in columns:
(a) Euler’s formula
(b) Rankine Gordon formula
(c) Johnson’s parabolic formula
(d) 1S formula
(e) Straight line formula.
4.2.5. ASSUMPTIONS MADE IN THE EULER’S THERY
Euler’s formula for crippling load is based on the following assumptions:
(e) The section of the column is uniform throughout its length.
(f) The column is initially perfectly straight and axially loaded.
(g) The column material is homogeneous and isotropic.
(h) The column material is perfectly elastic and obeys Hooke’s law.
(i) The length of the column is very large as compared to the lateral dimensions.
(j) The self-weight of the column is neglected.
(k) The direct stress is very small as compared to bending stress.
() The column will fail by buckling alone.
Sign Convention for Bending Moment: A bending moment is taken as positive if it bends
the column with its convexity towards the actual centre line as shown in figure 4.3(i).

A bending moment is taken as negative if,it bends;the column with its concavity towards
the actual centre line, as/shown in Fig. 4.3(ii).

Convexity

center line | _ Convexity

center line =7,

o T

(i) + ve B.M. (i) — ve B.M.

Fig.4.4
4.2.6. COLUMN WITH BOTH ENDS HINGED OR PINNED

Consider a column AB of length ‘I’ hinged at both its ends A and B ana carries an axial
crippling load i.e., load at which the column just buckles, as shown in fig. 4.4.
Consider a section X-X at a distance x from B.
Let the deflection at XX be y.
Bending moment at XX due to p,
M = -Py
[BM is —ve as per the sirn convention]
We know,
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Solution of this differential equation is given by

y = A cosKx+B sin Kx Fig.4.5

where
A and B are constants

or
y=Acos< /£> +Bsin<x /i>
EIl EI

At B,
y =0, x=0Type equation here.
A =04 = r?
At A,
y=0,x=1

0=Bsin|\]£A=7Tr2
El

r
sin <L\/E> =0
EI
L\/i =0, m, 2m, 3m...

Considering the least significant value, we get

o)

h‘ll-g

P—
L El—ﬂ
Or
P_n
El
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Squaring both sides we get,

P_TL'2
El 2
P T2EI

12

4.2.7. LIMITATION OF EULER’S FORMULA

we have discussed in Art. 32.12 that the Euler’s formula for the crippling load,

n2EA
k

Euler’s crippling stress,

Pe

n2E
=L 2

(%)
A little consideration will show that the crippling stress will be high, when the slenderness
ratio is small. We know that the crippling stress for a column cannot be more than the
crushing stress of the column material. It is thus obvious that the Euler’s formula will give
the value of crippling stress of the column (equal to the crushing stress of the column
material) corresponding to the slenderness ratio. Now consider a mild steel column. We

know that the crushing stress for the mild steel is 320 MPa or 320 N/m? and young’s
modulus for the mild steel is 200 GPa or 200x10° N/mm?.

soP
E74

Now equating the crippling stress to the.crushing stress,
2 2 3
320. 1;52 A x(zL(i0>2<1o )
(%) (%)
( ) n ><(200><1o3)
Le

Kk = 78.5say 80

Thus if the slenderness ratio is less than 80 the Euler’s formula for a mild steel column is not
valid.

Sometimes, the column , whose slenderness ratio is more than 80 are known as long
columns and those whose slenderness ratio is less than 80 are known as short column. It is
thus obvious that the Euler’s formula holds good only for long columns.

Note: In the Euler’s formula for crippling load , we have not taken into account the direct
stresses induced in the material due to the load, (which increases gradually from zero to its
crippling load). As a matter of fact, the combined stress, due to direct load and slight
bending reaches its allowable value at a load, lower than that require for bulking; and
therefore this will be the limiting value of the safe load.
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EXAMPLE 4.1. A mild steel tube 4 m long, 30 mm internal diameter and 4 mm thick is
used as a strut. Determine the safe compressive loads when this strut is used with the
following end conditions :

(i) Both ends are hinged
(ii) Both ends are fixed
Take the factor of safety = 3 and E =2 x 10> N/mm.

Solution:

Given:

Actual length, t =4m=4000 mm
Internal diameter, di =30 mm
Thickness, t =4 mm

~ Outer diameter, do = Internal diameter + 2t
=30+2x4=38mm
Moment of inertia,

== (dg-df)
== (38°-30%
64
==- (2085136 — 810000)

= 62593.09 mm*
Let the crippling load be P.
(i) When both ends are hinged
Effective length,

L ==4000 m
Crippling load,
72 EI
P="3
2 5
= szé(;o;fzsg""” =7722.11N
Safe load = _Crippling load 772211

Factor of safety T3
=2574.04 N Ans.

(ii) When both ends are fixed

Effective length,

L 4000
L= -=——=2000 mm
2 2
Crippling load,
2
n? EI
P=—r
LZ
_m?X2X10°X62593.09 _1.235X10"?
- (2000)2 T 4x106

=30875N
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Crippling load 30875
FOS R

Safe load =

=10291.67 N Ans.

EXAMPLE 4.2. Find the maximum length of a solid mild steel rod having diameter 40 mm
used as a column with both ends fixed to carry a load of 20 KN. Allow factor of safety = 3.
Take E=2x105 N/mma2.

Solution:
Given :
Diameter, d=40mm
Safe load =20KN
FOS =3
E =2 X10°N/mm

Moment of inertia,

_T g4 _ T 4
"54d -64(40)

=125663.71 mm*
Crippling load,
P = Safe load x FOS
=20X3=60KN =60000 N
Let the effective length be L'and actuallengthbe [

_m?El

P P

m? X 2 X105 X 125663.71

60000 = .
L

_ m? X2 X105 X 125663.71
- 60000

L? =4134170.35
L=v4134170.2 = 2033.27 mm

For a column with both end fixed

LZ

L= é or ¢ = Actual length = 2L

=2X2033.26 =4066.54 mm
t=4.1m Ans.

EXAMPLE 4.3. A solid round bar 4 m long and 50 mm in diameter was found to extend 4.6
mm under a tensile load of 50 KN. This bar is used as a strut with both ends hinged.
Determine the buckling load for the bar and also the safe load taking factor of safety as 4.
Solution.

Given:

Actual length of bar, ¢t =4 m=4000 mm
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Change in length, dt =4.6mm

Tensile load, P =50KN=50000N
FOS=4
Diameter of bar, d =50mm

Area of cross-section of bar,

A= % X (50)?= 1963.5 mm?

Stress = - = 50000 _ 25.46 N/mm?
A 1963.5

Strain =2 =2° _0.00115
l 4000

Modulus of elasticity,

_Stress _ 25.46

- = =2.2 x 10°N/mm?
Strain 0.00115

Moment of inertia,
| =§d4 = 6—’1(50)4
=306796.16 mm*
Effective length,
L =¢=4000 mm
Let P, be the buckling load

We know,

P n? El _ w? X 2.2X10* X 306796.16
€=z (4000)2
6.66 X 1010

=———=41625N Ans.

16 X 106

_ Buckling load

- FOS

_4.162.5

1040.63 N Ans.

T4

EXAMPLE 4.4. Find the safe load for an elastic column made of a solid steel rod of dia 20
mm and length 1.5 mm. It is fixed at both ends. The factor of safety is 2.5 and modulus of
elasticity for the rod is 210 GPa.

Solution.
Given:
Diameter, d=20mm
Length, t=1.5mm=1500 mm
FOS =2.5
E =210 GPa =210 x 10° Pa = 210 x 10° N/m?
210 X 10°

- - 3 2
=5 =210 X 10°N/mm

Moment of inertia,
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nd* _m(20)*
64 64

| = = 7853.98 mm*

Column is fixed at both the ends

-~ Effective length,

L= =152£=750mm

Let P be the crippling load,

We know by Euler’s formula

Crippling load
2 2 3
p- T T XZOXT0 X70539%. 28939.19 N
L2 (750)2
Safe load _Crippling load _ 28939.19

FOS 2.5
=11575.68 N Ans.

EXAMPLE 4.5. A column of timber saction 150 mm x 200 mm is 6 m long both ena being
fixed. Find the safe load for the column. Use Euler’s formula and allow a factor of safety of

3. Take E=17500 N/ mm2.
Solution:

Given:

Width, b =150 mm

Depth, d=200m

Length, (=6 m=6000mm
FOS =3

E = 17500 N/mm?

Least Moment of inertia,

db® 200 X 1503
12 12

=5.625 X 10’ mm*

Effective length of column when both ends are fixed,

L=L=52_3000 mm
2 2

Let P be the crippling load.
By Euler’s formula
Crippling load,

p= w2 El _ % X 17500 X 5.625 X 107
Tz (3000)2

=1079488 N

Crippling load _ 1079488
FOS -

=360 KN Ans.

=359829.33 N

Safe load =

i
|
1
1
I
1
150 mm
I

Fig.4.6

i

200 mm
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EXAMPLE. 4.6. Compare the ratio of the strength of a solid steel column to that of a
hollow of the same cross-sectional area. The internal diameter of the hollow column is %
of the external diameter. Both the columns have the same length and are pinned at the
ends.

Solution.
Hollow circular column:

Let D and d be the external and internal diameter of hollow column respectively.
d=32D
4
Moment of inertia,

|h=% (D*~d%

-5l -Go) =i (- 55)
_ 1757 X D*

64 X 256

Cross sectional area,

4
:EXD2(1—1)2T[ DZXL
4 16/ 4 16
_ 7nD?
T 64
Crippling load,

n?El w?XE X 175nD*
Ph = —_—
L2 64 X 256 L?

Solid Column:
Let d4 be the diameter of the solid column
Cross-sectional area,

Vs

According to question A= Aj

T, 2 =7mD?

Zd? T

4 64

2 7mD?% 4 7

di? = x= =L p?
64 'm 16
V7

d1= D

4

Moment of inertia,

4
ST dl =T (L) =E 2 pe
=5 dt =5 X(4 D) o1 %160
Crippling load,
p._= n?El _mw?E X w X49D*
7T 12T I12X64X16
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Dividing (i) and (ii), we get

P; _m?X EmX49D* 64 X256L%> 49X 16

X = =4.48
Py L2X 64 X 16 m2X E X 1751D* 175

EXAMPLE 4.7. A steel rod 5m long and of 40 mm diameter is used as a column, with on
end fixed and the other free. Determine the crippling load by Euler’s formula. Take E as
200 GPa
Solution.
Given:

Length(l) =5m =5 x 10° mm;

Diameter of column (d) =40 mm

modulus of elasticity (EO = 200 GPa = 200 x 10° N/mm?.

We know that moment of inertia of the column section,

| == x (d)*= = x (40)* = 40,000 mm*
64 64

Since the column is fixed at one end and free at the other, therefore equivalent length of
the column,

Le=2/=2x(5x10% =10x 10’ mm
Euler’s crippling load,

_ m?El _ m? x(200x 10%)x (400007)

Pe =Ll )
E™ Le? (10x10%)2 5T

=2.48 kN Ans.

EXAMPLE 4.8. A hollow alloy tube 4m long with external and internal diameter of 40mm
and 25mm respectively was found to extend 4.8mm under a tensile load of 60KN. Find the
bulking load for the tube with both ends pinned. Also find the safe load on the cube,
taking a factor of safety as 5

Solution:

Given :
length | =4m,
External diameter of column (D) =40mm ;
Internal diameter of column (d) =25mm;
Deflection (61) =4.8mm;
Tensile load = 60KN
Factor of safety =5

Buckling load for the tube,

We know that area of the tube,
A ==X (D d?) = 7((40)*- (25)°) = 765.8 mm’
And moment of inertia of the tube,

I= =X (D"-d') ==X ((40)"- (25)°) = 106488.95mm’
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We also know that the strain in the alloy tube,

8l 48
T 17 4x103

=0.0012

and modulus of elasticity for the alloy,

Load 60x103

= = = 2
= e xStan - 7e58x00013 " 65291.20 N/mm

since the column is pinned at its both ends, therefore equivalent length of the column,
L, =1=4x10°
Euler’s bukling load,

m?El _ m%x65291.20x106488.95

— o = 4288.83 N

PE=

=4.29KN Ans.
Safe load for the tube

We also know that safe load for the tube

Buckling load 4.29
= BT 227 -0.858 KN  Ans.
Factor of safety 5

EXAMPLE 4.9. Compare the ratio of the strength of a solid steel column to that of a hollow
of the same cross-sectional area. The internal diameter of the hollow column is% of the
external diameter. Both the columns have'the same length and are pinned at both ends.

Solution.
Area of solid steel column Ag = Ay (where Ay = Area of hollow column );
internal diameter of hollow column (d) = 3 D/4 ( where D = External diameter )
length of solid column (Ig) = I = (where Iy = Length of hollow column).

Let D, = Diameter of the solid column,

ki = Radius of gyration for hollow column and

ks = Radius of gyration for solid column.

Since both the columns are pinned at there both ends, therefore equivalent length of the
solid column,

LS=IS=LH=IH=L
We know that Euler’s crippling load for the solid column,

m2El  m2E.Ag k¢?
Py =—= > D,
Ly L

Dividing equation (ii) by (i),

Py _ (ku\2 _ % _D*+d* _ DZ:(%)Z

P_S_(k_s) T T p? T p?
16

_ 25D?

" 16 D,2

Since the cross-sectional areas of the both the columns is equal, therefore
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ud T p2 — g2y =%[p2 — (32)*] == 702
Pl _4(D d)_4[D (4)]_4)(16

7 D?
D12 = —
16

Now substituting the value of D% in equation (iii),

Py 25 D? 25
— = =— Ans.

= 2
Pg 16X1 7

EXAMPLE 4.10.An | section joist 400mm x 200mm x 20mm and 6m long is used as a strut
with both ends fixed. What is Euler’s crippling load for the column? Take young’s modulus
for the joist as 200 GPa.
Solution.
Given :

Outer depth (D) = 400 mm;

Outer width (B) = 200 mm;

Length (/) = 6m = 6x103mm

modulus of elasticity (E) = 200 GPa = 200 x 10°N/mm?. e 200 ] 39
From the geometry of the figure, we find that inner depth, " e —
d=400-(2x20) =360 mm I 1

And inner width,
b =200-20=180 mm 1 .
We know that moment of inertia of the joist section about X-X axis, r---4--- = 400

lo = — [BDY —'ba?] | |
12 _

= —[200 x (400)° — 180 x (360)*Jmm N ST

= 366.8 x 10° mm* b ahg

Similarly,

2x(200)37 360x(20)3 4
Iyy=[2x ( )]+ @O rm
12 12

=2.91x 10° mm*

Since |,y is less than |, therefore the joist will tent to buckle in Y-Y direction. Thus, we shall
take the value of I, = 2.91 x 10° mm®. Moreover, as the column is fixed at its both ends,
therefore equivalent length of the column.

[ (6x10%)
Le = -= —
2 2

=3x10°mm

Euler’s crippling load for the column,

_ m2El_m?x (200X 103) x (2.91x 10°) 638.2 x 10° N

BT L2 (3x103)2
=638.2 KN Ans.
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EXAMPLE 4.11. A T-section 150 mm x 120 mm x 20 mm is used as a strut of 4 m long with
hinged at its both ends. Calculate the crippling load, If Young’s modulus for the material
be 200 GPa.
Solution.
Given:

Size of T-section = 150 mm x 120 mm x 20 mm;

Length () =4 m=4x 10° mm

Young’s modulus (E) = 200 GPa

=200 x 10°> N/mm.

First of all, let us find the centre of the T-section; Let bottom of the web be the axis of
reference.

Web
a; = 100 x 20 = 2000 mm?> o “;f.’ — 20
100 = e . i
y1 =—=50mm ! . _l___é_

2 [ ey e,
Flange .k--__a-: e L
' 120

a, = 150 x 20 = 3000 mm? ifJ
y2=100 + () = 110 mm 20 —+{ | fo— !

We know that distance between the centre of gravity of the T- ¥
section and bottom of the web

_ _aiy1+azy, [ (2000x 50)+(3000 X 110)

=86 mm
a;+a, 200+3000
We also know that moment of inertia of the T-section about X-X axis, Fig.4.8
150 x (20)3

b= (2200 12000 x (36)?) + (

= +3000 x (24)%) mm?*

12
= (4.26 x 10°) + (1.83 x 10°) = 6.09 x 10° mm"*

Similarly,

100x (20)3 . 20x(150)3
lyy=
12 12

=5.692 x 10° mm®*

Since I,y is less than 4, therefore the column will tend to buckle in Y-Y direction. Thus, we
shall take the value of / as I,y = 5.69 x 10° mm®. Moreover, as the column is hinged at its
both ends, therefore length of the column,

le=/=4x10°>mm

Euler’s crippling load,

_ m?El _ m?x(200x10%)x (5.69x10°) _ 3
P = 7" X105y =702 x10° N
=702 kN Ans.
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4.2.8. RANKINE’S FORMULA

Euler’s formula gives correct result only for very long column which fails by buckling. Short
column fails by crushing. In practice we come across struts and columns which are neither
too short nor long. The failure of the column will be due to the combined effect of crushing
and buckling. Rankine devised an empirical formula based on experiments for the collapse
load which is applicable for both short and long columns.

Let P = Crippling load by Rankine’s formula
Pc = Crushing load or compressive load

Pe= Crippling load by Euler’s formula.

Then the Rankine’s formula is given by

1 1 1

PP P
Where Pc-o.xA
= Compressive stress (yield stress)

And

P = n?El
e~ 1.2

A = cross-sectional area of column

We have,
1 1 1
_—— + =
P P, Py
1 _ PeyPc
P P:P,

Dividing numerator and denominator of RHS by P,

P oA n2El

P= = ~P.= o0.Aand P, =
1+Pc 1+0'cAL2 c c e 12

Pe 2 El

_ acA _ GcA . _ 2
2 E XAK?2 2E (E)

_ O0cA

= >

1+a(E)

L .
where P =Slenderness ratio

J¢
m2E

a = Rankine’s constant =
4.2.9. Applicability

. . . . 1 .
(i) In case of short column,P.will be large as L is small.As P.is large, o will be small enough
e

compared to Pi. Hence Pl may be neglected and equation (i) becomes
c e
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1_1
PR
Or
P=P,

Hence, crippling load by Rankine’s formulae, for a short column is approximately equal to
crushing load.

. . . . 1.
(i) In case of long column,P. will be small as L is large. As P.is small, > will be large enough
e

1 1 .
as compared to o Hence - may be neglected and equation (i) becomes
[0} c

_1
Pe

olr

~ P=P,
Hence, crippling load by Rankine’s formula for a long column is approximately equal to
crippling load by Eiler’s formula.
So Rankine’s formula give satisfactory result for both long and short columns.
Table 4.2.Rankine’s constants (@)

S.No | Material o, N/ |a=2
2 m2E
mm
1. Mild steel | 320 1
7500
1
2. Cast iron 550 1600
1
3. Wrought | 250 9000
iron 1
4 Timber 50 750

Table 8.3 Rankine’s Critical stress for Mild Steel columns
For g, =320 N/mm?and o = =

7500
S.No | Slenderness Raane%cHtkaIN/mnﬁ
1. 10 316
2. 20 304
3. 30 286
4, 40 264
5. 50 240
6. 60 216
7. 70 193
8. 80 173
9, 90 153
10. 100 137
11. 110 122
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12. 120 110
13. 130 98
14. 140 89
15. 150 80
16. 160 72
17. 170 66
18. 180 60
19. 190 55
20. 200 50
21. 210 47
22. 220 43
23. 230 40
24. 240 37
25. 250 34

4.3.0. FACTOR OF SAFETY

Factor of safety is defined as the ratio between crippling load and safe load.

Crippling load
Safe load

Factor of safety =

The values of factor of safety in engineering design varies from 3 and 12.
4.3.1.SAFE LOAD

Factor of safety is/defined as the ratio between cripplingsload and safe load.

Crippling load
Safe load = rpp g oa

Factor of safety

EXAMPLE .4.12. An ISMB 250 Rolled steel joist is to be used as a column 4.0 m long with
both ends fixed. Find the safe load on the column allowing a factor of safety of 3. Take o,

1
=320 N/mm2 and a = 200"

Properties of column section are:
A = 4755 mm’
L ~5.1316 x 10" mm*
I, ~3.345 x 10° mm*
Solution:
Given :
Actual length of column,
=4.0m=4000 mm

FOS = 3S

0. =320 N/mm?
1

ad=——
7500

A =4755 mm®
Least moment of inertia,
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I= 3.345 X 10° mm*

Effective length of column,

_ 4000
2

L= =2000 mm

N~

| = AK?

6
K=\/Z= ,3.345){10 = 26.52
A 4755

Rankine’s crippling load is given by

po_OcA _ 320 X 4755
1ra(p) 17 x()

_320 X 4755

T 176

Crippling load _ 864545.45
FOS - 3

=288181.82 N ~ 288.18 KN Ans.

=864545.45 N

Safe load =

EXAMPLE.4.13. A hollow cast iron column of external diameter 250 mm and internal
diameter 200 mm is 8 m long with one end fixed and the otherlend hinged. Find the safe
load with a factor of safety of 5. Take gc = 550 N/mm2 and a0 =——

1600°

Solution.
Given :

Actual length of celumn;

=8 m =8000 mm

Outer diameter, D= 250 mm

Inner diameter, d =200 mm

FOS =5

Compressive stress,
0. =550 N/mm?

Rankine’s constant,
1

o=—.
1600
When one end fixed and other end hinged

Effective length of column,

L= é =% - 5656.85 mm

Least moment of inertia,
| == (D* " d% = = (250*~200%
64 64

A

= —x2.306 x 10°=1.132 x 108 mm*

Cross-sectional area,
A== (D*"d?) == (250%~200?)
64 64

= % x 22500 = 17671.46 mm?

| = AK?
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K= [L= [LI32X10°_ reo05.81 = 80.04

A 17671.46

Rankine’s crippling load is given by

p= ocA _ 550X17671.46
- L\2 ~ 1 (5656.85)\2
1+a(§) 1+1600'( 80.04 )
9719303

= =2359054.1 N
4.12

crippling load _ 2359054.1
FOS - 5

Safe load =

=471810.83 N
=471.81 KN Ans.

EXAMPLE.4.14. Find the Euler’s crippling load for a hollow cylindrical steel column of
38mm external diameter and 2.5mm thick. Take length of the column as 2.3m and hinged
at its both ends. Take E=205 GPa. Also determine crippling load by Rankine’s formula
using constants as 335MPa and ﬁ
Solution.
Given:

External diameter D =38mm

Thickness, =2.5mm

Internal diameter d =33 mm(38-2x2.5)

Length of the column Ly =2.3m

Yield stress o¢ 2335'MP4 =335'N/mm?

., 1
Rankine’s'Constant (a)y= preres

Euler’s Crippling load

_ T 4 _ g4
|-—64(D d*)
_ T 4 4
I——64(38 33%)

= 14.05x10°*rmm*

¢ =1=2.3x10’mm
Euler’s Crippling load,
w2 El
E= Le?
_ % (205x10% ) x (14.05x103w) _

Pe= PETEY = 16880 N =16.88 kN

Rankine’s Crippling load
A= f (D2 — d?)
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A=— (382 —33%)

= 88.75rmm?

k= |1
A
k= [(14.05x1031)
88.757

=12.6mm
OccA
Pr=— = 2
Le
1+a(?)
_ 335x88.75m
Pr = —
14 2.3 x10
7500\ K12.6

=17169 N =17.17 kN

EXAMPLE 4.15. Figure 4.9 shows a built-up column consisting of 150 mm x 100 mm R.S.J.
with 120 mm x12 mm plate riveted to each flange.

e I

= 100 mim -

Fig.4.9

Calculate the safe load, the column can carry, if it is 4 m long having one end fixed and the
other hinged with a factor of safety 3.5. Take the properties of the joist as Area = 2167
mm2, Ixx = 8.391 x 106 mm4, lyy= 0.948 x 106mm4 . Assume the yield stress as 315 MPa
and Rankine’s constant (a) =

ﬁ.

Solution.
Given :

Length of the column (t) =4m=4x10°mm;

Factor of safety =3.5;

Yield stress(a,) =315 MPa = 315 N/mm?;

Area of joist =2167 mm?;

Moment of inertia,

about X-X axis (l,) =8.391 x 10° ;

about Y-Y axis |y =0.948 x 10° mm"*
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1

Rankine’s constant (a) =0

From the geometry of the figure, we find that theare of the column section,

A =2167 + (2 x120 x 12) = 5047 mm?

And moment of inertia of the column section about X-X axis,

120 X (12)3

lo=(8.391 x 10°) + 2[ =

+ 120 X12 X(81)|mm?*

= (8.391 x 10°) + ( 18.93 x 10°) = 27.32 x 10° mm*

Similarly,
3
l,,= (0.948 x 10°) + 2[%} mm®

= (0.948 x 10°) +(3,456 x 10°) = 4.404 x10° mm*

Since lyyis less than Iy, therefore the column will tend to buckle inY-Y direction.Thus we shall
take | equal to I,y = 4.404 x 10° mm* (i.e., least of two). Moreover as the column is fixed at
one end and hinged at the other, therefore equivalent length of the column.

_ L _4x10°
V2 V2
We know that least radius of gyration,

6
K=\/Z= 4404X105 oo )
A \/ 5047

~ Rankine’s crippling load on the column

Le =2.83X10°mm

p.=_OcA __ 315X5047
R — 2~ 2
Le 1 (2.83X103
1+a(k) 1+7500( 29.5 )

=716 x 10° N = 716 kN

And safe load on the column

_ Crippling load _ 716
~ Factor of safety T35

EXAMPLE 4.16.A column is made up of two channels. ISJC 200 and two 250mm x 10 mm
flange plates as show in Fig. 4.10.

=204 kN  Ans.

150 mm
| - 23U mm —— -

P————— e —— e X
PN S R i LR I G i R
o A

200 mm
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Determine by Rankine’s formula the safe load, the column of 6 mm length, with both ends
fixed, can carry with a factor of safety 4. The properties of one channel are Area = 1777
mm2 ,Ixx = 11.612 x 106 mm4 and lyy = 0.842 x 106 mm4 . Distance of centroid from back
to web = 22.7 mm. Take o, = 320 MPa and Rankine’s constant = L

7500
Solution.
Given :
Length of the column (1) =6m=6x103 mm;
Factor of safety =4,
Area of channel =1777 mm?®;

Moment of inertia, about X-X axis (I) =11.612 x 10° mm?* ;
Moment of inertia, about Y-Y axis I,,=0.842 x 10° mm*;
Distant of centroid from

the back of web =22.7mm;

crushing stress (o.) =320 MPa = 320 N/mm’

1

Rankine’s constant (a) = oo

From the geometry of the figure, we find that area of the column section,
A=2[1777 + (250 X 10)] = 8554 mm’

And moment of inertia of the column section about X-X Axis.

250%10%
12

o= (2x11.612 x 10°) +2[ + (250 x 10) x (105)2]mm4

=(23.224 x 10°) +(55.167 x 108)mm*
=78.391X10° mm*

10x2503
12

Similarly, lyy =2 = (0. X + X + 19.
imilarl (0.842 106) 1777 x (50 197)2

=2[(13.021 x 10%) + (9.475 x 10°)] =44.992x 10°mm*

Since Lyyis less than Ixx , therefore the column will tend to buckle in Y-Y direction. Thus we
shall take | equal to lyy=44.992 % 10°mm?* (i.e., least of the two). Moreover as the column is
fixed at its both ends, therefore equivalent length of the column.

l 6 x 103
L= ==

=3x10°
5 mm

We know that least radius of gyration

I 44992 x 106

A° gsss C/2omm

k=

~ Rankine’s crippling load on the column

ocA  _ 320x8554

Le\2 1 3x103)2
1+a(—) ( )
k 7500 725

PR=

=2228.5X 103N =2228.5kN

Crippling load _ 22285

= =557.1 kN Ans.
Factor of safety 4

and safe load on the column =
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COMBINED BENDING AND DIRECT STRESS

4.2. COMBINED BENDING AND DIRECT STRESS

Direct and Indirect stresses — combination of stresses — Eccentric loads on Columns —
Effects of Eccentric loads / Moments on Short columns — Combined direct and bending
stresses — maximum and minimum stresses in sections — problems — Conditions for no
tensions — limit of eccentricity — middle third rule — core or kern for square, rectangular
and circular sections — chimneys subjected to uniform wind pressure — combined stresses
n Chimneys due to self weight and Wind load — chimneys of hollow square and hollow
circular cross sections only - problems

4.2. DIRECT STRESS

If a column is loaded with axial load P, then the column is subjected to direct stress and is
given by

P . . . .
04 =, where A is the cross-sectional area of the columnFigure 4.11 shows a direct stress.

4.2.1. COMBINED DIRECT AND BENDING STRESS

Figure 4.12 shows a column subjected to a load Pwhose line of action is at a distance ‘e’
from the axis of the column. Apply two equal and opposite forces along the axis of the
column as shown jin Fig./4.12(ii). Now the three forces.acting on the column

can be converted'into two'systems. '

(i) An axial force P which will produce direct stress in the column, s
as shown in Fig. 4.12 (iii) i
(ii) Two equal and opposite forces forming a couple. The arm of the couple is WJMW

‘e ’. The moment of the couple will be Pxe and will produce bending stress 1 e
(op) in the column [Fig. 4.12 (iv)]. |
So a column Subjected to eccentric loading, is subjected to both direct and m%_p_.ﬁ

bending stress.
Figd.11

(9 (i) (iii) ()

Figd.12
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Considered a column of width ‘b’ and depth ‘d’ subjected to an eccentric load P as shown in
Fig.4.13.

Cross-sectional area, A=b xd.

. P P
Direct stress, od—A =54

Due to eccentricity of load, the column is subjected to B.M = P x e. this B.M. will produce
bending stress in the column.

Bending stress, 0b=%
Where
Z = section modulus =$
_db*/12  db’
b/2 6
.. . . : T j |_— Area'A'
(As the eccentricitppé the load is from Y-Y axis, | = H) L ¥ o' 4
Ab l i .
Pxe e ¢
ob= = Y
db’ el TTTTT]
I "“-L__J___h\l‘-l\ Tmax

The resultan® stress_at_any point is.the sum .of direct and
bending stress at that point.

Total stress = O04+0p= Ei% Figd.13
The + veand-vesign depends upon the position of the load. The stress will be maximum at

the face BC as the load is near to BC. The stress will be minimum at the face AD as the load
is away from AD.

_P,M_P, bPe P
Oma= X ¥ 7 7 p AT b

P M P 6Pe P _ 6
and o=yt =g SAl ]

OmaxiS always compressive. If ominis +ve then it is compressive and if the value of 6 iy is —ve,
then it is tensile.

4.2.2. ECENTRIC LOAD

A load whose line of action passes through the center of gravity of the section, then the
load is said to be axial load. A load whose line of action does not passes through the center
of gravity of the section, then the load is called eccentric load.

Figure 4.14 (i) shows a section of column loaded with axial load P and Fig. 4.14 (ii) shows a
section of column loaded with eccentric load. The distance between the line of action of
load and axis of the column (passing through C.G.) is the eccentricity 'e' of the load. The
eccentricity of a load may be about one axis or about both the axes.
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Position 1 Posiion
-+ ofload | L~ of load
e PR ;'_’._.':._._ _._i_._._,_.!_'_ AE:
| |
_-_—_-_—_-_—_JI
(1) Axial load (# Ecantri; load

4.2.3. LIMIT OF ECCENTRICITY

If a column is eccentrically loaded, then both direct and bending stress is simultaneously
developed. If the direct stress (od) is more than bending stress (ob), the stress in the section
all through will be compressive. If the bending stress is more than direct stress, then there
will be tensile stress. As the concrete columns are weak in tension, load should be applied in
such a way that there is no tensile stress in the column. To avoid tensile stress, the bending
stress (ob) should be less than or equal to direct stress (od).

Hence,

. o - yA
This shows that for tension in the column, eccentricity should be less than or equal to "

4.2.4. LIMIT OF ECCENTRICITY FOR A RECTANGULAR SECTION

Figure 4.15 shows a rectangular section of width 'b' and depth 'd'. Let the section be
subjected to a load at a distance 'e', along x - x axis, from y - y axis. The bending will take
place along y-yaxis.

db*
IXX= - d = b 2
1y andy =b/
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Section modulus, Z =

Area of cross section, A = bd.

. y/
For no tension, e

db?
6bd

€<

e 52 Figd.15

This means that for no tension, load can be applied on both sides of y-y at a distance b/6 on
X-X axis as shown in Fig. 4.15.

. ., .b Db b, . .
Therefore, for no tension, the load must be placed Wlth-lng +to=3le, middle third of the

width of section.

Similarly, for no tension,/the load/can be placed on y-y-axis, an bath sides of x-x axis, with in
middle third of depth i.e., d/3.

If we join the four points on x-x and y-y axis, we get a rhombus. This rhombus is known as
core or kernel as shown in Fig. 4.15. Thus, core or Kernel of the section is the area in which
any eccentric load, if placed will not produce any tension in the section.

(ii) Limit of eccentricity for a circular section
Figure 4.16 shows a circular section of diameter'd".
Let the section be subjected to a load at a distance ‘e’ from centroid on x-x-axis

nd*

hoe = by = =3

Y =d/2

. lyy
Section modulus,Z =
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nd* 2 wd3

X— =
64 d 32

. nd?
Area of cross-section, A = e

For no tension

e 5% Figd.16

nd® 4

e X
232 " gaz

e
This means that for no tension, the load can be eccentric, on either sides of centroid d/8
distance.
Diameter of core = 2X§ =d/4

Thus, for no tension in a circular section, the load must be placed within middle fourth of
the section.

4.2.5. EFFECT OF ECCENTRIC.LOADING

Consider a column subjected to an eccentric’load“w’ at‘an eceentriCity ‘e’ as shown that in
fig.4.17 (a). the effect of eccentric load is equal to the effect of an axial load and a moment
bending stress.

W W W W M=We W

il i
|
|
|
|

e
L2
=

J' R |

|
|
ka) (b) (c) (d) i(e)

Figd.17

The know the effect of eccentric load, W

(i) Introduce two equal and opposite loads, each of value W, along the axis of the 4.17
column.
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(ii) Now, treat the whole system of loading as consisting of a statically equivalent algebraic
system of loads as shown in fig.(c).
That is
a) Adirect compressive force W along the longitudinal axis which produce direct
compressive stress plus.
b) A couple due to eccentric load W and the other upward load W along the axis
which produce the couple causes a BM, M = We which produce bending stresses.
(iii)  Finally, the effect of eccentric load is reduced to consist of statically
Equivalent centrally applied load or producing direct stress (0,) and a couple M=We
producing bending stress (0,).

4.2.6. EFFECT OF ECCENTRIC LOADING ON SHORT COLUMN

Consider a short column of uniform cross section b x d subjected to an eccentric load ‘P’
acting on XX axis at an eccentricity ‘e’ from the Centroid of the section shown in fig 4.18

The axial load produces uniform direct compressive stress throughout the cross section. The
moment due to couple produces bending stress. Figd.18

Direct compressive stress, o4 = Load/Area
=P/A Wy
Bending moment, [
M = load * eccentricity ‘
I

I

M= p*e |
Bending stress, |
w1 .
ob=+ M/I*y ":
Where, | = moment of inertia about yy axis = db3/12 b -
Y = distance of the fibre YY axis, Ymax= b/2 S I I
3 2 \/L.. L
~0p =+ 12*Pe/db” * b/2 = + 6Pe/db ‘_’y

Combined direct and bending stress

The total stress or resultant stress due to eccentric loading at any section is the algebraic
sum of direct stress and bending stress.

0 = 04+ Op = P/A £ M*y/I

Maximum and minimum stresses

The maximum and minimum stresses are in the extreme fibres
Omax = Og + Op = P/A £ M*y/I
Omin =04- O, = P/A — M*y/I

for a rectangular column section,
A =b*dandm=P*e
Omax =Oq*+ Op = P/A +6M/db” = P/A + 6Pe/db’
=P/A + 6 Pe/A*b = P/A [1+ 6e/Db]
Omax = P/A[1 + 6e/b]
Omin =04- Op= P/A—6 Pe/A x b =P/A[1 — 6e/b]
Omin = P/A[1 - 6e/b]

Maximum and minimum stress for a rectangular section,

THEORY OF STRUCTURES Page 201

www.binils.com
Anna University, Polytechnic & Schools



Omax = P/A[1 + 6e/b]

Omin = P/A[1 + 6e/b]
When oin value is positive, there is compressive stress.
When oin value is negative, there is tensile stress.
When o, Value is zero, there is no tension.

4.2.7. MIDDLE THIRD RULE

To avoid tension, the limiting value of eccentricity on either side of the geometric axis is b/6
and d/6 for rectangular sections and a/6 for square sections. This means if the load lies in
the middle third portion, the section will be completely in compression.

The middle third rule states that, “when the point of application of the load lies within the
middle third of the section, then the stress will be of compressive in nature throughout the
section and there will be no tension anywhere in the section.

4.2.8. CHIMNEYS SUBJECTED TO UNIFORM WIND PRESSURE

Tall structures like chimneys, water tanks, towers are subjected to horizontal wind pressure
on one side. It causes bending moment at the base. The bending moment reduces bending
stress. Also the chimney has self-weighted and it produces direct or axial compressive stress
at the base. The resultant stress at any section at the base of the chimney is the algebraic
sum of bending stress due to wind pressure and axial stress due to self-weight.

Chimney may be square or circular in cross section. Sometimes the chimney may be tapered
from large section at the bottom to a small section; at the top.

The direct stress or axial stress, o4= W/A
The bending stress, o,= M/I*y (or) M/Z
Where,
W is the weight of chimney
Ais the area of cross section
M is the bending moment due to horizontal wind pressure
| is the moment of inertia about YY axis
Y is the extreme fibre distance
Z is the section modulus, Z = I/y

The horizontal wind force on a unit area of a vertical plane is known as wind pressure. If the
area exposed to wind pressure is curved, the magnitude of the force will be less than, when
the area is a flat surface. The reduction factor ‘k’ is called as coefficient of wind resistance.
Its value varies from 0.5 to 0.75. For cylindrical shafts k = 2/3, unless stated otherwise for
square and rectangular chimney k = 1.

The total horizontal wind pressure, P = k*Po*A,
Where,
P = Total horizontal wind pressure
K = Coefficient of wind pressure
Po = Horizontal intensity of wind pressure
A, = Projected area on which wind acts.
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Maximum and minimum stress in square chimney

Consider a hollow square chimney of outer dimension B * B and inner dimensions b * b

subjected to a horizontal wind pressure of intensity Po KN/m?.

Let h be the height of the chimney.

Y be the unit weight of masonry.

Cross sectional area of chimney, = Agyt - Aint
A=(B*B)—(b*b)

Self-weight of chimney,
W = unit weight of masonry * Area * Height
W =yAh
-~ Direct stress, o4 = W/A

Moment of inertia, 1= 1/12 [B*b?]

Extreme fibre density, y = B/2

A, =Bh

Total wind pressure, P = Coefficient of wind resistance

Projected area,

*Intensity * wind pressure * projected area
P = k*Po*A,
This pressure acts at h/2 from the base.
. Bending moment, M = P*h/2
op = M/I*y

i.e.,

-~ Bending stress,
Total stress o="04'% G}
Maximum stress,” “Omax = Oq+ Oy
Minimum stress, Omin= 04 - Op
If the total stress is positive, it is compressive.
If the total stress is negative, it is tensile.

Maximum and minimum stress in circular chimney

o

I

i

LWL

AN

4

——

SR
N

-m
T

Figd19

Consider a hollow circular chimney of outer diameter ‘D’ and inner

diameter‘d’ subjected to a horizontal wind pressure of intensity Pg KN/m?.

Let h be the height of the chimney.
y be the unit weight of masonry.
Cross sectional area of chimney,
A = Aexi- Aint
=m/4 [D* - d’]
Self-weight of chimney,
W = Unit weight of masonry * area* Height
W = yAh
~Direct stress,
04 = W/A
Moment of inertia,
| = /64 [D*- d*]

N —t— g
=
s _I"/’" //"'
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Extreme fibre distance,
y=D/2
Projected Area,
A, =Dh
Total wind pressure, P= Coefficient of wind resistance * intensity of
wind pressure * Projected area
i.e., P=k*Po*A, Figd.20
This pressure acts at h/2 distance from the base.
K = 2/3 for circular sections.
Bending moment, M =P * h/2
. Bending stress, o, = M/l * y
Total stress, 0 = 04 * O
Maximum stress, Omax = Og + Op
Maximum stress, Omin = Og- Op

SOLVED EXAMPLES

EXAMPLE.4.17. A rectangular column of width 200 mm and of thickness 150 mm carries a
point load of 240 KN at an eccentricity of 10 mm in a plane bisecting the thickness. Find
the maximum and minimum stresses in the section.

Solution: | g [240 KN
Given: _Li

Point load, P/=240 KN = 240000 N :
Eccentricity, e=10 mm \
Width, b =200 mm :
Thickness, d =150 mm :
Area A = bd =200 x 150 = 30000 mm” Rt Ak
. .. . <— 150 mm —=
Let Omaxandominuse the maximum and minimum stress in the A : oy
. 18,
section 0 .. B -
Using the relation '
B . c-1-
P 6e\ 240000 6 x10
Omax=7 (1 + 7) ~ 30000 (1 + 200 ) ia
=8(1+0.3) =10.4 N/mm? (comp) EE[H—IJ 10.4 N/mm*
P 6e\ 240000 6 x10 .
Omin=" (1 - ?) ~ 730000 (1 "~ 200 ) Figa.21
= 8(1-0.3)
= 5.6 N/mm? (comp) Ans
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EXAMPLE 4.18. A short column of hollow cylindrical section 250mm outside diameter and
150 mm inside diameter carries a vertical load of 400 KN along one of the planes 100 mm
away from the axis of the column. Find the extreme stress intensities and state their
nature.

Solution: Given Figd.22
Inner diameter, di =150 mm
Outer diameter, do =250 mm - é
Point load, P =400 KN = 400000 N s
Eccentricity, e =100 mm i gl )

Distance of extreme fiber,

250

Y =——=125mm

2
Area, A= %( do’ —d?) = % (250% - 150?)
=31415.93 mm?

Moment of inertia, =i( 250% - 150%)

=1.67 x 10° mm*
Moment about the axis of the column,

=4x 10" N-mm
8
Section modules, Z =17 k670 1336000 mm?®
Y 125

Using relation

P M 400000 4 X107
Omax =3 T 7= 31a1503 T 1330000 1273 +29:34
=42.67 N/mm? (compressive) Ans.

P M 400000 4 X107
Omax =3 =7~ 3141593 1336000 12732994
=17.21 N/mm? (Tensile) Ans.

EXAMPLE 4.19. A short column of external diameter 400 mm and internal diameter 200
mm carries an eccentric load of 80 KN. Find the greatest eccentricity which the load can
have without producing tension on the cross-section.

Solution:
Given
Inner diameter, d; =200 mm
Outer diameter, do =400 mm
Point load, W =80 KN =8 x 1000= 8000 N
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Let the greatest eccentricity be x mm which the load can have without producing
tension.

Area, A= g( do’—di?) = % ( 400° —2007%) Fig 4.23

=94247.78 mm®
Moment of inertia, x

——

80 KN

=

_£ 2_ .2 =£ 2_ 2
I= Z (do” - d) = = (4007 - 200°)

= %XZA x 10°=1.18 x 10° mm*

do 400 | |

y =—= —=200 mm \ :
2 2 | ;
| SSRGS N S
Section Modulus,
I 1.18x10° .
Z == =5.9 x 10° mm? 2] P
y 200 /
. f /'_'—‘\_I \
Moment about the axis of the column, S, S 5 B TUA 9
b LI
M =P x e = 80000x N-mm T /
For no tension \\___,
P M
o =——==0
max A Z
P M
INWL
80000 80000x
or, =
94247.78 5.9x 106
or 80000 x 5.9 x10%
’ 94247.78 x 80000
5.9x 10°
=—=62.6 MM Ans.
94247.78

EXAMPLE 4.20. In a compression testing specimen 13 mm is diameter the line of thrust is
parallel to the axis of the specimen but it displace from it. Determine the distance of the
line of thrust from the axis, when the maximum stress is 15 % greater than the mean
stress on a section normal to the axis.
Solution:
Given:

Diameter of specimen,

d =13 mm

Omax =15 %greater than mean stress

2 2
Area, A - “(13) =132.79 mm?

4
1't_d4 _ m(13)*

Moment of inertia, | = = 1401.98 mm*
Section modulus, z =§ = 14215'98= 215.69 mm?>
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Let the eccentricity be x mm.

Moment, M =Px
P P
Mean stress = —= N/mm?
A 132.73
Maximum stress = Mean stress + 15% of mean stress
115
=——x Mean str
Omax 100 ean stress
115 P 2
o =—X N/mm-~..... i
max 100° 132.73 / (i)
Using relation
P M
Omax =X + E
115 P Px .
= [from(i)]
100 x 132.73 132.73  215.69
115 1 x
or, =
100 132.73  215.69
115 1 x
or, _— =
100  132.73 215.69
X
or, 0.0087 —0.0075 L
215.69
0.0012 x 215.69 =X
X =0.2588 = 0.26 mm

EXAMPLE 4.21. A hollow rectangular masonry pier is 1.2 mm x 0.80 m, overall, the wall
thickness being 0.15m. a Vertical load of 100 KN is transmitted in the vertical plane
bisecting 1.2m side at an eccentricity of 0.1 m from the geometric

axis of the section. Calculate the maximum and minimum stress 6.4 A0 KN
intensities are the section. i

Solution: | '

Given: [ i E !
Pointload, P =100 KN = 100000 N 16 N .
Eccentricity, e =0.1m =100 mm _—.r'—ﬁ_—_—T—_
bo= 1200 mm ] s
Outer diameter,dg= 800 mm [

b= 1200 -150-150 = 900 mm

Inner diameter,d; = 800-150-150 = 500 mm
Cross —sectional Area,

A =1200x 800 —900x500

= 960000 - 450000
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Figd.24
= 510000 mm?

Moment of inert
| = ——x 1200 x 800 - —x 900 x 5003
12 12

=5.12x10'°-9.37x 10’
=4.18 x 10° mm*
Moment,
M =P x e =100000 x 100
=10 x 10° N-mm
Section modulus,

I 4.18x101°
Z = - —
y 400

=10.45 x 10’ mm?

Using relation

o _P n M _ 100000 10x 106
M TA " zZ 7 510000  10.45 x107
2
0.196 +0.096 = 0.292 N/mm Ans.
o _P 5 My 100000 10 X10°
m& ALz T/510000 |/10.45%107

=0.196 - 0.096 = 0.1 N/mm? Ans.

EXAMPLE 4.21. A short hollow pier 1.5m square outside and 1 m square inside, supports
a vertical point load of 7 KN located on a diagonal 0.8 m from the vertical axis of the pier.
Neglecting the self weight of the pier. Calculate the normal stresses at the four outside
corners on a horizontal section of the pier

Solution: Given:
Outer area, Ap=1.5x1.5
=2.25m’
Inner area, A =1x1=1 m?
Point load, P =7kN
Eccentricity, e =0.8m
Area of cross section of pier = A - A;
=2.25-1=1.25m"
Moment of inertia about the diagonal

I = 2%(2.12x1.063-1.41xo.7o3)

= %><(2.52-0.48) =0.34m".

y =2‘2ﬁ= 1.06 m
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Section modulus,

I o
7=2=23 - 032m?
y 106
Moment,
M=pxe

= 7x0.8 =5.6 KN-m

Direct stress,

_P__7 _ 2
0=~ = 5.6 KN/m

Bending stress,

op = 9= 38 _ 17,5 KN/m?
Z 0.32

At the corners 2 and 4 there will be no bending stress
.Stress at cornet 1=04+0,=5.6+17.5
= 23.1KN/m? (Compressive)
Stress at corner 2 = g4 =5.6 KN/m2 (Comp.)
Stress at corner 3 = 04 -0,5.6 —17.5
=-11.9 KN/m’
=11.9 KN/m? (Tensile)
Stress at corner 4 = 04 =5.6 KN/mZ(Comp.)

EXAMPLE 4.22. A masonrypies of 3 m x 4 m supports a vertical load of 80KN as
Shown in Figure 9.12.

(a) Find the stress developed at each corner of the pier.

(b) What additional load should be placed at the center of the pier,so that there
Is no tension anywhere in the pier section?

(c) What are the stresses at the corners with
The additional load in the center?
Solution. Given:

Width, b=4m
Depth, d=3m
Point load, p =80 KN

Eccentricity from x-x axis
e,=05m
Eccentricity from y-y axis is
ey=1m

Area,
A=4x3=12m’

Moment of inert about x-x,
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Ixx= —x4x3% = 9 m4
12

Moment of inert about y-y,
ly=—x3x4>= 16 m*

Moment about xx axis,

My = 80 x0.5 = 40 KN-m
Moment about yyaxis,

M, =80 x1 = 80 KN-m

Direct stress,

04 =222 _ 6.67 KN/m?
A12

Bending stress due to ey,

40x1.5
Opn = Y - 208 6 67 KN/m?
Ixx 9
Bending stress due to ey,
80x2
Oy = 2% = 22~ 10 KN/m?

Iyy 16
(a)
(/)Resultant stress at point A,
Oa =04-Opx+Opym[... POint Ais in 2" quadrant]
0a= 6.67-6.67+10 = 10 KN/m?
(i) Resultant stress at point B,
0= OgtOpt0op,= 6.67 +6.67+10
= 23.34 KN/m?*(Compressive)
(iii)Resultant stress at point C,
Oc= Og+Opx-Op,= 6.67 +6.67-10
= 3.34 KN/m?(Compressive)
(iv)Resultant stress at point D,
Op= O4-Opx-Opy= 6.67 - 6.67 - 10
= -10 KN/m?(Compressive)
(b) Let P, be the additional load that should be placed in the pier section for no tension.
For no tension,
Compressive stress = Tensile stress

P1= 10 xA= 10 x10 = 120 KN
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(c)stress due to additional load of 120 KN at the center

=120 _ 10 KN/m?
12

(i) Stress at point A=10+ 10 = 20 KN/m?2
(ii)Stress at point B =23.34 + 10 = 33.34 KN/m?
(iii)Stress at point C = 3.34 + 10 = 13.34 KN/m*
(iv)Stress at point D =-10+ 10 =0.
EXAMPLE 4.23. A short column of rectangular cross-section 80mm x60mm carries a load

of 40 KN at a point 20 mm from the longer side and 35 mm from the shorter side.
Determine the maximum compressive and Tensile stresses in the section.

Solution. Given:
Width, b=80m
Depth, d=60m
Point load, p =40 KN =40000 N
ey =10 mm
ey =5mm
Area,
A= bxd = 80x60
= 4800 m’
Moment of inert about x-x,

_1,3
L= 12bd
=éx80 x (60)° = 1.44 x10° mm*
Moment of inert about y-y,

ly= —ba’=—x60x(80)’= 2.56 x10°m4

y=6—;=30mm

80
x=7=40mm

Moment about x-x axis,

M,= Pxe, =40000x10 = 400000 N-mm
Moment about y-y axis,

M, =Pxe,= 40000x5 = 200000 N-mm

_P 40000

= = 8.33 N/mm?
A 4800

Direct stress, 04

MxXy _ 400000x30
Ixx  1.44x106

Bending stress due to e,, Opy =

= 8.33 N/mm?
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Bending stress due to c,,

o = Myxx _ 200000x40
b~ TIyy T 2.56x106

=3.125 N/mm’

Maximum stress = 0g+0Opx+0p,,= 8.33 + 8.33 +3.125
=19.78 N/mm’

Maximum stress = 04-Opyx-Opy= 8.33 - 8.33- 3.125
=-3.125 N/mm”
= 3.125 N/mm?(Tensile)

EXAMPLE 4.24. A short column of diameter D and internal diameter d' carries ecentric
load’ W find the greatest ecentricity which the load can have without producing tension
on the cross-section of the column.

Solution: Given :
Outer diameter = D
Inner diameter = d
Point load,p = w
Let the greatest eccentricity for no tension bee.

Cross-sectional area, A=§( D?—d?)

Moment of inertia, | = 6—71( D' £ d?)
Moment, M= WXe
y=2
2
Direct stress, 0d=£— v

A 7 (Da-d4)
My  WxexD/2

Bending stress, oOp=—=5—"—
& » P I (Da-da)

For no tension
Direct stress = Bending stress

w _ WxexD/2
T -7
Z(DZ—dZ) 6—4D4—d4>(2

4w 32WexD

2(D2-d2) =11'( D2+ d2 )(D2-D2)

- . aw _ 8eD
Dividing both sides by mwe getl= oids
Or, D2+d2 —e

8D
...Greatest eccentricity,
_ D2+d2 Ans.
8D
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EXAMPLE 4.25. A column section 300 mm external diameter and 150 mm internal
diameter support an axial load of 2600 KN and an eccentric load of P KN at an eccentricity
of 400 mm. if the compressive and tensile stresses are not to exceed 149 N/mm?and 60
N/mm? respectively, find the magnitude of the load P .

Solution: Given :

Outer diameter, d,=300 mm

Inner diameter, d; =150mm

Axial load W =2600 kn = 2600 X1000 N

Eccentric load =400 mm
Cross-sectional area,

A= g( do?—di%) = %(3002— 150?)

=53014.38 mm?
Moment of inertia,

I==( do? - di?) = =(300*- 150%)
64 64

A

= — X7.59 x10° = 37.26 x10'mm*.

Y=?=150mm

Sectional modulus, Z= % = %
= 2484666.67 mm"
Moment,
M= PX e = PX400
=400P KN-mm
=400000 PN-mm

Direct stress,

_(2600+ P)x1000

= 0.019 (2600+P)
53014.38

O4d

Bending stress,

400000P )
=—-—-—-=0.1
Ob=3481666.67 0.16 PN/mm

Omax= Od +Op

140 =0.019 (2600 + P) + 0.16 P
140 =49.4 + 0.019P + 0.16P
140-49.4=0.179 P

90.6 =0.179P
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90.6 .
p= 0179 506.15 KN (I)

Omin= Ob -Od
60=0.16P- 0.019 ( 2600 + p)
=0.16P - 49.4 -0.019P
60+49.4=0.141P

90.6 =0.179P
p=775.89KN
The magnitude of P will be minimum of (i) and (ii)
i.e., P=506.14 KN Ans.

EXAMPLE 4.26. A square chimney 24 m high has an opening of 1 m X 1 m and wall
thickness 0.25 m, calculate tha maximum stress in the masonry if the horizontal wind
pressure is 2000 N/m?* and masonry weight 20000 N/m?>

Solution: Given :
Area of opening=1m X1m
Wall thickness =0.25 m
Wind pressure, P =2000 N/m
Unit weight of masonry,
y = 20000 N/m?>
Height of chimney, h=24m
Cross-sectional area of chimney,
A=(1.5x%X15/)-(1x 1)
=1.25m’
Weight of chimney, W = yAh

Direct stress,

_W_yAh

o
4" A

=yh= 20000 X24
= 480000 N/m?
Wind load,
P=px 15X 24
= 2000 X1.5%24
=72000 N

Moment about the base of the chimney =PX g

=72000 X12 = 864000 N-m

Moment of inertia, /= % (1.5°-1%) = 1—12 x4.06 = 0.338 m* .
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Y=12i’= 0.75 m

. M 864000x%0.75
Bending stress, ob=—y= e ——
I 0.338

=1917159.8 N/m?
Omax= Opb+ 04= 480000 + 1917159.8
=2397159.8 N/m? (Compressive) Ans.

EXAMPLE 4.27. A masonry chimney of a hollow circular section has external and internal
diameters of 2.5 m and 2 m respectively. It is subjected to uniform horizontal wind
pressure of 1800 N/m? .determine the maximum height of chimney for developing no
tension at the base. Density of masonry is 20000 N/m?.

Solution : Given :
do=2.5m
d=2.0m
p =1800 N/m?
y = 20000 N/m?>
Let the height of chimney be hm .
Weight of chimney = yAh
Direct stress,

04 =Y2" = yh = 20000 h N/m?
Wind load,
P =px 2.5xh

=1800 X2.5X h=4500 h N
Moment due to P about the base

M=P><e=4500h><§
=2250 h®> N-m

Moment of inertia, = 6”—4 x(2.5°-2%)=1.132 m*

2.5

Y=7 =1.25m
. I 1132
Section modulus, Z=- = ——=0.906
y 1.25
. M 2250h2
Bending stress, op =— =
z 0.906

=2483.44 h> N/m?
For no tension o4 =0}
20000 h = 2483.4 h?

20000
2483.4

=h=8.05m Ans.
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5. DAMS AND RETAINING WALL

5.1 MASONRY DAMS

Gravity Dams — Derivation of Expression for maximum and minimum stresses at Base — Stress
distribution diagrams — Problems — Factors affecting Stability of masonry dams — Factor of
safety- Problems on Stability of Dams— Minimum base width and maximum height of dam for
no tension at base — Elementary profile of a dam — Minimum base width of elementary profile
for no tension.

5.1. MASONRY DAMS

5.1.1. Introduction

Dam is a Massive structure constructed by concrete or masonry to retain water. A massive
wall constructed across the river to store the water is also called Dam or Masonry dam.

1.Rectangular section dam.

2.Trapezoidal section with water face vertical.

3.Trapezoidal section with water face inclined.

The water stored on the u/s side of the dam exerts the horizontal water pressure.

The following forces are acting on the gravity dam.

1.Selfweight of dam (W).
2.Horizontal water pressure (P).

3.Uplift pressure at the base.

4.Due to horizontal water thrust and self weight of dam, the resultant thrust (R) will hits
the base.

5.1.2. Derivation for maximum and minimum stresses
Consider a trapezoidal section masonry dam as shown in fig.

Let
a =Top width
b =bottom width Do c
H = Height of dam Free Board !
h = Depth of water
Y = Specific weight of masonry 6 b
® = Specific weight of water h = ‘“f
Consider 1m length of dam v=
h=hi3 wY D
Heel Toe

i. Weight of dam/m (W) g N

W =yxvolume=yxAx / L"JOIZZ ¢

W =y(a+b)xHx1=y(aJ2rb)H R —

W - 'Y (U" h) H

2 kKN — (1)
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This will act at a distance of X from vertical face
a’+ab+b?
3(a+b)

X =

ii. Horizontal water pressure/m (P)
The intensity of pressure at the top is zero, and at bottom is ‘oh’.
Draw pressure distribution diagram as shown in fig.

Total water pressure = area of pressure diagram ]
2
P= l X (oh) xh = oh
2 2
P
oh’ I
- h=h/3
P 2 kKN - (2) L |
| B — |

Pressure Diagram
This will act at the c.g. of pressure diagram.

ie h:% from base

Total vertical force at the base (V) = (W)

Resultant thrust (R)

The combined effect of water pressure andsself weight of dam produces the resultant thrust
IRI

R= {VZ+P? =\/W?+P?
This resultant thrust cuts the base at a
distance ‘Z’ from vertical face (A).

Position of resultant thrust (Z)
Taking moment about A

(vxz) = W; +Ph
WxZ=WX +Ph
P - (V=w)

Eccentricity (e)
The eccentricity of resultant thrust is ‘e’ y
e=(Z- bf2)

Stresses at the base of dam

Consider in one meter length of wall.
AreaA=bx1l=bx1 —

Z = Section modulus about yy axis : b :

_ db? _ 1x b? _ b?

6 6 6

L=

L 2=1,
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M = Moment due to eccentric load
M=Wxe

w . .
oc= N direct compressive stress

_M_Wxe

= Bending stress
Z

Gb

Total stress at the base (o)

G =0.t Gy
c= Wi% =W iii
A~ Z bx1 b?/6
b
S
Omax = —| 1+— | at toe
b
G min %(l——J at heel

5.1.3. Stress diagram at the base

The stress distribution diagram is drawn according to the maximum and minimum stresses
as given below.

Gmin

Omin omin=0 )

O'max Omax

(i)e<b/6 (i) e = b/6 (i) e > b/6 ome

5.1.4. Factors affecting the stability of masonry dams
The following are the causes of failures of masonry dam.
1. Tension at the base
2. Sliding along the base
3. Overturning about the toe
4. Crushing of masonry at the base.
5. Uplift pressure
5.1.4.1. Conditions for stability of masonry dams
1. To avoid tension at the base
2. To avoid sliding of the wall along the base
3. To avoid overturning of dam
4. To avoid crushing of masonry at the base.
5. To avoid uplift pressure at the base.
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1. Conditions to avoid tension at the base

To avoid tension at any where, in the dam, the minimum stress (omin) should be greater
than or equal to zero.

W(1-88) 50 ; 1-8150.15¢
b b b b
6e
— <1 b

e< —
b 6

ieTo avoid tension the resultant force must cut the base within the middle third of the base.

Note: We know,
The position of resultant thrust from heel is ‘Z’.

ie To avoid tension

b
= 2
eSB(or)ZSAb

2. Conditions to avoid sliding

To prevent sliding of the wall along the base, the total frictional force (u x W) should be
greater than total horizontal water pressure (P).

S(uxW)>P
Factorsafety | Totalfrictional force
against sliding| Totalhorizontal water pressure

F.S. (Sliding) & );W >1.00

Where
K = Coefficient of friction
For design purpose the F.S. (Sliding) is considered as 1.5.

3. Conditions to prevent overturning
The horizontal water pressure (P) may tend to overturn about the toe.
L h=14
To prevent overturning of dam, the stabilizing moment should be greater than the
overturning.

Factorof safety _ Balancing moment 510
against overturning| Overturningmoment
F.S. (overturning) = % >1.0

For design purpose, the factor of safety against overturning is taken as 1.5 to 2.0.
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4. Conditions to prevent crushing at the base

W
The maximum compressive at the base Gpax = F(H %)

To avoid crushing at the base

Maximum compressive stress should be less than the safe bearing capacity of soil (or)
allowable compressive stress.

ie Omax < SBC of soil (or) allowable compressive stress

5. Condition to avoid uplift pressure
To avoid uplift pressure at the base of the dam, the weight of dam should be greater than
uplift pressure W > ®.b.h

Where
W = Total weight of dam at base
(oxh)(bx1) = w.b.h = Total uplift pressure.

5.1.5. Minimum base width for no tension
The bottom width (b) of a dam is calculated using the conditions of stability of dam.

(i) To avoid tension at the base
The eccentricity should be with in the middle third.

b; ngb
3

IA

ie e

b

v

6
6e,

(ii) To avoid sliding of dam

Factorof safety 3 Frictional force S 15
(sliding) Horizontalwaterpressure
F.s. (sliding) = 22X W 515

(iii) To avoid overturning of dam
Balancing moment

Overturning moment
W (b-x)

Factor of safety overturning = >1.5

F.S. (overturning) = >1.5(or) 2

(iv) To avoid crushing at the base
The allowable compressive stress should be greater than maximum compressive stress.
SBC of soil or Gajowable = Omax

The minimum base width required is the maximum value of base width for the above
conditions.
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5.1.6. Maximum height of dam for no tension
The height dam is calculated for the stability conditions.

The maximum height of the dam is the minimum height value for the stability conditions.

5.1.7. Elementary profile of a dam
To avoid tension, the resultant force (R)
must cut the base with in the middle third.

X G
e= E on either side of geometrical axis. P
6 I I
This must be satisfied for both dam full hT’S wy
and dam empty. e
[N
The right angled triangle cross section of
a dam will be satisfied the middle third rule when —=
the dam is full or empty, and is called elementary —
b/3 " b/3 " b3

profile of a dam.

5.1.8. Minimum base width of elementary profile for no tension

Consider a triangular section masonry dam of bottom width ‘b’ and height ‘H’. Retains
water on its vertical face to full depth (h = H) as shown in fig.
Let

@

v = Specific weight of masonry
o = Specific weight of water

S= (Zj = Relative density.
@

Consider 1m length of wall.

h=h/3
W =1vx (@xbejxlz—}/t;_|

P=o h%=mTH2, Hz%

Taking moment about A
WxZ=W x+ Ph

o L HJ
W

H2
S 2+0> Ax% :(b msz

—+
[yb Hj 3 3yb
2
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To avoid tension

=2
Z= 3b
2 (b oH —lb o H?
3 3 3yb 3 y b
2
2b = b+®H
6yDb
2 2 2
(2b—b)-mH _H :H
b (7/) Sxb
~ b
®
2
2= 1 (ns5=2)
S @
H H
b= H2 =— ’ b)= —
A \/§ (®) VS
The minimum base width for a right angled triangular section
o o H
5

Note: Practically the trapezoidal cross section is provided.

Problem 5.1

A trapezoidal section masonry dam 8m height, 1.5m wide at top and 3.5m wide at base,
retains water on its vertical face to height of 7.5m if the relative density of masonry is 2.4.
determine the stress intensities at base and draw stress distribution diagram.

Given

Top width a =15m

Bottom width b =3.5m

Height of dam H =8m

Depth of water h =7.5m

Specific gravity S =2.4; h=hy
Assume unit wt. of water ® = 9.81 kN/m?> L

Unit weight of masonry, y

Required

Solution

0=V—V(1J_r@
b

ERERYERERER= 2.41 x 9.81 = 23.544 kN/m?

J

=SXxm
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Consider 1 m length of dam
i. Weight of dam 1m (W)

b
W = v (a+b) H
2
W = 23.544 (1'54_3'5}8

W = 470.88 kN

This will act at X from vertical face

- _a’+ab+b?
3(a+b)
- _15?+1.5x3.5+3.5?
3(1.5+3.5)
X =1316m

ii. Total horizontal water pressure / m (P)

oh? 9.81x7.5
-

P = =275.90kN

This will act at h from base.

h = h/S:%:Z.Sm

iii. Position of resultant pressure (2)

Z =X + P h
W
Z =1.316 + ( 275.9 XZ.SJ =2.78m
88
Z=2.780m

iv. Eccentricity (e)

e =(Z-bf2)= [2.78 — 3—25j =1.038m
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v. Stresses at the base of dam (o)

o S (1 + @j
b b

Omax =~ ﬂ (1 + @j at toe (B)
b b

Gmax

_ 470.88 (1 N 6X1-03] = 372.09 kN/m? (Comp.)

Cmin = (1 _ —ej at heel (A)

Omin =

Stress diagram

Problem 5.2 J1
A masonry dam of trapezoidal section 2m wide at top 6m wide at base and 12m height
retains water on its vertical face, unit weight of masonry and water are 23 kN/m? and
9.81 kN/m?® respectively. Determine the stresses at the base of dam.

a. When the dam is full a
b. When the dam is empty D\ C —
Given
Top width a =2m
Bottom width b =6m h X G H
) ?
Heath H =12m y-
h=h/3 wY
Unit weight of water w= 9.81 kN/m> oo R Toe

Unit weight of masonry y = 23 kN/m?

Required
o= V(14585
b b
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Solution
i. Weight of dam 1m (W)
(a+b)

w =y H = 23(%)x12=1104 kN

This will act at X distance from vertical face

2 2 2 2
_a +ab+b _ 2°+(2x6)+6 = 2.16m
3(a+b) 3(2+6)
a) When the dam is full (h=H =15 m)
2 2
p _ wh =9.81x12 - 706.32 kN
2
This will act at h from base.
h= D oDy
3 3
iii. Position of resultant thrust (2)
z cx e+ =216+09832 04~ 47 m
W 1104
iv. Eccentricity
e =(Z-bf2)= (4.72-6/2)=1.72m
v. Stress at the (o)
c S (1 + @j
b b

Omax = % (1 + @j = 1104 (1 + GXéJZJ at toe (B)

b 6

Omax = 500.48 kN/m? (Comp.)

Omin = w 1- @ at heel (A) = 1104 1- 6x1.72
b b 6 6
Omin  =— 132.48 kN/m? (Tension)
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Omin

Stress diagram ALY B

*)

O'max

b. When the dam is empty (h =0)

Horizontal water thrust/m (P)

2 2

p _ wh _ 9.81x0 0

2 2
z “x+oh [P = 0]

w
z = X =216m
Eccentricity(e)

e =Z-bf2 =(2.16-6f2) =-0.84m

Stress at the base (o)

5 = ﬂ(li@]
b b

Cmax =y (“ @j _ 1104 (,  6x(-084)
b b 6 5

Omax = 29.44 kN/m? (Comp.)

oo W[y _fe)_1104( 6x(-084)
b\" b) 6 6

Omin = 338.56 kN/m? (Comp.)

Stress diagram

Omin
)

Omax

Problem 5.3

A trapezoidal dam 1.5m wide at top 3.5m wide at base and 8m height retains water on its
vertical face with free board of 0.5m. Specific gravity of masonry is 2.4. Check the stability
of dam coefficient of friction 0.6 Max. allowable stress = 300 kN/mz.

Given

Top width a =1.5m

Bottom with b =3.5m
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Height H =8m

Free Board =0.5m

Free board =0.5m

Depth of water h =8-0.5= 7.5m

ro- - h

L = s =24

® ?P__

y =2.4x9.81 =23.54 kN/m? h=hi3

3 L & Heel
® =9.81 kN/m A
e pj2-wlegel
Solution 7
.
i. Weight of dam 1m (W) -
a+b
wo o=y . ) 12354 (1.5+3.5jx8
w =470.88 kN

This will act at X from vertical face

- _a’+ab+b*  15°+(1.5x3.5)+3.5°
3(a+h) 3(1.5+3.5)
X =1316m

ii. Total horizontal pressure /1m(p)

wh® 9.81x7.5°
2

P = =275.90kN/m

This will act at h from base.

iii. Position of resultant pressure (2)

Z Sx+ D h=1316+229 4o
w 470.88
Z =2.78m
iv. Eccentricity (e)
e =(Z-bf2)=(2.78-3.5/2) =1.03m
v. Stress at the base (o)
c =W (1 + @j
b b
Omoe = |14 be) _470.58(,  6x103) 505 09 kN/m? (Comp.)
b b 3.5 3.5
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Omin = w 1- be = 470.88 1—6)(1'03 = —103.017 (Tension) kN/m?
b b 35 3.5

Stress diagram

Omin

A Q] B

)
Check for stability of dam

i. To avoid tension N at base
Omin >0
e<bf6 (or) z<2[3 b
e=1.03m

b/6 = 39 =058

e > bf6 Hence tension will develop at base.
ii. To avoid sliding

HW 0.6x470.38
F.S =—=1.0, =——=1.02 >1.00
P 275.9
F.S = 1.02 > 1.0 Hence safe against sliding

iii. To avoid failure from over turning

(WA
Ph
1.48 > 1.0 (Safe)

Hence safe against overturning.
iv. To avoid from crushing

1 470/88(315%-1.80)
275.9x25

F.S =1.48 >1.00

1.0,

SBC > Omax
SBC =300 kN/m?
Gmax = 372.06 kN/m’
SBC < Omax
Hence not safe.
Problem 5.4

A trapezoidal dam 4m high has top width of 1m, with vertical face exposed of water it
retain water up to its top level. Find the min. base width required. To avoid tension and
sliding. Take unit wt. masonry as 22 kN/m? and that of water as 9.81 kN/m>. Take p = 0.6
and F.S.=1.5

Given

Top width a =1m

Height of dam H =4m
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Depth of water h=H =4m

y =22 kN/m’
) =9.8 kN/m*
Condition : No tension at base h
P
Required
b=? h=h/3
o ¢y Heel
Solution
i. Weight of dam / m (W)
a+b
w =y ( ) H=22 ﬂ x4
2 2
W=44(1+b) | (1)
- _a’+ab+b® 1’ +1xb+b?
3(a+hb) 3 (@+b)
b bl 2)
3(1+h)

ii. Total horizontal water thrust / 1m (p)

wh®  9.81x42
2

h=h/3 = (4/3)

P = =78.48kN

iii. Position of resultant pressure

- P - |b*+b+1 7848 4
z =X+— h-= + | ———X—
W 3(1+b) 44(1+b) 3
_ b2+b+1+ 7.13
31+b) 3(@+b)
b?+b+8.13
=— (3)
3(1+b)

Bottom width required

a) To avoid tension at base

e <bf6 (or) Zz< 2/3b
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2, b?+b+8.13

3 3(1+b)
2b(1+b)=b’*+b+8.13
2b+2b*=b’+b +8.13

b>+b-8.13=0 .. (4)

- ~1+1? —4x1x8.13
2x1

b1 =2.40m

b) To avoid sliding

LXW

> 1.50

F.S. (sliding)

0.6 x 44 (L+b)
78.48

1.5

0.6 x 44 (1+b) = (1.5 x 78.48)
117.72

117.72
26.40

446-1

26.40 (1+b)

1+b = 4.46

o
1l

3.46m

b, =3.46 m

Minimum bottom width required (b) = Maximum of b; and b,
Result:

b=3.46m

Problem 5.5

A masonry dam 1m wide at top 3m wide at base retains water on its vertical face, the
dam is full. Determine the max height of dam required.

i. For no tension at base
ii. To avoid sliding, F.S. against sliding =1.5
iii. To avoid overturning,F.S. over turning = 2.0
Take p=0.60 Unit weight of masonry = 23 kN/m® and Unit weight of water= 9.81 kN/m?
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Given a

a =1m N
b =3m
n =0.6
(Q) =9.81 kN/m3 h X G
y =23 kN/m’ P

F.S (Sliding) = 1.5 f Ve

F.S. (Overturning) = 2 h=hi3 w¥ R
g Heel Toe
Required A B

H=h="?
Solution

i. Weight of dam 1m (w)

w =y—H=23(1L23)H=46H

x<1

_a’+ab+b®  1P+(1+3)+37 116m
3(a+h) 3(1+3) '

ii. Total horizontal thrust / 1m (P)

o _oh?* _ 981xH? |
2 2

P =4.905 H* kN

h  =H/3

iii. Position of resultant thrust (2)

z =;+£H
w

4.905H 2
+ N

Z =1.16 x H/3 = (1.16 +0.0355H%) ... (3)

Maximum height
i. To avoid tension
Z < 2f3b=2/3x3
Z =(2/3)x3m =2m
(1.08 + 0.0355H%) =2
0.0355 H? =2-116 = 0.84

’ 0.84
= = 4.86m H; =4.86m
0.0355
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ii. To avoid sliding
F.S. (sliding) =1.5

pW _ 0.6x46.4

FS. = =
P 4,905H?

iii. To avoid overturning

F.S (overturning) = 2.0
_W(b-x) _

F.S — 20m
Ph
_ (46xH)(3-1.08) 50
4905H2x(H/3)
_ 46(3-1.08)3 _
4.905x H?
H2 :M:27; H=\/E=5.19m
4905x2
H; =5.19m

Maximum height required = min of H;, H, & Hs

Result:
H=3.75m
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Additional Problems

Problem:1

A concrete dam trapezoidal section of 15m height retains water on its vertical face to its full
height. The top width of the dam is 3m and the bottom is 8m, weight of concrete is
24KN/m?. Find i) the resultant thrust on the base per meter length of dam .ii) the point
where the resultant cuts the base. iii) intensities of maximum and minimum stresses at the
base.

Given data:

Height of the dam , H=15m

Height of water, h=15m —3m—

Top width, a=3m v

Bottom width, b=8m i

Weight of concrete, Vm= 24KN/m?>

ific weight of = 9.81KN/m’

Specific weight of water, y, = 9.81KN/m h=15m A=15m
Solution:
Maximum stress, 6 max = %’ (1+ %e ) | N
consider 1m length of dam 8m

Width of dam w = (£ x ymx H

=(%)x24x15=1980kN

w= 1980 KN acting at x'from the verticalface.

Eccentricity :

b
e=1z--
2
— xh
Z=x+(E22)
wx3
= a?+ab+b?
" 3(atb)
_ 324(3x 8)+82
T 3(3+8)
X =2.94m

Water pressure,

_ Ym xh?
p= 2
_ 24 x15?
T2
P =2700 kN
Z=2.94+(2700X15)
1980 x 3
Z=9.76m.
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Eccentricity :

e=5.76m.

Maximum stress ,

w 6e
o'max=F(1"’ ?)

6(5.76
+ 8(576)
8

)

0 max=1316.7 kN/mz(compression)
Minimum stress,
6
o'minizg( 1'5)

_ 1980
8

6(5.76)
8

(1 )

O mini = 821.7kN/m? (compression)
Resultant thrust

R=VPZ + w?

=V/27002% + 19802

R=3348.2 kN

Problem:2

A trapezoidal masonry dam 2m wide at top and 6m wide at base has to retain water on
its vertical face up to top. Calculate maximum height of dam to ensure that no tension is
developed at the base. take weight of masonry as 20 kN/m?® and weight of water as 9.81
kN/m?.

Given data: T 2m
I~

Top width, a=2m
Bottom width, b=6m
Height of dam, H= height of water, h
Specific weight of masonry, ym= 20 KN/m3
Weight of water, yw =9.81 KN/m3

To find:
Maximum height of the dam

H=h =H

Solution: Hm

Consider 1m length of wall

Lateral water pressure,
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_YmXH2
T2

P

2
p- 9'812" B 4.905 H?

Weight of dam,

w=(E2) xymx H

=(2J2r—6)x20xH

w = 80H

—_ a’+ab+b?
3(ath)

_ 22+(2x 6)+67
T 3(2+6)

X=2.17m

— Pxh
Z=X+(—)

4.905 H?xH

=217+ (22—

Z=2.17 +0.02H? ---meemmmeeeeeev (1)

For no tension condition

z=(2)+(3)
z2=(%)

CON

z=(X

Z=4m (2)

Equating (1) & (2)
7 =2.17+0.02 H?
4 =2.17+0.02 H?

H2= (222)=91.5m
0.02
H=9.56 m.
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Problem :3

A masonry dam 8m high retains water to a depth 7m. The top width of the dam is 1.5m and
bottom width 5m. The relative density of masonry is 2.4. Calculate the normal stress

intensities at base of dam. Sketch the distribution.

Given data:
Height of dam, H=8m
Height of water, h=7m

Top widthof dam, a=1.5m
Bottom width of dam, b=5m

Relative density of masonry,p = 2.4
To find:

Normal intensities at the base ( S

Solution:

. 7
i.e., Opax aNd Opin T

sp.wt of masonry

Relative density of masonry =

h[3
sp.wt of water
ie.,p=im
Yw A

Sm

B

Take Ym=9.81 kN/m?

148.13&/&W 26.@1(1\1/15
2.4=Ym |

9.81 STRESS DISTRIBUTION

ym=23.54 kN/m3
Consider 1m length of wall
Lateral water pressure ,

x h?
P=Ym
2

_ 9.81x 72
T2

P

P =240.35 kN
Weight of dam,

w = ( %) XymxH

=(%)x23.54x8

DIAGRAM

W =612.04 kN

— _ a’+ab+b?
" 3(a+b)

_ 1.524(1.5x5)+5%

T 3(1.5+5)

X =1.78m.

— Pxh
=X+ (E)
721,78+ (240.35x7)

612.04x3
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7=2.69 m.

Eccentricity (e),
b
e=z()
7
=2.69- (E)
=-0.81m. (hogging)
Maximum stress
6
O max = % ( 1+ Fe )

_612.04

. )
O max =148.13 kN/m?

6(0.81
+ 8081
7

(1

Minimum stress

6
O mini =% (1' Te)

612.04 6(0.81
=820 (1208

Omin =26.72 KN/m?>.

problem :4

A masonry dam 1m wide at the top, 4m wide at the base and 6m height with the water
side is vertical. The water stored up to-the top of wall. Find-the-maximum and minimum
normal intensities at the base, it's the specific weight'of masonry is 22kN/m?. Calculate

also the normal stress intensities when reservoir empty.

Given data:

Top width, a=1lm

Bottom width, b=4m

Height of dam, H=6m

Height of water, h=6m

Specific weight of masonry ,ym=22 KN/m?

Specific weight of water ,y,=9.81 KN/m>
To find :

1.Maximum stress ,0 max

2.Minimum stress ,0 mini

3.Normal stress intensity when reservoir empty

—lmr—

h=fm tm

A
gl

A B _
8.25kN/m”
156.?%;’“1{ W SkN

Solution: EMPTY
Consider 1m length of wall v A B [
2434 i
Weight of dam, — 140.60 KN/m
_ ( a+b ) H 4‘
W= > X¥YmX FULL
= (2 . 2 ) x22x 6
=330 KN
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a’+ab+b?
3(a+b)
_ 124+(1x4)+47
T 3(144)
X=1.4m

X =

Lateral water pressure,

Ym X h?
P= —
_ 9.8 x67
T2
=176.58 kN
Pxh

wXx3 )
176.58x 6

330x3

Z=X+(
Z=1.40 + (

=247 m
Eccentricity(e),

)

b
e=z-(7)
4
=247-(3)
e=0.47m.

(i) When the reservoir is full:
Maximum stress

w 6e
O max =g(1+ F)

_330 (1+ 6(0.47) )
4 4
O max =140.66 kN/m?

Minimum stress

Omini=%(1'%)
G mini =24.34 kN/m’
(ii)) When the reservoir is empty
Lateral water pressure,
P=0
Weight of dam,
w= 330 kN
X=1.40m
z=X=1.40m
e=z(3)
e=140-(3)
=-0.6m
Maximum stress

w 6e
o'maxzb_(l"' ?)
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=ﬂ(1+ 6(0.6))
4 4

0 max =156.75 KN/m?(compression)

Minimum stress
w 6e
o'mini—g( 1'?)
_ 330 6(0.6) )
T4 4
O mini = 8.25 KN/mz(compression)

(1-

answer:
i)When the reservoir is full:
O max= 140.66 KN/m? (compressive)
O mini= 24.34 KN/m? (compressive)
ii)When the reservoir is empty
O max= 156.75 kN/mZ(compressive) @A
G mini= 8.25 kN/m? (compressive) @B
Problem:5
A trapezoidal masonry dam 1.5m width at top and 5m wide at the base .it is 8.0m height
with a vertical water face and retains water face and retains water to a depth of 7.5m. find

the maximum and minimum stress intensities at the base. take weight masonry as 22
kN/m? and weight of water as 9.81 kN /m?>.

Given data
Top width, a=15m
Bottom width, b =5m
Height of dam, 'H'= 8m
Height of dam, h=7.5m
Specific weight of masonry, ym= 22kN/m?>
Specific weight of water,  yw=9.81 kN/m?

To Find 1.5m

Max. and min. stresses at the base.

1]

Solution
Consider 1m length of wall.
Lateral water pressure, h=75m

p= Yuwh®
2

_ 9.81x7.5?2

=275.91 kN -

Weight of dam,

W =—(a:b) XVYmXH

=%+5)x22x8=572.00 kN

a’+ab+b?
3(a+Db)

x|
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_ 1.52+(1.5x5)+52

TG 1.782 m

Z=f+(ﬂxﬁ)

275 91 7.5

=1.782 + 22 x5
Z=2.99m

b
e=z--

2
=2.99-§=o.49m

Max stress,

\ 6e
O-max=g(1+?)

572
= (

) = 181.67 kN/m?(comp)

1 4 5049
5

Min stress,

0-minzf(]-'_)

=572 Z(1- 6(0 9 ) = 47.13 kN/m? (comp)
Result:
(i) Max. stress, oyax = 181.67 kN/m?*(comp)
(i)  Min .stress, o, = 47.13 kN/m? (comp)
Problem: 6

A masonry dam 20 m high retains water to a depth of 18m.The top width of the dam is 5m
and bottom width is 15m. The relative density of masonry is 2.4.Calculate the normal stress
intensities at the base of the dam. Sketch the stress distribution.

Given data
Height of dam, H=20m
Height of water, h=18m
Top width of dam, a=5m
Bottom width of dam, b=15m
Relative density of masonry, p =2.4
To Find:
Normal stress intensities at the base. y 7
i.e., Oax and Opmin
Solution
_ _ specific weight of masonry h:l%,m
Relative density of masonry = — - T
specific weight of water h
. A h
i.e.,p=— 3
Yw 3 11
Take yyw =9.81 kN/m A
. A ] M=
l.e., 2.4 = m
~A=2.4x9.81=23.54 kN/m*
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Consider 1m length wall
Lateral water pressure,
p = Ywh®

2

2
= 281X18" _ 1589.22kN

Weight of dam,
W= (a+b)

(5+15)

XVmXH
x 23.54 x 20 = 4708 kN

a?+ab+b?
3(a+b)
_ 524(5x15)+152
3(5+15)
_ ,P _nh
Z=xX+(=x=)
w3
1589.22
4708

a=3im

X =

=542 m

=5.42 +( X % )=7.45m

Eccentricity,

b
e=z--
2

=7.45 175 = -0.05m

Max stress,
Omax=p (1+5)
=T (1+ 02 05) ) = 320.144 kN/m? at (A)
Min stress,
Omin = 3 15
= 8 (1 -4022) =307.59 kN/m?(B)
Result:

i)Max. stress, opax = 320.144 kN/mZ(comp) at (A)
ii)Min .stress, 6, = 307.59 kN/m?(comp) at (B)

Problem: 7

A trapezoidal masonry dam is 3m wide at top. It is 52m high with a vertical water face
retains water to a depth of 51m. Calculate the necessary minimum base width of the dam
to ensure no tension is developed at the base. Weight of masonry is 24 kN/m? and weight
of water is 10kN/m?>.

Given data
Top width, a=3m
Height of dam, H=52m
Height of water h=51m
Specific weight of masonry, y,, = 24 kN/m?
Specific weight of water, vy, = 10 kN/m?
To Find:
Minimum base width, b =?
Solution
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Consider 1m length of wall
Lateral water pressure,

h2
p=yW_
2

2
= 10X157 _ 1925 kN

Weight of dam,
_ (at+b)
W= 2
= &2 424 x52 = 624 (3+b)
— _ a’+ab+b?
~ 3(ath)
_ 324(3b)+b%2 _  9+(3b)+b?

3(3+b) 3(3+b)
_ P _h
I=X+—X—
w3

_ 9+(3b)+b? 1125 51

XVYmXH

+ X
3(3+b) 624(3+b) 3
_ 9+(3b)+b? 91.94
T 3(3+b) 3(3+b)
_ b2+(3b)+91.94
- 3(3+b)
For no tension condition,

(1)

equating (1) and (2)
2b _ b?+(3b)+91.94
3 3(3+b)
i.e., 2b (3+b) =b?%+3b +91.94
i.e., 6b +2b%-b?-3b-91.94=0
i.e., b?+3b-91.94=0
a=1,b=3,c=-9194

b = —34./3%2-4x1x(—91.94)
- 2x1

=8.205 m (or) -11.205m
Adopt b= 8.205m
Result:
Min.base width of dam to ensure no tension = 8.205 m
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Problem:8

Calculate the minimum bottom width required for a dam of height 7m. Maximum depth of
water to be impounded is 6m.The top width of section is 1.25 m. The specific weight of
masonry is 22.5 kN/m?>. Take Co- efficient of friction between masonry and earth is 0.6.

Given data

Height of dam, H=7m
Height of water, h = 6m
Top width, a=1.25m
Specific weight of masonry,  ym =22.5 kN/m
Take Specific weight of water, yy, =9.81 kN/m
Co- efficient of friction between

Masonry and earth, u=0.6

To find:

Minimum base width of the dam
i)To avoid tension at the base
ii)To avoid sliding

Solution
Consider 1m length of wall
Lateral water pressure,

_ Ywh?
-1
= 281X6" _ 176.58kN

Weight of dam,

(i)

W = (a+b)
2

_ (1.25+b)

X¥YmX H
X 22.5 x 7=78.75 (1.25+b) kN

a?+ab+b?

3(a+b)
_ 1.252+(1.25b)+b% _
T 3(1.25+hb) -
h
3

kel

1.563+(1.25b)+b?
3(1.25+b)

_ P
Z=X+—=X
w

176.58

_ 1.563+(1.25b)+62 ( Xg)
78.75(1.25b) © 3

3(1.25+b)

_ 1.563+(1.25b)+b? 13.454

3(1.25+b) 3(1.25+b)
_ b%+(1.25b)+15.017

3(1.25+b) (1)
To avoid tension at the base

We know,

- (2)

3
equating (1) and (2)

2b _ b2+(1.25b)+15.017
3 3(1.25+b)

3

3

a=3m
i
P q—X——l
| B W
3
¥ 1
A B
a=12%m
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i.e., 2b (1.25+b) = b?+ 1.25b + 15.017
i.e., 2.5b+2b%-b?-1.25b-15.017=0
i.e., b2 +1.25b-15.017=0

a=1, b=1.25, ¢=-15.017

_ —1.25+,/1.252-4x1x(—15.017)

b= 2x1
=3.3m (or) -4.55m

Adopt b=33m

(i) To avoid sliding

force resisting sliding

Force of safety against sliding =

force causing sliding |" 15m "l
LW A B
i.e., > 1.5 307.59
0.6x 78.75 (1.25+b) _ 15 320144 EN'm®
176.58 KN/m?
i.e.,, 1.25+ b =5.606
~ b =4.356m Stress distribution diagram

Result: Minimum base width = max. of all values of b= 4.356 m

Problem: 10

A trapezoidal masonry dam 3m wide at the top and 7m wide at base has to retain water an
its vertical face up to the top. Calculate maximum height of the dam to ensure no tension at
the base. Take weight of masonry as 20 kN/m?® and weight as 9.81 kN/m?>.

Given data

Top width, a=3m

Bottom width, b= 7m

Height of dam H= height of water h

Specific weight of masonry, ym = 20 kN/m?

Specific weight of water,  yw = 9.81 kN/m>
To Find:

Height of dam, H to avoid tension at the base
Solution
Consider 1m length of wall

Lateral water pressure,

2
=225 = 4,905 H?
Weight of dam,
W=(a+b)xvmxH

2
=@xzoxH= 100 H

_ a’+ab+b?
" 3(ath)

il
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_324@3x7)+7%  _

2.633m
3(3+7)
_x+ Pyl
/=X + W X 3
_ 4.905H2 H
=2.633 + —oi X3
Z=2.633 +0.0164 H? - (1)
For no tension condition
_b
"6
b
Z =—-+e
2
_b b _2b
2 2X76 3
z= = 4.667m ---—----—-—---——- (2)

equating (1) and (2)

2.633 +0.0164 H? = 4.667
~H=11.136m

Result
Height of dam required to avoid tension, H=11.136 m

REVIEW QUESTIONS

Two mark questions

O N EWNPRE

What are the failure of Dams?

Define middle third rule.

State the shape of the elementary profile of a masonry dam.

State the conditions to avoid tension at the base.

Draw the elementary profile/of/a Masonry dam!

What is minimum base width of elementary profile of masonry dam?
Which are the main factors affecting the stability of a masonry dam?
When tension is developed at the base of a dam?

On what bass the base width of a masonry dam is determined?

Three mark questions

1.

4.
5.
6.

What are the causes of failure of masonry dams? State the conditions to check the
stability of dams.

What is an elementary profile of a dam? Sketch the same.

A trapezoidal masonry dam having 12m height retains of water to a height of 10m on its
vertical face. Find the horizontal water pressure if r =9.81KN/m®.

State and explain middle third rule for no tension at the base of dam.

Derive the condition for no tension at the base of masonry dam.

State the procedure to find the minimum base width of a masonry dam for no tension.

Ten mark questions

1. A trapezoidal masonry dam m wide at top, 5m wide at the base is 8m high. It retains
water to a depth of 7.5m on its vertical face. Calculate the maximum and minimum
stress intensities at the base. Take weight of masonry as 22 kN/m? and that of water
as 9.81 kN/m>.

2. explain in details how the various checks are being done for ensuring the safety and
stability of a gravity type masonry dam.
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3. A trapezoidal masonry dam 1m wide at top,4m wide at its bottom and 6m high is
retaining water on its vertical face to a height equal to the top of the dam. Determine
the maximum and minimum intensities of stress at the base. Take weight of masonry
as kN/m?and that of water as 9.81 kN/m?>.

4. A trapezoidal dam 3m wide at top, 8m wide at the base is 12 m high. Its retains water
up to a depth of 11m on the upstream vertical face. Take the weight of masonry as24
kN/m?> and that of water as 9.81 kN/m3.Check the stability of the dam for overturning
and sliding if p= and F.0.5=1.5.

5. A trapezoidal masonry dam having 3m top width,8m bottom width and 12m high
retains water to a height of 11m on its vertical face. Check the stability of the dam, if
the masonry weighs 20 kN/m? and co-efficient of friction between the bottom of
masonry and soil is 0.6.Take allowable compressive stress as 400 kN/m? and weight of
water as 9.81 kN/m>.

6. A trapezoidal masonry dam 2.5m wide at toip 5.5m wide at the base is 15m high. It
retains water to a depth if 12m on its vertical face. Check the stability of the dam for
overturning and sliding if u=0.60 and F.0.S =1.5.Take weight of masonry as 25 kN/m?
ands that of water as 9.81 kN/m>.

7. A masonry dam of 11m height retains water on its vertical face for a height of 9m.The
width of the dam is 2m in the top 2m height and varies gradually to 5m at bottom,
with slope on one side only. Find the factor of safety of the dam against overturning if
unit weights of masonry and water are 20 kN/m? and 10 N/m3respectively.

8. A gravity dam of trapezoidal cnoss section of;20m height stores water on its vertical
face for 18m height, with 2m free board. The top. and bottom widths of dam are 4m
and 10m respectively. Draw the pressure distribution diagram at base. specific weight
of masonry ans water are 20 kN/m>and 10 kN/m? respectively

9. A trapezoidal masonry dam 3m wide at top,12m wide at the base is 18m high. it
retains water up to a depth of 17m on its vertical face. Check the stability of the dam
for tension, sliding and crushing if u=0.6 and F.0.S=1.5.Take the weight of masonry as
20 kN/m? and that of water as 10 kN/m?>.allowable compressive stress=400 kN/m?.

10. A trapezoidal masonry dam 3m wide at top,7m wide at the base has retains water on
its vertical face. Calculate the maximum height of the dam to ensure no tension at the
base. take weight of masonry as 22 kN/m3 and that of water as 9.81 kN/m3.

11. A masonry retaining wall 1m wide at top, 3m wide at base retains earth on its its
vertical face level with top. Determine the max height of dam required.

i) For no tension at base.

ii) To avoid sliding, F.S. against sliding=1.5

iii) To avoid over turning, F.S. against overturning=2.0

Take Unit weight of masonry = 23kN/m? and Unit weight of earth= 18 kN/m>.

Angle of repose of s0il=30°,u=0.60.

12. A trapezoidal masonry dam 2m wide at top and 6m wide at base has to retain water
on its vertical face up to the top. Calculate the maximum height of the dam to ensure
that no tension is developed at the base. Take weight of masonry as 20kN/m?® and
weight of water as 9.81kN/m?>
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5. DAMS AND RETAINING WALL

5.2 EARTH PRESSURE AND RETAINING WALLS

Definition — Angle of repose /Angle of Internal friction of soil— State of equilibrium of soil — Active
and Passive earth pressures — Rankine’s theory of earth pressure — Assumptions — Lateral earth
pressure with level back fill / level surcharge (Angular Surcharge not required)— Earth pressure
due to Submerged soils — (Soil retained on vertical back of wall only) — Maximum and minimum
stresses at base of Trapezoidal Gravity walls — Stress distribution diagrams — Problems — Stability
of earth retaining walls — Problems to check the stability of walls- Minimum base width for no
tension.

5.2. EARTH PRESSURE AND RETAINING WALL

5.2.1. Definition
A masonry structure constructed to retain the earth is called retaining wall. The
retained earth exerts pressure on the retaining wall is called earth pressure.

Types of retaining wall
a. Based on the cross section
1. Rectangular section
2. Trapezoidal section with vertical (or) inclined back.
b. Based on the forms of back fill
1. Retaining wall, earth level with top.
2. Retaining wall, retaining earth surcharged soil.

3., Retaining wall, retaining earth with surcharg ad.
4. ' Retaining/wall retaining submerged soil: J

1) Retaining earth
level with top

3) Retaining wall with
surcharged load

THEORY OF STRUCTURES

2) Retaining earth with
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5.2.2. Angle of repose of soil (¢)

Earth cannot be retained at a steeper slope, as it tends to slide and slip. The maximum natural
slope at which the soil particles will rest permanently due to internal friction, without further
slipping (or) sliding is called angle of repose of soil. It is denoted by ¢.

5.2.3. State of equilibrium of soil
1. Elastic equilibrium of soil
A soil mass in the natural state of rest is said to be in the state of elastic equilibrium.

Let
pv = Vertical intensity of pressure. py
py= oh
py= Intensity of lateral earth pressure.  py _[::l‘ Py
pu= Ka x Py, = K3 x oh

Where Pv

K,= Coefficient of earth pressure

o = Specific weight of soil

h = Depth of soil mass from free surface of earth.
2. Plastic equilibrium of soil
When the soil mass is allowed to retained or contract laterally, until failure takes place, the
soil is said to be in plastic equilibrium of soil. The failure will be shear failure and exert the
pressure may active earth pressure or passive earth pressure.

5.2.4.1 Active earth pressure
The pressure exerted by)the retained~earth~on ptherretaining wall jistealled active earth

pressure. Due to this pressure retaining wall tend to mave way.from earth. Moment away

p. = Intensity of active earth pressure + from back fill
Pa = KaxowxH -
Where

1-sing) _. 2, ¢
Ka - = -
£1+sin ¢J tan(4s 4)

= coefficient of active earth pressure —~— Retaining

wall

5.2.4.1 Passive earth pressure.

The pressure exerted by the retaining wall (or) contract soil on the retained earth is called
passive earth pressure. Due to this pressure retaining wall tend to move towards the earth.
But it will happen rarely.

Py = The intensity of passive earth pressure
Py =Ky xwxH
Where

_(1+sing ) _
Kp = (1—sin¢j = tan® (45 + %)

= Coefficient of passive earth pressure

® = Unit weight of earth
H = Height of retaining walls
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Moment away
from back fﬂL\_\

f/1/=45-<1>/2

Retaining —
wall

5.2.5. Rankine’s theory of earth pressure.

Rankine’s theory and coulomb’s theory of earth are available to determine the earth pressure
on retaining walls.

British Engineer Prof. W.J. Rankine was given the theory of earth pressure in 1857.

5.2.6. Assumption made in theory of Rankine’s earth pressure.
1. The retained soil mass is in the state of plastic equilibrium.
2. The retained soil mass is homogeneous, cohessionless.
3. The back of wall is smooth so that the frictional resistance between the wall and
retained earth is negligible.
4. The retained soil surface is a straight line,
5. The failure of retained earth is by shear along a'plané called ruptdre plane.

5.2.7. Rankine’s lateral earth pressure on retaining wall

Case 1:
Retaining wall back fill level with top.
P = Rankine’s lateral earth pressure
2
P =K, ﬂ
2
P —
A
h=H/3
L—Ka.o.H—!
i) Pressure Diagram ii) Section
Where
1-sin
K, =[ : ¢J=tan2(45-%)
1+sing
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= coefficient of active earth pressure

® = specific weight of earth
H = Height of retaining wall
) = Angle of repose of soil

Total earth pressure P = Area of pressure diagram
K, oH?
P = Y x(KeoH) xH= =20

2
P = K, wH%

This pressure will act at centre of gravity of pressure diagram.
ie at h from base

-4

Case 2:
Retaining wall back fill with surcharged soil
o = Angle of surcharge of soil
) = Angle of repose of soil
Q) = Unit weight of earth
H = Height of retaining wall

Cos oz —+/cos? & —cos? ¢

Ky = Cos,,

C0S &z +4/C0s% oz —C0S?
= coefficient of active earth pressure
The lateral pressure will be parallel to the inclined earth surface.

1) Pressure Diagram i) Section

oH ?
2
This pressure will act parallel to the inclined earth surface.

Py = Horizontal component of earth pressure p
Py =P xcosa Pvlﬁ

Rankines earth pressure P = K,

. . R _ H
This will act at h = A from base. PH
Py = Vertical component of earth pressure
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Py =P x Sina
This will act along the vertical face of the wall.

Case 3:
Retaining wall with surcharged load
Let
q = Intensity of uniform surcharged load (or) superimposed
the retained earth.
P = Total lateral earth pressure
P = Pl + Pz
P, = Pressure due to surcharged load
Py = Area of pressure diagram of rectangle BCDE
P, =(Kyxqg)xH

This will act at ‘y;” distance from base.

Y1:‘r%

P, = Pressure due to retained earth

P, = Area of pressure diagram of triangle ADE
1 wH ?

P, =Ex(Kaxco.H)xH=Ka >

load over

- Uniform surcharged load

D. C
P1
| G p
y1 e

L1¥A =l

-Ka.o.H==+~Ka.q

Pressure Diagram Section
This pressure will act at y, distance from base
Yo = % distance from base.

P = (Py + P,) = resultant pressure

This will act at ; distance from base.

Taking moment about bottom of wall.
PX; =P1xy1+Pays

y = — (P1y1+Pyy))

1
P
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Case 4:
Retaining wall with sub merged soil.

When a part or entire depth of retained earth is submerged, the lateral pressure on
the retaining wall is due to (i) Hydro static pressure (ii) Pressure due to dry earth (iii) Pressure

due to the submerged weight of soil.

Let
™1 = Specific weight of dry soil to a depth H, from top.
®2 = Specific weight of saturated soil to a depth H, from bottom.
® = 9.81 = Specific weight of water kN/m?.
® (sub) = (02 - ®) = Specific weight of submerged soil (or buoyant weight)
1-sin
Ka = - e = coefficient of active earth pressure
1+sing
P4 = Pressure due to top soil to a depth H;
Py = Area of pressure diagram of A" section
Py = Ky 01 Hy?

This will act at yidistance from base y; = (Hz + H%J

P, = Pressure due to top soil to a depth H,
P, = Area of pressure diagram of rectangular section
P2 = (Ka 01 x H1) H,
This will act at ‘y,” distance from bottom. y, = H%
P3 = Pressure due to hydrostatic fore (water) and submerged soil.
C
1
1 o1
E
2 H
/ Y ‘
o 7N -
Ll Lt b, How—
Ka.(m2-o)xHz2 Ka.w1.H1
Pressure Diagram Section
1
P3 = E X ( Owater H2 + Kz Osup HZ) H

This pressure will act at ‘y3’ distance from base.
P =P; + P, + P3 = (Total earth pressure)

This will act at ; distance from base.
Taking moment about base
Px Yy =(P1.y1+P2y,tPa.y3)
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y = — (P1y1+Pyy,+p3ys)

1
o]
5.2.8. Maximum and Minimum stress

Consider a trapezoidal section masonry retaining wall, retaining earth on its vertical face level
with top as shown in fig.

Let

= Top width of wall

= Bottom width of wall

= Height of retaining wall
= Unit weight of masonry
= Unit weight of soil

= Angle of repose of soil

e g = TOo O

i. Weight of wall/m run (W)

W=yvo|ume=yx(a—J2rbj xHx1

W=YX[G;H]JXH kN

- AT b2 4 e B
This will act at X from vertical face. Lg% L
= a’+ab+b?
X=— b
3(a*h) et
Rankine’s earth pressure/m (P) R
2
P o= M w
Wh i
ere
1-sing P
K, = : = tan® (45 - % )
1+sing
= coefficient of active earth pressure
. . R R - H
This will act at h from base h A
V = Total vertical force at the base
V=W.
R = Resultant thrust [.. V=W]

R= ‘/V2+P2 :‘/W2+P2

Position of resultant thrust (2)
Taking moment about Heel (A)

WxZ=W. X +Pxh

2y
Z=x + ["—J h
W
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e=(Z- b 5 ) = eccentricity of resultant thrust

M = (W x e) = moment due to eccentric force X ¢

AreaA=bx1 tm

db®

oy ) k) S
oo by, | 1

2
Stresses at base (o)

O = Y = Direct compressive stress due to weight of wall
5 M Wxe 6W.e Bending
b = = — = =
VA b? b?
%
o = o, * op = Total stress at base
_ w i6W.e :V_V 1i%

(bx1) Db? b b
Omax = ng(l+ %j = maximum stress at toe (B)
Omin = ng[l—%j = minimum stress at heel (A)

Stress distribution diagram
The value 'of ' maximum and ‘minimum stresses“are”based ‘on the eccentricity (e) of
vertical force at base as given below.

A B A B
Gmin Oomin=0 .
*+) o \I Gmax
. iii) e = b/6
(i) e < b/6 (i)
5.2.9. Stability of retaining wall
Causes of failures of retaining wall.
1 Tension at the base of wall
2 Sliding of wall along the base
3. Overturning of wall about toe.
4 Crushing of masonry at the base of wall.
Stability of retaining wall
Following are the conditions of stability of wall.
i. To avoid tension at base
b 2
= <
e< 5 (or) Z< A b
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Omin > (1—§j >0
b

ii. To avoid sliding
F.S. (Sliding) = Total frictional force

Horizontal force
w

>1.0

>1.0

F.S. (Sliding) = “é

for design purpose F.S. > 1.5
iiii. To avoid overturning
Balancing moment 510

Overturning moment
F.S. (Overturning) = Wib-x) __X) >1.0
Pxh
Design purpose FS=1.5t0 2.00

iv. To avoid crushing

Maximum compressive stress should be less than allowable compressive stress. (Safe bearing
capacity of soil)
Omax < SBC of soil.

F.S. (Overturning) =

RETAINING WALL
Problem 1
A trapezoidal masonry retaining wall 1m wide at top, 3m wide at its bottom is 8m high. It
retaining earth having level with the top of the wall on its vertical face. Find the max. min
stress intensities, at. the baseof.the wall. If-wt. of masonry.is-24 kN/m> and earth is 18
kN/m?® the angle of repose of earth is 40°.

Given

a =1m b N

b =3m \i* ~~~~~

H =8m T

Y =24kN/m*>

o = 18 kN/m> P

) = 40° Ign--

F=hE

Required Heel

c= w (1i@J =7

b b

Solution
i. Weight of wall per metre (W)

W =y(a_+ijH =24(ijg = W =384 kN

2 2
This will act at ; distance from vertical face
2 2 2 2
- M - M - X = 1.08m
3(a+b) 3(1+3)
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ii. Rankine’s earth pressure per metre run (P)

2
P = Ka.(WH j
2

ka = [LZSIN4) _ [L=Sn40%)_ 5000
1+sing 1+ sin4Q°

18 x 8

0.2174 x

o
1

P =125.25 kN

This will act at a distance h from base
h  =H/B=8

h=2.6Tm

iii. Position of resultant thrust (R)

Z  =x+—h
W
384
Eccentricity (e) B
e :Z_b/2 =(1_95_3/2) i e =045
Stress at base (o)
b b
w ( 6ej 384 ( 6x0.45
Omax = — |1+4— | attoe = 1+
b b 3 3

(Comprggs_zﬂxgn) = 2432 kN/m2

Gmin =W (1_@j =384 1—6)(0'45 (Compression)
b b 3 3

Omin = 12.8 KN/m?

Stress diagram

Omin
(+)

O'max
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Problem 2
A retaining wall 1m wide at top 3m wide at base 6m high retains earth on its vertical face
leveled with top unit wt. of masonry and earth are 23 kN/m? and 18 kN/m? respectively.
Determine

i Rankines earth pressure 1m run

ii. Resultant thrust

iiii. Stresses at the base

iv. Check the stability of wall

Take u = 0.6, max allowable stress = 300 kN/m? the angle of repose of soil is 30°.

Given N—
a =1m - AN AN AN -
b =3m K oL
H =6m N L
Y =23 kN/m? o
® = 18 kN/m? A | -
b = 30° o @%
n =0.6 — ]
SBC =300 kN/m’ _ ﬁ ~ %
| |
Required = !
w 6e L .
= — 1i_ = =
° b ( b} L
Solution L ]
i. Weight of wall 1m (w)
W =y (—a;ij =23X(%)x6 W =276 kN
2 2 2 2
> _a +ab+b _ 1°+(1x3)+3 x = 1.08m
3(a+b) 3(1+3)
ii. Rankine’s earth pressure per metre (P)
2
P = Ka. Ea)H J
2
1-si —si °
Ka = |L=SINg| _ (L=sin30%) ;a9
1+sing 1+ sin30°
2
P =0333x X6
P =108 kN
This will act at a distance h from base
h =H/3= % h=2m
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Resultant earth pressure (R)

R = JW2+Pp? = /276% +108° R = 296.38 kN
Position of Resultant pressure (2)
z - X+ —108+ 98 4, Z=1.86m
W 276
Eccentricity (e)
e =Z-bf2 =1.86—3/2 e =0.36m
Stress at base
c = w (li@j
b b
Omax = W (1+§j = 276 1+6X0'36 at toe
b b 3 3
Omax = 158.24 kN/m® (Compression)
Omin = w 1—@j _ 216 1—6)(0'36 at heel
b b 3 3
Omin = 25.76 kN/m? (Compression)
Stress diagram
A B
Omin
(+)
Omax
Check the stability of wall
i. To avoid tension
Omin =0 (or) e <bf6 (or) z2<2[3b
e =0.36m
bf6 =3/6 = 0.5m

e < bf6 (Safe)
Hence tension will not be developed at base
iii. To avoid sliding

Fs. =*%5q0
P

F.S. (Sliding) = 06x276 =1.53
108
1.53>1.0; Hence safe against sliding.
iii. To avoid failure from crushing
SBC > Omax
SBC =300 kN/m?
Omax = 158.24 kN/m’

SBC > omax (Hence safe)
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iv. To avoid over turning

Fs. = Wb=x _,,
Ph
FS. = 276(3-1.08) =2.45 > 1.0 (Hence Safe)
108x2
Hence safe against over turning.
Problem 3

A retaining wall 1m wide at top 6m high retains earth on its vertical face level with top. The
unit wt. of masonry and earth are 23 kN/m?® and 16 kN/m? respectively. Determine the min.
base width required to avoid.

i) Tension and ii) Sliding F.S. against sliding = 1.5
The angle of repose of soil is 30°, Take p=0.6

Given
a =1m T -
H =6m o
i =0.6 N
y =23 kN/m’
) =16 kN/m’ |-
) =30° B ¢E%
Required =T 1
b=? B g v u
v ~C
Solution T <% 7%
i. Weight of wall per'metre (W) L:U ++H
a+b 1+b .
W= y|Z==|H =23(—)x6 L ]
2 2
W=69(L+b)kN |  --ooeeees (1)
- a’+ab+b? _ 1 +1xb+b®
3(a+b) 3(1+b)
S = (I+h+h:
------ . . 3 (l+b)
ii. Rankine’s earth pressure (P)
2
P = Ka.(a)H J
2
K _ 1—S|_n @ _ 1—5|.n 30 - 0.333
1+sing 1+ sin30°
2
P = 0333x X6
P=96 kN
THEORY OF STRUCTURES Page 259

www.binils.com
Anna University, Polytechnic & Schools



iii. Position of Resultant pressure (Z)

- P- 1+b+b? 96 ( 6
Z = X+—h = + X —
W 3(1+h) 69(1+@ 3
) 1+b+b? . 0.348 ) b?+b'+1+8.348
3(1+b)  3(1+b) 3(1+b)

_ b*+h' +9.348
3(1+b)

Maximum base width required (b)

a) To avoid tension
Z <2[3b
2 b b® +b+9.348

3 3(1+b)

2b (1 +b) =b%+b+9.348
2b + 2b? =b?+b+9.348
b>+b—-9.348=0

. —1+,/1> — 4x1x(~9.348)

2
bl =2.6m
b) To avoid sliding
s =HYsqs
P
0.6x69(1+b) - 15
96
1+b = % x1.5 = 3.48
0.6 x69
b =3.48-1
b2 =2.48m

Minimum base width = Maximum of b; & b,

Result
Minimum base width required (b) =2.6m

Problem 4

A masonry retaining wall of trapezoidal section with a vertical face of 1m wide at top
and 3m wide at bottom with a height of 6m. It retains sand over the entire height
with an angle of surcharge 20°. Determine the stress intensities at the base of the
wall. The sand wt. is 18kN/m? and an angle of repose of soil is 30°. The masonry wt.
of 24 kN/m®.
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Given

Top width

Bottom width

Height

Angle of surcharge
Angle of repose of soil
Weight of masonry
Weight of soil

Q

s e 9 T

Required

Solution

i. Weight of wall run per metre run (W)

W =y(ibj|_| - 24(&)6
2 2
W = 288 kN
- _a’+ab+b® 1 +(1x3)+3°
3(a+b) 3(1+3%)
x =1.08m

ii. Rankines earth pressure per metre run (P)

2
P =Kax(wH j
2

C0S ot —+/c0s® @ — cos? ¢
Ka =| cosa
C0S o ++/0s® @ —cos? ¢

Ka =] co0s20

_ €0520°—/cos? 20°—cos? 30°
C0S 20° ++/cos? 20— cos? 30°

.9397-,/0. -0.7
Ka - 0.9397 x 0.939 0.9930-0.75

0.9397+,/0.883-0.75

Ka - 0.9397 x 0.9397-0.3647 = 0.9397 x 0.575
0.9397+0.3647 1.3044

Ka =0.414

_ H2/ _ 62/ _

P =KaxwH’/ =0414x18x 67/ =134.14kN

Py = Vertical component of earth pressure

Py =P xsin o =134.14 x sin 20° = 45.88 kN

P, =45.88 kN
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This will act along the vertical face of wall

Py = Horizontal component of earth pressure

Py =P xcosa

This will act at h distance from base. 5
h=H/_-6/_
h=HZ=6/-2m Py

h =2m
PH

Total vertical force (V)

Vv =W + Py =(288 + 45.88) = 333.88 kN

Vv =333.88 kN

Resultant thrust per metre run (R)
R =V?+P,? =[333.882+126

R =356.86 kN
This resultant pressure will hits the base at ‘Z’ distance from vertical face.

Position of resultant thrust (2)
Taking moment about A (heel)

VxZ =(W;)+(PHXH)+(PVXO)

1 - _
VA = \7 (W X + Py h)
1
= 288 x 1.08) +(126% 3
%0 (( )+ )
Z =1.60m

Eccentricitye = (Z - b 5 )= (1.60 —g] =0.1m
Stress intensities at the base (o)
10

b

b
Omax = \L [1i@j at toe (B)
b b

o

Omax = 333;88 (1+6X30'1) = 133.55 kN/m” (Comp.)
Omin = \L Kli@J at heel (A)
b b
333.88 [ 6x0.1j
Gmin = 1+
3 3
Omin = 89.03 kN/m? (Comp.)
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Stress diagram

A B

Omin

*)

O'max

Problem 5
A retaining wall 1.5m wide at top 4m wide at base and 8m high retains earth on its vertical
face with surcharge of 15° and angle of repose of 30° unit wt. of masonry and earth are 23
kN/m?® and 18 kN/m? of the respectively. Determine

i Rankine’s earth pressure

ii. Stress intensities at base

iii. Check the stability of wall
for tension sliding, overturning and crushing,
Take p = 0.6, maximum allowable stress = 300 kN/m2

Given
Top width a =1.5m
Bottom width b =4m
Height H =8m W
Angle of repose of soil [0} =30°
Weight of masonry Y =23 kN/m?
Weight of soil ® = 18 kN/m’
u =0.6
Maximum allowable stress =300 Kn/m2
Angle of repose a =15°
Required
i) c = ![li @j
b b
i) Check for the stability.
Solution

i. Weight of wall per metre run (W)

W o=y (a%bj H =23 (1'5;4) 8

W =506 kN
- _a’+ab+b*  15°+(1.5x4)+4?
3(a+hb) 3(1.5+4)
X =1.47m

ii. Rankine’s earth pressure per metre run (P)

COS ar —+/C0S” o —COS* ¢]

COS & ++/C0S” —COS > ¢

Ka = (cos a) [
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cos 15° —/cos? 15°—cos? 30°
Ka = (cos 15°)

C0515°+,/c0os?15—cos? 30

0.9659-,/0.933-0.75
Ka =0.9659 x

0.9659+,/0.933-0.75
K — 0.9659 x 0.9659-0.4277 _0.9659 0.5382
0.9659+0.4277 1.3936
Ka =0.373
2 2
P =Ka x oH =O.373x[18x8 J
P =214.86 kN
Py = Vertical component of earth pressure
Py =Pxsina
=214.86 x sin 15°
Py =55.60 kN
This will act along the vertical face of wall.
Py = Horizontal component of earth pressure
Py =Pcosa
Pv =214.86 x cos 15°
Py = 207.54 kN
This will act as h ffom base
h=H/_8/_
h=H =8, =267
h =267
Total vertical force (V)
V =W+ Py = 506+ 55.60
V = 561.60 kKN
Resultant thrust (R)
R =V?+P,’ =,/561.60°+P,>
R = 598.72 kN
Position of resultant thrust (2)
Taking moment about A.
z =\%[w§+(PHH)+(Pon)1= \%[W;(PHHHPVXO)]
= (560x 1.47 + 207.54 x 2.67)
561.60
Z = 2.31m
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Eccentricity (e)

e =z-0) =245-4/

e =0.45m

Stresses at base (o)

()
b b
v

b

(1+@j at toe (B)
b

561.60 ( 6x0.45}
Omax = 1+ at toe
4 4

Omax = 235.08 kN/m? (Comp.)

(@

Gmax

Omin = \L [14-@) at heel (A)
b b
561.60 (1_6x0.45]
4 4

45.63 kN/m? (Comp.)

G min

Stress diagram

A B
omin
*
Omax
Check the stability of wall
(i) To avoid tension at base
Gmin =0
b
e < 4 (or) Z < % b
e =0.45m

% =%=O.67m
e <%

Hence safe against tension.

(i) F.S. against sliding
F.S. = ﬂ >1.0

"
_ 0.6x561.60
207.54
=1.62 > 1.0 (Safe)
Hence safe against sliding.
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(i) F.S. against overturning
_V(b-x) _ 561.60(4—1.47)
P, h 207.54%2.67

F.S =2.56 > 1.0 Safe.
Hence safe against overturning.

F.S.

(iv) To avoid crushing
SBC > Gmax
360 > 235.08 kN/m? (Safe)
Hence safe against crushing.

Problem 6

A trapezoidal section retaining wall 2m wide at top, 4m wide at base and 6m high retains
earth level with top. The retained earth which transmits a uniform surcharged load 60
kN/m>. The angle of repose of soil is 30°. The unit weight of masonry and earth are 24
kN/m® and 18 kN/m? respectively, calculate the magnitude and position of line of action
and position of line of action of horizontal earth pressure per meter length of wall.

Given
Top width a =2m
Bottom width b =4m
Height H =6m
Uniform surcharged load q = 60 kN/m”
Angle of repose of soil ¢ =30°
Specific weightrof masonry y = 24«kN/m?
Specific weight of earth® = 18 kN/m’>
Required
i) Horizontal pressure P ="7?
ii) Position of horizontal pressure V =7
Solution

Draw pressure diagram as shown in fig.

—( - Uniform surcharged load

4
-------

E B
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i. Coefficient of active earth pressure (Ka)

Ka _ 1—s!n¢ _ 1—s!n30 0333
1+sing 1+sin30

Horizontal earth pressure/m run (P)

P =P+ P,
P4 = Pressure due to surcharged load
P; = Area of rectangle BCDE
P4 =(Kaxq)xH=0.333x60x6 = 120kN
This will act at y; distance from base.
H 6
Y1 5 >
P, = Pressure due to retained earth
P, = Area of triangle AED
P, =%x(KaxcoxH)xH=%(O.333x18x6)x6
P, =108 kN
This will act at y, distance from base.
% = E = § =2m
2 3 3

Total horizontal pressure P=P; +P, = (120 + 108) = 228 kN.
This pressure will act at V distance from bottom.

Position of horizontal earth pressure (from base %
Taking moment about bottom of wall.

Pxy =Piyi1+Poy;

5 =%(p1y1+P2y2) =%8(120x3+108x2)
; = 2.52m from base
Result
P =228 kN
; =2.52m
Problem 7

A trapezoidal retaining wall of 6m height is 2 metre wide at top 4 m wide at its bottom. It
retains earth on its vertical face to its full height. The bottom layer of soil of 1.5m height is
fully submerged in water, check the stability of the wall against overturning. If the unit
weights of dry soil, wet soil and masonry are 16 kN/m3 19 kN/m*® and 23 kN/m®
respectively and angle of repose of soil is 30°. Take unit weight of water 10 kN/m>.
(Oct. 2009)

Given
Top width a =2m
Bottom width b =4m
Height H =6m
H, =15m
Hi  =(6-1.5)=4.5m
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s =16 kN/m>

> =19 kN/m>
Weight of masonry v =23 kN/m?

®(water) = 10 kN/m3

d =30°

Unit weight of submerged soil ®(syp) = (2 - Owater)
®(sub) = (19 — 10) = 9 kN/m>
Required
Check the stability
Solution
Consider one metre length of wall.
i. Weight of wall/m run (W)

v (a+b) WH = 23(2+4)
2 2

w x 6 =414 kN

This will act at a distance X from Vertical face

a’+ab+b®>  2°+(2x4)+4?
3(a+h)  3(2+4)

Draw pressure diagram as shown in fig.

: /

=1.55m

X =

o/ ¢
P Al
yi TP i + ‘
Y)} P3 C’3 lcz
' ﬂ2y3 / I
} F G

ITI () (Water). H2
Ka.®éu.H2 Ka.

K= (1—s!n¢):1—s!n30 _ }/ - 0.333
(1+sing) 1+sin30 /3

Intensity of pressure due to top soil to a depth of (H;) = K, X, H,

=(0.333 x 16 x 4.5) = 24 kN/m?

Intensity of pressure due to water to a depth of (H,) = @yater
=10x 1.5 = 15 kN/m?

Intensity of pressure due to submerged soil = K, X&), XH,

=0.33x9x1.5=4.5kN/m?>

Pressure Diagram Section

xH,

i. Total horizontal pressure/m run (P)
P =P;+P,+P;3
P, =Pressure due to top soil to a depth ‘Hy’
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= Area of A”® CDE = % X (Ks X @1 H1) Hy

P1 = (%X24X4.5j =54 kN

This will act at y; distance from base.
H 45
=|H,+—|=15+|—| = 3.0m

" ( 3] [sj

P, = Pressure due to top soil to a depth H,
= Area of rectangle BCEF
= (Ka @1 Hi) X Hy =24 x 1.5 =36 kN
This will act at a depth y, from base

H, 45
= —~=— =2.25m
Y2 > >
P35 = Pressure due to water and due to submerged soil

= Area of triangle AFE

= % X (Ka X ®(sub) X Ha + ®yater X Ha)
= % [(0.333x9x1.5)+(10x1.5)]x 1.5
Py = % (4.5 +15) x 1.5 = 14.625 kN
This will act at ‘y3” distance from base
H 1.5
Y3 = ?2 = ? =0.5m

S P=Py+P;+P;=(54+36+14.625) = 104.625.kN
This total horizontal pressure will act at ? from base.
Taking moment about bottom

Pxy =(P1y1+Pyy2+P3ys)
104.625 ¥ = (54 x 3) + (36 x 2.25) + (14.625 x 0.5) = 250.31

y = 250.31) _ 5 5o,
104.62

iii. Position of resultant thrust (2)
- P -
=X+ —X
W y

104.625

Z=155+ ( j x2.39=2.15m

Eccentricitye = (Z - b2 )=1(2.15 - 42)
e=0.15m

iv. Stresses at the base

c= w (1iﬁ)
b b

Omax = Vl (14—%) at base
b b
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Omax = 414 (1+ 6X0'15) = 126.78 kN/m?* (Comp.)
4 4

Omin = Vl 1—% at heel
b b

Gmin = 414 (1— GXZ']'SJ =80.21 kN/m? (Comp.)

Stress diagram

A B
omin
)
O'max
Check the stability
i. To avoid tension
e < 9 = 9 :i = 0.6 mm
6 6 6

e = 0.15«< % Hence no tension at base.

ii. To avoid overturning

Fs= V0% 10 G DT,
Pxh 104.625x2.39
Hence safe against overturning.
iii. To avoid sliding
Fo= W DOXA4 557 1706
P 104.625
Hence safe.
Solved Problems:
Problem:1

A trapezoidal masonry retaining wall 1.2m wide at top, 3.6m wide at base is 6m high. The
vertical face retains earth up to the top with an angle of repose of soil as 30°. Take weight
of masonry as 23 kN/m? and that of earth as 16KN/m>. Check the sliding of retaining wall
for overturning and sliding. If p=0.60 and F.0.S=1.5

Given data:

Top width, a=1.2m

Bottom width, b=3.6m

Height, H=6m

Angle of repose of soil ¢p=30°

Weight of masonry,  ym =23 KN/m?>

Weight of soil, y =16 KN/m?
To Find :
: Vg4
(i)  o=¢(1%)
(ii) Check the stability of retaining wall for overturning and sliding.
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Solution:
(i) weight of wall per meter run (W)
W=y (Z2) H
=23 (1.2-;3.6 )X6
w = 331.2kN

This will act as X distance from vertical face
< _ a’+ab+b?
" 3(a+b)
_ 1.22+(1.2x3.6)+3.62 -13m
3(1.243.6)
(ii) rankine’s earth pressure per meter run (P)

_ K, y.H?

P
2

__ 1-sin®
a " q4sin®d
_ 1-sin30° oy 1-0.5 )
" 1+sin goo “ ' 1+0s5
0.
k,=(—)=0.33
a=(77)

2
P = 0.33x( 16’2‘6 )

P =95.04 kN.

It will act at a distance h from base
h=2=2=2m
(iii)  resultant thrust (R) per meter run

R =VW?2 + P2 =+/331.22 + 95.042 =344.56 kN

w

(iv)  position of resultant thrust (R)
_ . P
zZ=X+ W +h

=13+(22x2) = 1.87m

z=1.87m

(v) eccentricity
b
e=z--
2
=1.87- 22=0.07m
e=0.07m
(vi) stress at base (o)

w 6e
o= F ( 1 i ?)
O-maxz%(1+%e)
_ 331.2 ( 1+ 6(0.07) )
3.6 3.6

=102.73 kN/m?
Omax= 102.73 kN/m? (compression )

o . w 6e
min = b(l—b)
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_ 3312 (1- M) =81.267 kN/m?
3.6 3.6

Omin= 81.267 kN/r.n2 (compression )
Check the stability of wall
To avoid over turning
_Wwo-x
F.S= 53

- 3312B6713) _ 45 1.0 ( Hence safe )
95.04x 2

Hence safe against overturning
To avoid sliding

Fs== >10

P
F.S(sliding) = 2223312 = 5 o7
95.04
2.09>1.0
Hence safe against sliding

Problem:2
A retaining wall 7.5m high a vertical face supports loose earth at a surcharged of 20° to the
horizontal. If the earth has of repose of 35° and has an angle. Specific weight of 16KN/m?>.
Calculate the earth pressure per meter length of wall by rankine’s formula. Also Calculate
the horizontal and vertical components of the above earth pressure
Given data:
Height of wall h=7.5 m
Surcharge angle o =20°
Angle of repose ®=35°
Specific weight of earth y, =16kN/m?*
To Find
(i) earth'pressure'=?
(ii) Horizontal pressure =?
(iii) Vertical pressure=?
Solution:
Co -efficient of active earth pressure

cosa—y/cos?a—cosZ¢ a=20°

cosa+4/cosZa—cos2¢

c0s20%—vc0s2200—cos2350
= Cos 20°x Py

€0520°+vVc05220°—c0s235° P

_ 0.9397-10.883-0.67 _ B
=0.9397 X 0.93974v0883-067 0.57 e
=0.32

Earth pressure per meter length oh wall 1
_ Ka.yeh? :

k,=cos a x

ool

2
_ 0.32X16X7.5%

2
P =144kN

Horizontal component,
Py=Pcos «
=144 x cos 20°
P =135.32 kN
Vertical pressure component,
Py = Psin «
=44 x sin 20°
P, = 49.25 kN
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Result:
(i) Earth pressure per meter length of wall P=256.5 kN

(ii) Horizontal component,Py = 241.03 kN
(iii) Vertical component, Py = 87.7 kN

Problem:3

A masonry retaining wall of 1m wide at top and 3m wide at bottom retains earth on the
vertical face up to the top. Calculate the maximum height of the wall to ensure safety
against sliding. If the factor of safety against sliding is 1.5 co-efficient of friction is 0.6.
specific weight of masonry is 22KN/m? and specific weight of soil is 18KN/m? angle of
repose 30°

Given data:
Top width of wall, a=1m
Bottom width of wall, b= 3m

F.O.S against sliding =1.5 Dr—a—-]c
Specific weight of masonry y,, = 22 KN/m? \< ;

Co — efficient of friction,p=06 X 0T _ _ _ _]

Angle of repose, ®=30° ]
Specific weight of soil v =18 kN/m? T

To Find: T T T Xe

Maximum height of the wall to ensure safety against sliding

Solution: P, — —

Co-efficient of action earth pressure _ A\ V=W
1-sin¢ h=H/3

a:

1+sin¢ HEEL TOE

_ 1-sin30° v 1%0.5 ) . Al 22 B
1+sin 300 1+0.5 b2 ¢
=(23)=0.333 7
1.5
Lateral earth pressure
p= Ka.y.h?
; 18.h? D __]C
=0.333x( 7)
p=3h2 N T T 7

Weight of retaining wall

W = V—r;-h (a+b) = — — | xeC

22xh P——
= > (1+3) _ A

W= 44h HEEL

To avoid sliding F.O.S =% ‘fhz’z—'—L—e——

7
0.6 x 44h
15=
3h?

h=5.87m

Problem:4

A retaining trapezoidal in section 10m high,1m wide at top, 3.2 m wide at bottom with a
vertical face retains earth level with the top of the wall. If the weight of the masonry is 24
kN/m?® and that of earth is 18 kN/m>with an angle of repose of 40°. Calculate the maximum
and minimum stresses at the base.

THEORY OF STRUCTURES Page 273

www.binils.com
Anna University, Polytechnic & Schools



Given data:

Height of wall, h =10m

Top width, a=1m

Bottom width, b=3.2m

Specific weight of earth, Ve=18 kN/m?>
Specific weight of masonry, ym =24 kN/m>
Angle of repose of sail, ® =40°

To Find:

Maximum and minimum stresses at the base.
i.e., Omax and opin

Co-efficient of active earth pressure
1-sin¢
1+sin¢

1—sin 40°
= - =0.217
1+sin 400

Lateral earth pressure
p= ka.y.h?
2

=0.217x(

P =195.30 kN

Weight of retaining wall

W = ym—h (a+b)

24x10

a =

18x102

)

(1+43.2)
W= 504 kN
- _ a’+ab+b?

"~ 3(a+b)
_12+(1x3.2)+3.2%
T 3(1+3.2)

=1.146 m
Z=%+ (- x7)

19530 ?) — 2.44m

= 1.146+ (—

Z=2.44m
eccentricity (e),

e=0.84m
stress at base (o)
o= (1+%)

Gmaxz%(1+%)
= (1422 6(0 8) ) =393.75 kN/m?
omax— 393. 75 kN/m (compression )

Omin=¥1-52)

_5;124 (1 6(0 8) ) = - 78.75 kN/m>

Omin= /8. 75 kN/m? (tension )
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Result:
G max= 393.75 kN/m? (compression )
G min= 78.75 kN/m? (tension )
Problem:5
A retaining wall trapezoidal in section is 8m high. 1m wide at top and 3m wide at the
bottom with a vertical earth face retains earth level with the top of the wall. If the weight
of masonry is 24 kN/m? and that of the earth is 18 kN/m? with an angle of repose of 30°.
Calculate the maximum and minimum stress at base.
Give data:
Height, h =8m
Top width, a=1m
Bottom width, b =3m
Weight of masonry, ym=24 KN/m?
Weight of earth, 7vy.=18 KN/m?
Angle of repose @ =30°
To Find:
check the stability of wall
Solution:

Co-efficient of action earth pressure
1-sin¢
1+sin¢

1-sin 30°
= - =0.333
1+sin 300

k, =0.333
Lateral earth pressure =

_ 0.333x18x 87

2
P =191.808 kN

Weight of retaining wall
W = Y28 (a+b)

24x 8
== (1+3)

a=

Ka -ve h?

W= 384 kN D ? C
< a%?+ab+b?

3(a+b)
_ 12+4(1x3)+32
_3(143) - — — —
X=1.08mh — — — Lx &C
=%+ —x7

= 1.08+ (52" x3) = 2.41m i —

%

Z=241m

eccentricity ' AC

b/2 €

e=z b

=2.41-2=0.91m

e=091m

check for stability

(i) Check for tension at the base
e=0.91m

=2
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E=§=O.5m
6 6

b . . . . .
e >, the retaining wall is not safe against tension.
(ii)Check the overturning

. h
Overturning moment = P x 3

=191.808 xg

=511.48 kN.m

Stabilizing moment =W (b -X)
=384 (3-1.08)

=737.28 kN.m

stabilizing moment

Factor of safety = :
overturnlg moment

737.28
"511.48

=144<15

The retaining wall is not safe

(iii) Check for sliding
Force causing sliding P=191.808 KN

Force resisting sliding =p.W
=0.6 x 384
=230.4 kN

W
Force of safety = “T

=294 _06<15
384

The retaining wall is not safe against sliding

Problem:6

A retaining wall 2m wide at top, 4m wide at the base and 6m high retains earth to its full
height on the vertical face. There is a road on the top of retaining earth which transmits
uniform surcharged load of 60 KN/m?. Take weight of masonry and earth are 24KN/m?and
18kN/m>. An angle of earth as 40°. Calculate the magnitude and the position of line of
action of horizontal earth pressure per meter length of wall.

To Find :
(i) Horizontal pressure P=?
(ii) Position of horizontal pressure y =?
Solution :
(i) Co-efficient of active earth pressure (k,)
1-sing 1-sin40°
a™ 1+sin ¢ = 1tsin400 0.217
k,=0.217
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Given data:
Top width, a=2m
Bottom width, b= 4m
Height, H=6m
Uniform surcharged load,q= 60 kN/m?
Angle of repose of soil, ®=40°
Specific weight of earth, y,= 18 kN/m?
Specific weight of masonry,y,= 24 kN/m?

(ii) Pressure diagram
Intensity of pressure due to surcharged load at top = k;x g
Intensity of pressure due to surcharged load at bottom =k,x q
Draw pressure diagram of rectangle BCDB as shown in figure.
Intensity of pressure due to earth at top (h=0) =k,.h =0
Intensity of pressure due to earth at bottom (h=H) = k,.H

Draw pressure diagram of triangle AED as shown in figure.

(iii)  Horizontal earth pressure per meter run (P)
P=P,+P,
P1= pressure due to surchargedioad
P,= area of rectangle BCDE
P1=0.218x60x6=78.48kN

This will act at y; distance from base

q-Uniform surcharged load
~ =7 /74
Y1= E = E = 3m ©® D c ‘ i

P,= pressure due to retained earth
P,=area of triangle AED A -
P, = %x (kax ymx H)xH l P g_|L ] SR
P2=%(0.217x18x6)x6 LT — el B
P | R RO
P, =70.308 kN ; &
2 V/&LKaCO,H—I—KZ.q—'JB 2)section
This will act at y, distance from base 1) pressure diagram

H 6
Y,=—=-=2m

33

Total horizontal pressure P =P1+P,
=78.12+70.308=148.428 kN

This pressure will act at y distance from bottom
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(iv)  Position of horizontal earth pressure ( from base y)

PX}_/ = P1Y1+P2Y2

Y == (P1Y1+P,Y5

D

m Y-

= (78.12x3+70.308x2)
148.428
y =2.56 m from base

Result:
P=148.428kN
y=2.56m

Problem: 7
A retaining wall, 6m high with a smooth vertical back,
retains earth level with the top of the wall. Determine

the magnitude and line of action of the horizontal thrust per meter length of wall. The

weight of sand is 20 kN/m?® and its angle of repose is 40°.
Given data

Height, h=6m

Unit weight of sand, y = 20 kN/m>

Angle of repose, @ =40°
To Find:

Horizontal thrust/'P’/=?

Line of action of P,y =7?

Solution
Co- efficient of active earth pressure,

_ 1-sing

K, =
a 1+sind

1-sin40°
=———=0.2174
1+sin40°

Horizontal thrust per meter length of wall,
Ka.v.h?
2

P=

2
=0.2174 x %

=78.264 kN

. . h 6
L|neofact|ony=§=§=2m

Result
Horizontal thrust P = 78.264 kN acting of 2m above the base.
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Problem: 8
A retaining wall of 5m high has a vertical earth face retains earth level with the top of the
wall. In the top 3m, the weight of retained material is 20 kN/m? while below this level it
is 24kN/m?>. The angle of repose of the two retained material is 30°. The wall also carries
an uniform surcharge load of 18kN/m? at the top. Calculate the magnitude and position of
lateral thrust on the wall.
Given data

Height of wall, h =5m

Sp. Weight of soil for the top 3m  y; = 20 kN/m?

Sp. weight of soil for the bottom 2m y, = 24kN/m>

Surcharge load attop q =18 kN/m?

Angle of repose, ® =30°

q=18KN/m*

N .

I

+-—-—-: G
{ P, A ;, Y= =
? l/ ]

To Find:

Horizontal thrust P = ?

Line of action of horizontal thrust, y =?

Solution

Co- efficient of action earth pressure,

_ 1-sin¢

- 1+sing

_1-sin30°

" 1+sin300
P, =pressure due to surcharge load ‘q

=Ka.0.h=0.333 x 18 x 5 =29.97 kN

a

=0.333

’

Y, = ;h = g = 2.5 m above the base.

Pressure due to the top soil of y; =20 kN/m?>
2 2

p, = % = 0.333 x22X3" ~ 29.97 kN

Y, = 2+§x 3 =3 m above the base
Ps  =kayi.h1.h=0.333x20 x 3 x 2 =39.96 kN

Y; = % = 1m above the base
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Pressure due to the bottom soil of y, = 24 kN/m?> Pl
2 2
p, = SaY2hi_333,24X2 _ 15984 kN /=
2 2 /
Y, ==x2 = 0.667 m above the base [
4 = = .
3 ) h=8m
Total horizontal earth pressure, /
P= P1+P2+P3+P4 P /;’
=29.97 +29.97 + 39.96 + 15.984 f/ .
- 115.884 kN i f_::w
Line of acting of P, T A B
Y _ Pl.Y1+P2Y2+P3Y3+P4P4 L-—K&_T_h b=4m
P,+P,+P;+P , -
29,97 X2.5+29.97 X 3+39.96 X 1+15.984 X 0.0667 2007290 [Ty z
115.884 smssmsmmuw A
=1.776 m above the base DIAGRAM =
Result:

Total horizontal earth pressure, P = 115.884 kN acting at y = 1.776 m the base.

Problem: 9
A retaining wall triangular in section is 8m high and 4m wide at the base, with a vertical

face retaining earth level with the top of the wall. Draw curves of variation of (1) intensity
of earth pressure on the vertical face. (2) the nominal stress intensity on the base, if the
specific weight of earth is 20 kN/m? with an angle of repose of 30° and the specific weight
of masonry is 24 kN/m?>.
Given data:
Height of wall, h=8m
Bottom of width, b =4m
Specific weight of earth,  y. =20 kN/m?
Specific weight of masonry, y,, = 24 kN/m?
Angle of repose of soil, ® = 30°
To Find:
(1) Intensity earth pressure on the vertical face.
(2) Nominal stresses at the base

Solution

Co- efficient of action earth pressure,

_ 1-sing

- 1+sind

_ 1-sin30°

"~ 1+sin30°
(1)Intensity of earth pressure on the vertical face:

a

=0.333

Intensity of earth pressure at top =0
Intensity of earth pressure at the base = ka.ye . h
=0.333x20x8

= 53.28 kN/m’

Lateral earth pressure,
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sz&ym
2
20x82

2

= 0.333x
=213.12 kN

Weight of retaining wall,
w =222 (a4 b)
_24x8

=222 (0 +4) =384 kN

=%-1333m

3
P _h

+—X=
w3

213.12x8

384x3

X =

N
H O wlo N

=1.333+
=2.813 m
e=z—2=2.813—§=0.813 m

2) Nominal stresses at the base: Dr—lm—jc

w 6e
Gmang(l"'?)

_ 384 6x 0.813

== )

= 213.072 kN/m**(comp)

(1+

w 6e
Gminzg(l'?)

6x 0.813 )

4
| HEEL TOE

384
== (1-

=-21.072 kN/m? (tension) ad AR 2B

Result :

1. Intensity of earth pressure at the base = 53.28 kN/m?
2.Nominal stress at the base,

Omax = 213.072 kN/m?* (comp)

Omin = -21.072 kN/m? (tension)

Problem: 10

A masonry retaining wall is 10 m high and has a vertical face on the earth side. The top
width of retaining wall is 1m and bottom width is 4m. The angle of repose is 30°. Weight
of earth is 18 kN/m* andweight of masonry is 24 kN/m>. Check the stability of the
retaining wall with respect to No tension state, (ii)over turning and (iii) sliding if p = 0.6
and F.0S = 1.5.
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Given data:

Height of wall h =10m

Top width a=1m

Bottom width b =4m

Angle of repose ® = 30°

Specific weight of earth y. = 18 kN/m?>
Specific weight of masonry ym = 24 kN/m>
Co- efficient of friction, u=0.6

Factor of safety F.0.S=1.5

To Find:

Check the stability of wall

Solution

Co- efficient of active earth pressure
_1-sin¢
- 1+sing
1-sin30°
=———=0.333

1+sin309
Lateral earth pressure
p= Ka.v.h?

2

=0.333 x

=299.97 kN
Weight of retaining wall,
W = Ynz‘—h (a+b)

=222 (1+4) = 600N

a%+ab+b?
3(a+b)

_ 12+(1x4)+4%

T 3(1+4)

a

18x102

X =

=1.4m

Check for stability
(i)Check for tension at the base

e=1.07m

bt 0.667m
6 6

b .. . . .
e>—, the retaining wall is not safe against tension.
(ii) Check for over turning

Over turning moment = P x 2 =299.97 x 13—0 =999.9 kN.m

Stability moment = W (b -X)
=600 (4—-1.4)=1560kN.m

stabilizing moment

Factor of safety = :
over turning moment

=15€0 _ 156515
999.9
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The retaining wall is safe against over turning
(iii)Check for sliding

For causing sliding = P =299.97 kN
Force resisting sliding=p. W
= 0.6 x 600 = 360 kN

ATy
Force of safety = ”T

_ 360
~ 299,97

=1.2<15

The retaining wall is not safe against sliding.

HIGHLIGHTS
Difference between active and passive earth pressure
SI | Active earth pressure Passive earth pressure
No
The lateral pressure exerted by the The lateral pressure exerted by the
1 | retained earth on the retaining wall is retaining wall on the retained soil is known
known as active earth pressure. as passive earth pressure.
The wall tends to move away from the The retaining wall tends to move against
2 | soil. the soil.
3 | Itis due toithe expansion of soil. It:is due, to thescontraction-of soil.
The angle made by/the failure plane with | The angle made by the failure plane with
4 horizontal, i= 45+% horizontal i=45 —%
The intensity of active earth pressure is The intensity of passive earth pressure is
5 |givenbyP,=k,.y.h. given by Po=k, .y . h. where
where h= height of soil retained and
h= height of soil retained and ka= co- efficient passive earth pressure.
ka= co- efficient active earth pressure. = w
. 1-sin¢
_1-sin¢
B 1+sin ¢
The active earth pressure is the practical | The passive earth pressure is the
6 | pressure which acts on the retaining wall. | theoretical pressure which rarely comes
into play.
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REVIEW QUESTIONS
Two mark questions
Define angle of repose of soil.
Write the Rankine’s total earth pressure formula for the retaining wall retaining earth
with level back fill.
3. Write the Rankine’s total earth pressure formula for the retaining wall retaining earth
with angular surcharge.
What is an active earth pressure?
What is passive earth pressure?
What are state of equilibrium of soil?
What is meant by plastic equilibrium of soil?
What is an elastic equilibrium of soil?

© 0N WA

At which point of the base, the bearing pressure will be maximum in a retaining wall?
10. What will be the co-efficient of passive earth pressure of soil having angle of repose
30°?

Three marks

Explain state of equilibrium of soil.

Explain active and passive earth pressure in retaining wall.

Explain the angle of repose of soil.

Distinguish hetween active and passive earth pressure.

What are the'assumption made in Rankine’s theory.of earth/pressure?
Explain the Rankine’s theory of earth pressure.

No vk wbNeR

What are the forces acting on the retaining will to keep it in equilibrium? Draw the
normal stress distribution diagram to avoid tension at the base.

o0

State the conditions to check the stability of retaining wall.

9. Develop Rankine’s total earth pressure formula for the retaining wall retaining earth
with uniform surcharge.

10. Develop Rankine’s total earth pressure formula for the retaining wall retaining earth

with angular surcharge.

Ten marks
1. A retaining wall trapezoidal in section is 9m high, 2m wide at top and 3m wide at the

bottom with a vertical earth face retaining earth level with the top of wall. If the weight
of masonry is 24kN/m? and that of the earth is 18 kN/m> with an angle of repose of 30°.
Calculate the maximum and minimum stress at the base.

2. Aretaining wall 7.5m high with a vertical face supports loose earth at a surcharge of 20°
to the horizontal, if the earth has an angle of repose of 35° and has a specific weight of
20 kN/m?. Calculate the earth pressure per meter length of wall by Rankine’s formula.
Calculate the horizontal and vertical components of the above earth pressure.
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3. A retaining wall 6m high with a smooth vertical back retains earth level with the top of
the wall. Determine the magnitude and the line of action of the horizontal thrust per
meter length of wall. The weight of sand is 20 kN/m? and its angle of repose 40°.

4. A trapezoidal masonry retaining wall 1m wide at top, 2m wide at the base is 7.5m high.
It retains earth on its vertical face with the top of the wall. The angle of repose of soil is
30°. Take weight of masonry as 22 kN/m? and weight of earth as 18 kN/m?>. Check the
stability of retaining wall, if the co-efficient of friction between masonry and soil as 0.60
and factor of safety as 1.50.

5. Aretaining wall 2m wide at the top, 4m wide at the base and 6m high retains earth to its
full height on the vertical face. There is road on the top of retained earth which
transmits uniform surcharged load of 50 kN/m?. Take weight of earth as 18 kN/m?> and
angle of repose of earth as 30°. Calculate the magnitude and the position of line of
action of horizontal earth pressure per meter length of wall.

6. A trapezoidal masonry retaining wall 1.5m wide at the top, 5m wide at the base and 9m
high with a vertical face retains earth level with the top of the wall at 2m below the top
level, the foundation of structures transmits a uniform surcharged load of 120 kN/m?*
Take weight of earth as 20 kN/m® and angle of repose of earth as 35°. Calculate the
magnitude and the position of the earth pressure on the retaining wall.
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