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34253- CONTROL ENGINEERING
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I BASICS OF CONTROL SYSTEMS, LAPLACE TRANSFORM 17 HRS
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System — Linear & Non Linear, Continuous & Discrete - Control
system - open loop & closed loop —Examples — basics of Laplace
transform — Inverse Laplace transform — Transfer function —order
and type of a transfer function — pole/ zero plot - Transfer function
of Translational Mechanical system (simple second order system
with one mass) — Transfer function of Electrical systems using
R,L,C
I BLOCK DIAGRAM AND SIGNAL FLOW GRAPH 18 HRS
REPRESENTATION
Block diagram: Introduction — advantages — rules for block diagram
reduction — simple problems.
Signal flow graph: Rules for reduction — Mason’s gain formula —
applications of Mason’s formula — simple problems — comparison of
block diagram reduction and signal flow graph methods.
I TIME RESPONSE 16 HRS
Standard test signals(step, tamp, §ine and Parabolic) ~ order and
Type 'of systems= ['order, Il order System ~.derivation-— step
response of [ order, II order system — time domain specifications
(definition & formulas only) — steady state error, static error
constants — problems.
v FREQUENCY RESPONSE 16 HRS
Frequency response of linear system —Advantages — Frequency
domain specifications (definitions only) — bode plot — gain margin —
phase margin — problems — polar plot — problems.
A% STABILITY 16 HRS
Definition —Location of the roots on the s-plane for stability absolute
stability — relative stability— characteristic equation — Routh’s
stability criterion technique — construction of root locus — problems.
Revision and Test 7 Hrs

TEXT BOOKS:

1) Control systems by A.Nagoorkani, RBA publishers,2006(Page no. 1-36, 70- 129, 255-280,
284-327, 343-417, 455- 490)

REFERENCE BOOKS
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edition,1995.
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UNIT -1

BASICS OF CONTROL SYSTEMS, LAPLACE TRANSFORM AND TRANSFER
FUNCTION

1.1 SYSTEM:
A number of elements or components are connected in a sequence to perform a specific

function, the group thus formed is called a system.

1.2 CONTROL SYSTEM:
In a system when the output quantity is controlled by varying the input quantity then
the system is called control system. The output quantity is called controlled variable or response

and the input quantity is called command signal or excitation.

1.3 CLASSIFICATION OF CONTROL SYSTEM:

1.0pen loop and closed loop system.
2.SISO and MIMO.
3.According to the type of component control system can be classified as Electrical,

Hydraulic; Pneumatic, Mechanical etc.,

CONTROL SYSTEM

1 A 1

ELECTRICAL MECHANICAL PNEUMATIC HYDRAULIC

v l v

LINEAR NON - LINEAR

!
v v

TIME VARIANT [ DYNAMIC] TIME — INVARIANT [ STATIC ]

l
l l

CONTINUOUS DISCRETE
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1.3.1 LINEAR & NON-LINEAR SYSTEM:
LINEAR SYSTEM:

A system is said to be linear if it obeys the principle of superposition and homogeneity.
The principle of superposition states that the response of the system to a weighted sum of the

responses of the system to each individual input signals.
The system is said to be linear, if it satisfies the following two properties:

Adaptive property that is for any x and y belonging to the domain of the function f, we have

F (x +y)=f(x) +(y)

Homogeneous property that is for any x belonging to the domain of the function f and for any

scalar constant o, we have

F (o x) = a f(x)

Homogeneity: A system is said to be homogeneous, if we multiply input with some constant

‘A’ then output will also be multiplied by the same value of constant,
NON-LINEAR SYSTEM:

A system which does not obey the principle of Superposition theorem then it is called

as Non-linear system.

1.3.2 CONTINUOUS (OR) ANALOG SYSTEM:

In these types of control system, we have continuous signal as the input to the system.
These signals are the continuous function of time. We may have various sources of continuous
input signal like sinusoidal type signal input source, square type of signal input source, signal

may be in the form of continuous triangle etc.

1.3.3 DISCRETE (OR) DIGITAL SYSTEM:

In these types of control system, we have discrete signal (or signal may be in the form
of pulse) as the input to the system. These signals have the discrete interval of time. We can
convert various sources of continuous input signal like sinusoidal type signal input source,

square type of signal input source etc into discrete form using the switch.
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1.3.4 OPEN LOOP SYSTEM:

Any physical system which does not automatically correct the variation in its output is
called an open loop system or control system, in which the output quantity has no effect upon
the input quantity are called open-loop control system. This means that the output is not fedback

to the input for correction.

Input Open loop | Output
R [
() system (Plant) c(t)

Fig.1.1 Open Loop System

EXAMPLE OF OPEN LOOP SYSTEM (TEMPERATURE CONTROL SYSTEM):

The electric furnace is shown in fig 1.2. It is an open loop system. The output in the
system is the desired temperature. The temperature of the system is raised by heat generated
by the heating element. The output temperature depends on the time during which the supply
to heater remaing QN

The ON ‘and OFF of'the supply is governed“by the‘time-setting of the relay. The
temperature Is measured by a sensor which gives an analog voltage corresponding to the
temperature of the furnace. The analog signal is converted to digital signal by an Analog - to -

Digital converter (A/D converter).

Sensor
Electric A/D , Digital
Furnace Converter ¥ Interface i—» pigpjay
0w .

Heating element

Relay —=°

Control AC supply
~ Circuit °

Fig.1.2 Example of Open Loop System
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The digital signal is given to the digital display device to display the temperature: In
this system If there is any change in output temperature then the time setting of the relay is not

altered automatically.

ADVANTAGES OF OPEN LOOP SYSTEMS:

e The open loop systems are simple and economical.
e The open loop systems are easier to construct.

e Generally, the open loop systems are stable.

DISADVANTAGES OF OPEN LOOP SYSTEMS:

e The open loop systems are inaccurate and unreliable.

e  The changes in the output due to external disturbances are not corrected automatically.

1.3.5 CLOSED LOOP SYSTEM:

Control systems in which the output has an effect upon the input quantity in order to
maintain the desired output value are called closed loop systems. The open loop system can be
modified as closed /loop system by providing ‘a feedback. The provision of feedback
automatically corrects the changes in output due to disturbances. Hence the closed loop system

is also called an automatic control system.

Error
Detector ‘
Reference é i) :!C onirolior Open loop system OqtpuLt
Input (Plant) i
r() T c(t)
— Feex ’Fecdbackl*,‘

Fig.1.3 Closed Loop System

It consists of an error detector, a controller, plant (open loop system) and feedback path
elements. The reference signal (or) input signal corresponds to the desired output. The feedback
path elements sample the output and converts it to a signal of same type as that of reference
signal. The feedback signal is proportional to output signal and it is fed to the error detector.
The error signal generated by the error detector is the difference between reference signal and
feedback signal. The controller modifies and amplifies the error signal to produce better control

action. The modified error signal is fed to the plant to correct its output.
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EXAMPLE OF CLOSED LOOP SYSTEM (TEMPERATURE CONTROL SYSTEM:

A Closed loop system of the electric furnace shown in fig. The output of the system is
the desired temperature and it depends on the time during which the supply to healer remains
ON. The switching ON and OFF of the relay is controlled by a control switch is a digital system
or computer. The desired temperature is input to the system through keyboard or as a signal
corresponding to the desired temperature via ports.

The actual temperature is sensed by sensor and converted to digital signal by the A/D
converter. The computer reads the actual temperature and compares with desired temperature.
If It finds any difference then It sends signal to switch ON or OFF the relay through D/A
converter and amplifier. Thus, the system automatically corrects any changes in output Hence

it is a closed loop system.

Sensor . A Digital control
. r ouit
Electric l A/D Interface : : clreut
' » Controller or
Fumacell.. Converter Circuit Compl(xte)r/Micro
~ 7\ . processor

Heating element

Relay ' .
e DIA g Reference input .
: Amplifier |«
%?:;&zl N _ mpimer Converter (Desired temperatura)
l AC l
Supply

Fig.1.4 Example of Closed Loop System

ADVANTAGES OF CLOSED LOOP SYSTEMS:

e The closed loop systems are accurate.
e The Closed loop systems are accurate even in the presence of non-linearities.
e The sensitivity of the systems may be made small to make the system more stable.

e The closed loop systems are less affected by noise.
DISADVANTAGES OF CLOSED LOOP SYSTEMS:

e The closed loop systems are complex and costly.
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e The feedback in closed loop system may lead to oscillatory response.

e The feedback reduces the overall gain of the system.

e Stability is a major problem in closed loop system and more care is needed to design

a stable closed loop system.

DIFFERENCE BETWEEN OPEN LOOP AND CLOSED LOOP SYSTEM:

OPEN LOOP SYSTEM

CLOSED LOOP SYSTEM

Inaccurate and unreliable

Accurate and reliable

Simple and economical

Complex and costlier

The changes in output due to external

disturbances are corrected by manually

The changes in output due to external

disturbances are corrected by automatically

Generally stable

Great effects are needed to design stable

system

Highly affected by noise

Less affected bynoise

No feedback element

Feedback element is present

1.4 LAPLACE TRANSFORM:

The Laplace transform provides a useful method of solving certain types of differential

equations when certain initial conditions are given, especially when the initial values are zero.

Let f(t) be the function of t, time for all t=0, then the Laplace transform of f(t) can be defined

as,

Laplace transform of f(t) = £ [f(t)] = F(S) = [ OOO e Stf(t)dt

when t > 0

1.4.1 LAPLACE TRANSFORM FORMULAS:

LIf(O] = F(S)
f(t) F(S)
I 1
S
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t", n=1,2,3... n!
Sn+1
eat 1
S —a
e-at 1
S+ a
Sin at a
s* +a’
Cos at S
s +a’
Cosh at a
s —a?
Sinh at s
s2 —a?
e*'cos bt (s —a)
(s —a)’>+b’
e"'sin bt b
(s —a)’>+b’
¢"'cosh bt (s.—a)
(s —a)’>—»b"
¢“sinh bt b
(s —a)’>—»b"
¢cos bt (s+a)
(s +a)>+bh°
e ™sin bt b
(s +a)>+bh°
e“'cosh bt (s +a)
(s +a)>—b>
¢ 'sinh bt b
(s +a)>—b>

1.4.2 BASICS OF LAPLACE TRANSFORM:

Property 1: Laplace transform of f(t) = 1
Ify=1f(t)=1,then L[ 1]= [ e ™" f(t) dt
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L —S

cor-[1]

Property 2: Laplace transform of f(t) = t" , When t > 0
Solution:

Given f(t) = t"

Apply Laplace Transform

LI ] =L[t" ]

=[ et f(tydt= [~ e~5t t"dt

Letts =x

X
t=_
S

ax
dtz_
S

£ltn]= e G = [ e )&

o _, x"dx -
= Jo e Connd) 7w do & X pdx

fooo e~ x™dx =n! Apply

n!
sn+1

L[th]=

Property 3: Laplace transform of f(t) =e®, When t > 0

Solution:
Given f(t)= fooo e Stf(t)dt =/ 000 e Steatdt

— (P a-st+at 3¢ — [P a(-s+a)t
J, e dt= [ e dt

-1 (e(s T )=- ia (e(s-la)oo - e(sia)o )
:-i w5 EmE )
=__(0_1)—-—3(—1)= é
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L(eat) — L

S—a

Property 4: Laplace transform of f(t) = cos at, When t > 0
Solution:

Given f(t) = cos at

Apply Laplace Transform

eiat +e—iat 1 1 1

5 |

L (cosat)=L [ 1= 1; [ oidt +e-iat] _

|

2 s—ia s+ia
Take LCM.,
_1 [ (s+ia)+(s—ia) 1= 1 ( stiats—ia ) _ ( S )

2 - (s—ia)(s+ia) 2 \g24sia—sia—i%a2 52432

L (cos at) = (Wsaz)

Property 5: Laplace transform of f(t) = sinh at when t > 0
Solution:
Given f(t) = sinh at

Apply Laplace Transform

eat_e—at

L(sinhat)=L[“———]==

Take LCM.,

=1; [(s+a)—(s—a) ] :1; ( (s+a—s+a) ) _ ( a )

(s—a)(s+a) s2+sa—sa—a?

L (sinh at) = ( staz)

1.4.3 PROBLEMS OF LAPLACE TRANSFORM:
Problem 1:

Find Laplace Transform of f(t) =5+ sinh 6t

Solution:

Given f(t) =5+ sinh 6t

Apply Laplace Transform

L [f(t)] =L (5) + L (sinh 6t)

5, 6 _ 5, 6
S S

+ .

F(s)= 's2_36

52—62
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6
s2-36

F(s) = g +

Problem 2:

Find the Laplace Transform of each of the following function:
(a) f(t) = t> (b) f(t) = cos 5t

Solution:

(a) f(t) = t2

Formulae:

L(")=otr , =123

2! 2
L(t2)= W - =

S3
L( tz) = %

(b) f(t) = cos5t

From the table, we find £ (cos at)= S2ra?

S

S
Therefore, £ (cos'5t) = T vy

L (cos 5t) =

s2+25

Problem 3:
Find the Laplace Transform of each of the following function:
fit)y=2t*- 4t + 1
Solution:
LfO)]=2L[]-4L[t]+L[1]
Apply Laplace formula
Fo =2 (2) 4 (%) +

4—4s5+s2
F(s) = 3

Problem 4:
Find the Laplace Transform of each of the following function:

f(t) = 2 sin 3t - ¢
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Solution:

£ (2sin3t-e?t)=2 L (sin 3t) - L (e2t)

Fo-2(5=) - (=)
F(s) = (526_|_9) - (512)

Problem 5:

Find the Laplace Transform of each of the following function:
f(t) = e ?'sin 3t

Solution:

Given f(t) = e " sin 3t

Apply Laplace Transform

L [f(t)] =L [ e "sin 3t]

L (e73sinbt) = > = > -3
(s+a)2+b2  (s+2)%2+32 (s+2)2%2+49

L (e %%sin3t) = ———
( ) $2+4s5+13

Problem 6:
Find the Laplace Transform of each of the following function:
f(t) = [e~5t + e =2t sinh 3t]
Solution:
Given f(t) = [e~>t + e 2t sinh 3t]
L [f(t)] = £ [e”>t+ e 2 sinh 9t]
=L [e > ]+ L [ e ?'sinh9t]

- (s-ll-S) + ((S+2;32_92 ) - (%) + ((s+2;92—81 ) - (s-ll-S) * <(sz+4s(-)|-4—81) )

F () *+ (s )

Problem 7:
Find the Laplace Transform of each of the following function:
g(t) = [cosh wt + t3]

Solution:
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Given g(t) = [ cosh wt + t3]
L [g(t)] = L [ cosh wt + t3]

S 3!
(s2-w2) st

= L [coshwt]+ L [t3] =

S
(SZ_wZ) s4

G(s) =

Problem 8:

Find the Laplace Transform of each of the following function:
flt)y=[t% e™%Y

Solution:

Given f(t) = [ t% e72Y]

L (e72(t)) = F(s+a)

i =t3 LIFO] = L[] = 5

—2t427 1) = 2
L [e t ] (S3 s—>s+2 (S+2)3
2
F(s)= (s+2)3
Problem 9:

Find the Laplace Transform of the following function:
f(t) = [ e**cos 5t]

Solution:

Given f(t) = [ e%'cos 5t]

L (e?*f(t)) = F(s-a)

f(t) = cos 5t

s s
s2+52)  (s2+425)

L [f(t)] = L [cos 5t] = %

2t _ S
L [e CcOoS St] = ((Sz+25)) s > s—2

_ (s—=2)
FGs) (s—2)%+25

_1_I_ S 1 s

1
T 25 (s2+42) 2S5  (s2+16)

s
(s2+16)

1
F(s) = 7S +
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Problem 10:

Find the Laplace Transform of each of the following function:
f(t) = e** cos 3t

Solution:

Given f(t) = = e** cos 3t

Apply Laplace Transform
L [f(t)] = L [= e** cos 3t]
(s-a)
4t —
L (e** cosat) S—a)2+D?
(s—4) (s—4)
4t - =
LleTcos3t] (s—4)%2+3%2  (s—4)%+9
(s—4)

4t —_—
L[ e** cos 3t] (57—25125)

1.5 INVERSE LAPLACE TRANSFORMS:

If L [f(t)] = F(s), then f(¢) is called the Inverse Laplace Transform of F(s) and is written

as

LTF(®]=f®

1.5.1 FORMULAS OF LAPLACE INVERSE TRANSFORM:

L7F(s)] = f(t)
F(s) 1@

1 1

R)

n! t, n=1,23...
Sn+1

1 eat
S —da

1 e-at
S+ a

a Sin at
S2 + a2
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S Cos at
s +a?
a Cosh at
sZ —a?
s Sinh at
s? —a?
(s —a) e" cos bt
(s —a)’>+b’
b " sin bt
(s —a)’>+b’
(s —a) e* cosh bt
(s —a)’>—»b"
b "' sinh bt
(s —a)’>—-»b"
(s+a) e cos bt
(s +a)>+bh°
b e ¥'sin bt
(s +a)’+b°
(s +a) e cosh bt
(s +a)>—b>
b ¢ sinh bt
(s +a)>—b>

Problem 1: Finding the inverse Laplace Transforms

Find f{(t) for the following Laplace transforms:

F(s) =
Solution:
F(s) =sz+16 52442

fity= L1 (F(s))
f(t)= £ ( ki )

s2+42

4
S2+16

4 4

f(t) = sin 4t

www.binils.com
Anna University, Polytechnic & Schools



Problem 2:

Find inverse laplace transform for the given function

F(s)= (_ + +sz 9)

Solution:

(o= (5 + 5 +55) £ (F) et G (55)
f(t)=e3' + 1 +cosh 3t

Problem 3:

Find y(t) for Y)=[ —

+ ]
S+4 s2+16 s2

Solution:
1 L o 1y pap L gy 1L
YO= L [ o - L L o L7 ]
y(t)=e~*t +sin 4t +t
Problem 4:
Find g(t) for G(s)= | m]

Solution:

1
L1 <+) =e t L1 ( -~ ) =e 'sint
(s+1)“+1 se+1

g(t) = e tsint

Problem 5: Finding the inverse Laplace Transforms

. _ (s+2)
1 S S A
Find L7+ for [F(s)] (57145+13)
Solution:
_ (s+2)

F(s) = (s2+4s+13)

_ s+a
L1 (msa)ﬁ) = ¢ cos bt

1 (s+2) )= 1 (_(s+2) ) _ _1< (s+2) )
£ (s2+4s+4+9 £ ((s+2)2+9) £ (s+2)%+32

f(t) = ¢ cos 3t
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Problem 6: Finding the inverse Laplace Transforms

. -1 _
Find L7 [ F(s) ] GiD241

Solution :

L_I[F(S)]= s _ 1 ( s+2-2 )

(s+1)%+1 (s+1)2+1

_ -1 s+2) _1(—2 )=_1(5+2)_ _1( 1 )
L ((s+1)2+1 L (s+1)2+1 L (s+1)2+1 2L (s+1)2+1

_ 2t p-1 S)_ -2t—1(1)=-2t a2t
e” L (sz+1 2e¢e” L 27q) — ¢ -cost-2esint

f(t) = e'cost - 2 ¢".sint

Problem 7: Using Partial Fractions

. o e (s+4)
Find f(t) if £7 [ F(s) ] =+ (s+1)§sz+55+6)
Solution:
F(s) = (s+4) _ (s+4)
(s)= s(s+1)(s2+5s+6) B s(s+1)(s+3)(s+2)
_ é+ B C D __ A(s+1)(s+3)(s+2)+Bs(s+3)(s+2)+Cs(s+1)(s+2)+Ds(s+1)(s+3)
s (s+1) (s+3)/ (s+2) | s(§41)(s+3)(5+2)

(s+4)=A(+1(s+3)(s+2)+Bs(s+3)(s+2)+Cs(s+1)(s+2)+Ds(s+ 1)(s+ 3) ...(1)
Put s=0 in Equation (1)

2

3
Put s=-1 in Equation (1)

__3
B=-3
Put s=-3 in Equation (1)
__1
C="%
Put s=-2 in Equation (1)
D=1
A B C D 2 = =
F(s)= =+ + =342 4 6 1
s (s+1) (s+3) (s+2) S (s+1) (s+3) (s+2)

Apply £~1 on both sides

2 -3 -1
-1 _r-1 [3 -1 2 -1 6 -1 1
L [F(S)] L <S> +L <(5+1)> +L <(s+3) >+L ((S+2))
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020 -2 -2

2 3 _ 1 _ -
f(t)z___e t__e 3t+e 2t
3 2 6

Problem 8:

Find £71[F(s)] = %
Solution:
(s+2) A (Bs+C) _ A(s?+1)+(Bs+C)(s—4)
O = D 68 D | =8
(s+2)=A(?+1)+Bs+0)(s—4)
Put s=4 in Equation (1)

-5
17

Equation (1) becomes
(s+2) =As?+ A+ Bs? —4Bs + Cs — 4C
Equate the co-efficient of ‘S*’ term from Equation (2)
0=A+B
A+B=0
_ 6

17
Equate the co-efficient of ‘S’ term from Equation (2)

1=-4B+C
e
1+4B=C ; C= 17
6 6 7
F(s) = A +(BS+C): T +(—;s—;)
(s—4) (s2+1) (s—4) (s2+1)

Apply £71 on both sides
1 1 17 1 —15~19
L7 [F(s)] =L <m> L <W>

f(t) = 1;‘7 () — 137 (cost) — = (sint)

Problem 9:
Find Laplace Inverse for the following function:
v = 1

(s—=2)(s+1)(s+3)
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Solution:

Given:
v = 1
_(5—2)(s+ 1)(s+3)

Apply Laplace Inverse

1

_ pr-1
Y=L (s=2)(s+1)(s+3)

By using Partial Fraction

1 _ A n B n C _ A (s+1)(s+3)+ B(s—2)(s+3)+ C(s—2)(s+1)
(s=2)(s+1)(s+3) s—2 s+1 s+3 (s=2)(s+1)(s+3)

1 _ A(s+1)(s+3)+ B(s—2)(s+3)+ C(s—2)(s+1)
(s—2)(s+1)(s+3) (s—2)(s+1)(s+3)

1= A(st1) (s+3) + B(s-2) (s+3) + C(s-2) (s+1)
Put s = 2 in equation (1)

I=A (2+1) (2+3) + B (0) + C(0)

1=A(3)(5)

I=15A

1
A==
15

Put S = -1 in equation (1)

1= A (-1+1) (-1+3) + B (-1-2) (-1+3)+ C(0)
I=A0)+B(-3)(2)

1=-6B

1
B=—=
6

Put S = -3 in equation (1)

1= A (0) + B(0)+ C(-3-2)(-3+1)
1=C(-5) (-2)

1=10C

1/15 1/6 1/10
Y == 115 16 Y
s—2 s+1 s+3

Apply £~ on both sides

1:_1 (Y(S)) =i L—l (i )_ lL—l (i) _+_i L—l (L)
15 s—2 6 s+1 10 s+3
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¥ == () - = () += (™)

2t -t e—3t

e e
- .+
y(t) 15 6 10

Problem 10:

1
— r-1

Y(s)=L£ s(s+12)

1 —é—i- B :A(s+12)+Bs
s(s+12) s s+12 s(s+12)

1 _ A (s+12)+ Bs
s(s+12) s(s+12)
I=A(s+12) + Bs
Puts=0
1=A (0 +12) + B(0)
1=12A
AL

12
Put S=-12

1=A (12 + 12) 4 B\(£12)
1=A(0) + B (=12)

1=-12B
_ 1
12
a, 8 _(H, (5 L)
s s+12 s (s+12) 12 \s

Apply £=1 on both sides

-5t () n G

ST OREAChy

e—th

1
Y(t)—a "0

Problem 11: Find the inverse Laplace Transforms

(s+2)

: _1 _
Find L7 [F(s)] (5+2545)
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Solution:

_ (s+2)
F(s)= (s+2s+5)
-1 ﬂ: -at
(s+a)2+b? [e™cos bt]
_1( (s+1+1) ) _ -1 (s+1) @Y
S242s+1+4 (s+1)2+4 (s+1)2+4

1 (Gt -1 <;)
L ((s+1)2+22) L (s+1)%+22

f(t) = " cos2t+ e sin2t

1.6 TRANSFER FUNCTION:

The transfer function of a system is defined as the ratio of Laplace transform of

Output to the Laplace transform of input with zero initial conditions.

Laplace Transform of Output

Transfer function = | with zero initial condition

Laplace Transform of Output

The transfer function can be obtainéd by taking Laplace transform of the differential
equation governing 'the' system 'with zero initial conditions,and, reatranging the resulting

algebraic equations to get the ratio of output to input.

1.7 ORDER AND TYPE OF A TRANSFER FUNCTION:
1.7.1 ORDER OF A SYSTEM:

The input and output relationship of a control system can be expressed by n™ order

differential equation is given below.

n n-1 n—-2 m

d
oG —p(t) + ald — p(t)+a2§tmp(t)+ ------ +a,_ b p(t)+a,p(t)=b ;—mq(t)

m—1 m—z.

d
dmlq() Eeiremal (UL +bm_;aq(t)+bmq(t)

where, p(t) = Output / Response ; q(t)=Input / Excitation.

+ b,

The order of the system is given by the order of the differential equation governing the
system. If the system is governed by n"order differential equation, then the system is called

order of a system. Alternatively, the order can be determined from the transfer function of the
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system. The transfer function of the system can be obtained by taking Laplace transform of the
differential equation governing the system and rearranging them as a ratio of two polynomials

in s, as shown in equation.

P(s) _ bos™+b;s™ " +b,s™ 4. tb 54D

2

Transfer function, T(s) = - —
Q(s)  aps"+a;s" +a,s" +a, ;s+a

where, P(s) = Numerator polynomial
Q(s) = Denominator polynomial

The order of the system is given by the maximum power of s in the denominator polynomial,

Q(s).

Here, Q(s) = a,s"+a s +a s +

Now, n is the order of the system

When n == 0, the system/is zeérgjorder system;
When n = 1, the system is first order system.

When n = 2, the system is second order system and so on.

| Note: The order can be specified for both open loop system and closed loop system.]

1.7.2 TYPE NUMBER OF CONTROL SYSTEMS

The type number is specified for loop transfer function G(s) H(s). The number of poles of the
transfer function lying at the origin decides the type number of the system. In general, if N is
the number of poles at the origin then the type number is N.

The loop transfer function can be expressed as a ratio of two polynomials in S.

' P(s) (s+2z) (s+2) (5+Z3) ceeeneennnnn
H(s)=K =K =
G(s) H(s) - Q(s) st (s+py) (s+p,) (5+Pp3) --eeeee

where, Z1, Z2, Z3.... are zeros of transfer function

P1, P2, P3 ..... are poles of transfer function
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K = Constant
N == Number of poles at the origin
The value of N in the denominator polynomial of loop transfer function shown in equation
decides the type number of the system.
If N = 0, then the system is type - 0 system
If N =1, then the system is type - 1 system, and so on.

1.8 POLE — ZERO PLOT
1.8.1 POLES
Poles are those values of s which make F(s) tend to infinity.

(s+21)(s+23 ) (as?+bs+c)
sz(s+p1) (s+py) (As®+Bs+0)

For example: F(s) =

Then we have a double pole origin. Two simple poles at s = -p,, s = - p, and one pair of poles

—B+VB2-4AC

ats =
2A

This may be complex, real or imaginary depending upon the numerical values of A, B and C.

At s =0, F(s) = o0, a double pole at s =10
At s =-p,, F(s) =0, a simple pole/at s = -p,
At s = -p,, F(s) = o, a simple pole at s = -p,

—-B+VBZ-4AC . . .
Ats= _T , F(s) = o the roots may be real, imaginary, complex conjugate.
1.8.2 ZEROS

The zeros of F(s) are those values of s which make F(s) tend to zero.

-b++/ b2-4ac

For the function, F(S), the zeros are at s = -z,, s = -z,and s=

2a
At s = -z, F(s) =0, a simple zero at s = -z,
At s =-z,, F(s) =0, a simple zero at s = -z,
-b++/b2-4ac ) ) )
Ats= B T— F(s) = 0 the roots may be real, imaginary, complex conjugate.
a

EXAMPLE 1:

1. Draw the pole and zero configuration for the following functions

. _ 4(s+4)
() F(s) = s(s+3)(s?+2s+2)
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Solution:
a) To Find Poles:
s(s+3)(s?+2s+2)=0
At s =0, F(s) = o, a simple pole at origin or s =0
At s =-3, F(s) = o, a simple pole at s = -3

2_4ac

. . . -bvb
s? + 2s + 2 = 0; By using quadratic equation: _T , we get

-24,/22-4(1)(2) _ -24+V4-8 _ -2+vV-4 _ -2+/j?22 _ -24j2 _ 2(-1%j) _

= —11]
2(1) 2 2 2 2 2
At s =-1+j, F(s) = «0, a complex conjugate pole at s = -1+j
Ats=-1-j, F(s) = w0, a complex conjugate pole at s = -1-j
b) To Find Zeros:
4(s+4)=0
Ats =-4,F(s) =0, a simple zero at s = -4
4 Imaginary axis
+ i
H 2
X T
o f N R B R
- Real axis -4 3 2 -1 1 2 3 4 Real axis
x T i
+ -2
. -j3
il -Imaginary Axis

RESULT

The poles are {0, -3, -1+j, -1-j}

The zeros are {-4}
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. _ (s+1)(s+5)
(i) F(s) = s(s+2)(s+4)
Solution:

a) To Find Poles:
s(s+2)(s+4)=0

At s =0, F(s) = o0, a simple pole at origin or s =0

At s =-2, F(s) = oo, a simple pole at s = -2
At s= -4, F(s) = o, a simple pole at s = -4

b) To Find Zeros:
s+1D(s+5)=0
Ats=-1, F(s) =0, a simple zero at s = -1

Ats=-5,F(s) =0, a simple zero at s = -5

4 Imaginary axis

]
1
+
| | | | .
«—O—x—F—%x—0—X T T T T >
-Realaxis 4 3 2 1 2 3 4 Real axis
+
4 -2
4 -3
¥ -Imaginary Axis

RESULT

The poles are {0, -2, -4}

The zeros are {-1, -5}
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s3(s+1)
(s+2)*(s2+4)

(iii) F(s) =
Solution:
a) To Find Poles:
(s+2)%(s*+4)=0

(s+2)?2 =0; (s + 2) = 0(twice);s = =2

At s =-2, F(s) = o, a double pole at s = -2
$2+4=0; s? = —4;s? = 727 = #j2

At s =j2, F(s) = o, an imaginary pole at s = j2

At s= -j2, F(s) = oo, an imaginary pole at s = -j2

b) To Find Zeros:
s3(s+1)=0
Ats=0, F(s)=0, atriple zeroat s =0
Ats=-1, F(s) =0, a simple zero at s = -1

*®
Imaginary axis
4018
3 i2
Pole at s=-2(twice)
\ T
. ———o—0 — .
-Realaxis 5 - ) 1 2 3 Real axis
T4
X j2
el 23
Lero at s=0 (thrice)
-Imaginary Axis
L 4

RESULT

The poles are {-2, -j2, j2}

The zeros are {0, -1}
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(s%+9) (s’ +4s+13)
s2(s>+10s2+29s+20)

(iv) F(s) =
Solution:

a) To Find Poles
s?(s3+10s2+29s+20)=0
On factorisation of (s>+10s*+29s +20), we get: (s+1) (s+95+20) = (s+1)(s+5)(s+4)
At s =0, F(s) = o, a double pole at origin or s =0
Ats=-1, F(s) = oo, a simple pole at s = -1
At s = -4, F(s) = oo, a simple pole at s = -4
At s = -5, F(s) = o, a simple pole at s = -5

b) To Find Zeros

(s249)(s®+4s+13)=0
(s*+9)=0;s* = —9; (s* = (j*) (3%) = 4j3
At s =-j3, F(s) = 0, an imaginary zero at s = -j3
At s =-j3, F(s) = 0, an imaginary zero at s = -j3

—biﬂlb2—4ac

(s?+4s+13)=0 ;Byrusifig quadratic egtiation ¥ Jwe get
—4+42-4(1)(13) _ —4+V16-52 _ —4+v-36 _ —4+/j?62 _ —4+4j6 _ 2(—2%4j3) _ 2+ i3
2(1) - 2 - 2 - 2 T2 T 2T *)

At s =-2+j3, F(s) = 0, an imaginary zero at s = -2+j3
At s =-2-j3, F(s) = 0, an imaginary zero at s = -2-j3
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4 Imaginary axis
o B o
1 2
+
- % - | | o | | | | .
= * T T * T T T T >
- 1 2 3 4 Realaxis
Real axis -5 4 -3 -2 -
T 4
4 -2
o 3 o
v -Imaginary Axis

RESULT

The poles are { 0, -1, -4, -5 }
The zeros are { -j3, j3, -2-j3, -2+j3 }

1.9 TRANSFER FUNCTION OF A MECHANICAL TRANSLATIONAL SYSTEM

Translation is defined as a motion that takes place along a straight line. The three basic
elements involved in translational motion are mass, spring and dash-pot. These three elements
represents three essential phenomena which occur in various ways in mechanical systems.

The weight of the mechanical system is represented by the element mass and it is
assumed to be concentrated at the centre of the body. The elastic deformation of the body can
be represented by a Spring. The friction existing in rotating mechanical system can be
represented by the dash-pot.

When a Force is applied to a translational mechanical system, it is opposed by opposing
forces due to mass, friction and elasticity of the system. The force acting on a mechanical body
are governed by Newton’s Second law of motion. For translational systems, it states that the
sum of forces acting on a body is zero.
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1.9.1 List Of Symbols Used In Mechanical Translational System

x = Displacement, m.

v = dx/dt = Velocity, m/sec.

a = dv/dt = d®x/dt? = Acceleration, m/sec’.

f= Applied Force, N(Newtons).

fim = Opposing force offered by mass of the body, N.

fk = Opposing force offered by the elasticity of the body(spring), N.
f, = Opposing force offered by the friction of the body(dash-pot), N.
M = Mass, kg.

K= Stiffness of spring, N/m.

B = Viscous force co-efficient, N-sec/m.

1.9.2 Mass(M):
When a force is applied, the mass will offer an opposing force which is proportional to

the acceleration of the body.

o d2x(t) d%x(t)
f(t) = Ma; f,(t)=M " where, a = 2
Reference
|
Mass , M| v fult)

x(t) applied force f(t)

1.9.3 Stiffness (K):
When a force is applied, the spring will offer an opposing force which is proportional to

displacement of the body.
fi, () =Kx(t)

Reference

filt)

x{i)
applied force fiith
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1.9.4 Viscous Friction (B):

When a force is applied, the dash-pot will offer an opposing force which is proportional
to velocity of the body.

dx(t)
dt

Reference

fi(t)

(1]
v applied foree f{t)

1.9.5 GUIDELINES TO DETERMINE THE TRANSFER FUNCTION OF
MECHANICAL TRANSLATIONAL SYSTEM

¢ In mechanical translational system, the differential equations governing the system are
obtained by writing force balance equations at nodes in the system. The nodes are
meeting point of elements. Generally, the nodes are mass elements in the system. In
some casesjjtheinodesimay /be withoutmass element.

¢ The linear displacement of the masses (nodes) are assumed as'X;, X, X3, etc., and assign
a displacement to each mass(node). The first derivative of the displacement is velocity
and the second derivative of the displacement is acceleration.

e Draw the free body diagrams of the system. The free body diagram is obtained by
drawing each mass separately and then marking all the forces acting on that mass(node).
Always the opposing force acts in a direction of the applied force. Hence the
displacement, velocity and acceleration of the mass will be in the direction of the
applied force. If there is no applied force then the displacement, velocity and
acceleration of the mass will be in the direction opposite to that of opposing force.

e For each free body diagram, write one differential equation by equating the sum of
applied forces to the sum of opposing forces.

e Take Laplace transform of differential equation to convert them to algebraic equation.
Then rearrange the s-domain equations to eliminate the unwanted variables and obtain
the ratio between output variable and input variable. This ratio is the transfer function

of the system.
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Note: Laplace transform of x(t) = £ {x(t)} = X(s)
dx(t)} =5 X(s)
2 dt 2
Ex® _ . (x®) _

dtz 1:{ dt2 }_S X()

Laplace transform of = £ {

Laplace transform of

ST 7/ Reference

TI_J 5ok = T‘ fi(t)

fu(t)

(1)

Mass ., M
j X(1)

v
Applied Force

Fig l.5: Mechanical Translational System

The applied force f(t) is resisted by forces fi(t), fk(t), fu(t), so the equation of motion is

f(t) = fin(t) + f1(t) + ()
M d’x(t) g O
e T dt X(t)
Taking Laplace transform on both sides with zero initial conditions

F(s) = Ms2X(s) + BsX(s) + KX(s)
F(s) = X(s)[Ms? + Bs + K]

X(s) _ 1
F(s)  Ms2+Bs+K

Transfer Function =

1.10 TRANSFER FUNCTION OF ELECTRICAL SYSTEMS USINGRL C

The models of electrical systems can be obtained by using resistor, capacitor and
inductors. For modelling electrical systems, the electrical network or equivalent circuit is
formed by using R, L and C and voltage or current source.

The differential equations governing the electrical systems can be formed by writing
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Kirchhoff’s current law equations by choosing various nodes in the network or Kirchhoff’s
voltage law equations by choosing various closed path in the network.
The transfer function can be obtained by taking Laplace transform of the differential

equations and rearranging them as a ratio of output to input.

Current -Voltage relation of Resistor:

R

Voltage across the resistor, v(t) = R i(t) A

ity  + w(t) -

Current -Voltage relation of Inductor:

]
Voltage across the Inductor, v(t) =L % 1(t) >

+ wt) -

Current -Voltage relation of Capacitor:

it ‘

Voltage across the Capacitor, v(t) = % [i(Hdt I _

+  wt)

1.11 TRANSFER FUNCTION, OF AN-RC NETWORK:

Voltage across the resistor, v(t) = R i(t)
Voltage across the Capacitor, v(t) = % [i(Hdt

According to Kirchhoff’s second law,

Ri(t) + %fi(t)dt =e (1)

=AWV 3

l( t ) \ ‘ Co
Cl —

|

Fig 1.6: R C Network
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On Taking Laplace Transform on both sides, we get

116 o
RI(s)+C S Ei(s)

16s) (R+2) =Ei(s)
Ei(s) Ei(s) CsEij(s)
I(s) = ( 1) = Res+1 — RCs+Sl ...... (2)

R+§ Cs

We have, ep= % [i(Hdt

On taking Laplace transform on both sides,

Bo®=g2 3)

Substitute I(s) from equation 2 in equation 3,

T osB(e) 1 E()
— RCs+1 _ LSEj(S R ilS
Eo(8)= 75 RCs+1 ~Cs  RCs+1
Eo(s) 1 1 RC = 1 (time Constant)
Ei(s) " RCs+1  Ts+1
E 1
Thus, the Transfer Function of the RL Circuit is o) = —
Ei(s) Ts+1
1.12 TRANSFER FUNCTION OF RLC CIRCUIT:
vi(t) 1(t) L vo(t)

Fig 1.7: R L C Network
Voltage across the resistor, v(t) = R i(t)
Voltage across the Capacitor, v(t) = % [i(Hdt

Voltage across the Inductor, v(t) =L % 1(t)

According to Kirchhoff’s Voltage law, Vg + V¢ + VL = Vi(t)
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Ri(t) +== [i(t)dt + L %i(t) = V()

On taking laplace transform,

116)
C s

RI(s) + + Ls I(s) = Vi(s)

I(s) [R+Ls+é 1=V;(s)

I(s) = Vils) _ _ Vis) _ _ CsVi(s)
R+ Ls+ — RCs+LCs2+1 RCs+ LCs2+1
Cs Cs

o d .

Vo(t) =L Fl(t)

On taking Laplace transform on both sides,
Vo(S)z LS I(S)

Substitute I(s) from equation 2 in equation 3,

_ Cs Vi(s)
Vo(®)=LS perioott
Vo(s) _ LCs?

Vi(s)  RCs+ LCs2+1

Vy(s)

LCs?

Thus, the Transfer Function of the R L C Circuit is

Vi(s)  RCs+LCs?+1

PART — A

1.Define Control system.

2.List the Advantages of Open loop system

3.What are the Disadvantages of open loop system?
4.What is SISO & MIMO?

5.What is Linear system?

6.Define Laplace Transform.

7.Define Laplace Inverse.

8.What is Transfer function?

9.Define Poles.

10.Define Zeros.

11.Find the Laplace Transform of sinwt.

R,
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PART -B
1.Classify Control system.

2.Define Open loop system and draw its Block diagram.
3.Define Closed loop system with neat diagram.
4.Distinguish between open loop & closed loop system.
5. What is Linear & Non-linear system?

6.What is continuous & discontinuous system?

7.What is Order of a system?

8.Define Type-Number of control system.

9.Find Laplace transform of e*cosh2t

10.Find £ (ﬁ) .

(5—1)’— 52

PART - C:

L) = (e*+3 e %) Ans: S_iz 73 ﬁ

2.g(t) =(2+5cos t) Ans: % +5. 523-1

3.y(t)=(sinh 6t+3t) Ans: 2_36 Siz

4.y(t) =5e 8% +cosh3t Ans: % + st_g

5.h(t) = 7t3+5sin3t Ans: 7. S% +5. ﬁ
_ (s+1)(s%+25+2) Ans: € (1-cos t)

7. m Ans: i (e'-e™)
m Ans:% (sint — cost +e™ )
_ % Ans: (2¢*-2¢e®)

10. s(sil)z Ans: (1-te'-e™)

11.% AHS:(%+%G'3t-%e'4t )
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UNIT - 11

BLOCK DIAGRAM AND SIGNAL FLOW GRAPH PRESENTATION

2.1 BLOCK DIAGRAM:

A block diagram of a system is a pictorial representation of the functions performed by
each component and of the flow of signals. Such a diagram depicts the interrelationships that

exist among the various components. The elements of a block diagram are

e Block
e Branch point

e Summing point

2.1.1 BLOCK:
The transfer functions of the components are usually entered in the corresponding
blocks, which are connected by arrows to indicate the direction of the flow of signal. Figure

shows the block diagram of the functional block.

' Input; A | Transfer_) Qutput, B
——¥ function "
G(s) |B=AG(s)

Fig.2.1 Block

The arrowhead pointing towards the block indicates the input, and the arrow head
leading away from the block represents the output. Such arrows are referred to as signals. The.
Output signal from the block is given by the product of input signal and transfer function in the

block.

2.1.2 SUMMING POINT:

Summing points are used to add two or more signals in the system. A circle with a cross
is the symbol that indicates a summing operation. The plus or minus sign at each arrowhead
indicates whether the signal to be added or subtracted. It is important that the quantities being

added or subtracted have the same dimensions and the same units.
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A A-B

B
Fig.2.2 Summing Point

2.1.3 BRANCH POINT:

A Branch point is a point from which the signal from a block concurrently to other

blocks or summing points.

Branch point
B
—
A L ‘B=AG
A
Fig.2.3 Branch Point

2.2 BLOCK DIAGRAM REDUCTION:

The block diagram can be/reduced to find the overall transfer function of the system.
The following rules can be used for block diagram reduction. The rules are framed such that

any modification made on the diagram does not alter the input output relation.

2.3 ADVANTAGES OF BLOCK DIAGRAM:

e The Functional operation of the system can be observed from Block diagram.
e Block diagram gives the Information about performance of the system.
e Block diagram is used for Analysis and Design of control system.

e [tis very simple to construct the Block diagram for complicated system.

2.4 RULES OF BLOCK DIAGRAM

RULE 1. Combining the Blocks in Cascade

AG, — AGG, A
A G > A e A%
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RULE 2. Combining Parallel Blocks (or) Combining Feed Forward Path

AG1+A62= A(Gf*'Gz) = A A(GH'GZ)

RULE 3: Moving the Branch Point Ahead of the Block

A AG ' A
AG
A B = ' AG — A

RULE 4: Moving the Branch Point Before the Block

2
AG , @ AG >

RULE 5: Moving the Summing . Ahead of the Block

B
B BG
: »G|
A éms 5 (A+B>)G = A0 B = (b
+ = (A+
(G} A 5] AG g )

RULE 6: Moving the Summing Before of the Block

B

AG+B

A ’@AG

RULE 7: Interchanging Summing Point

B

A g A-C %A—C+>B=A+B-C

c |

www.binils.com
Anna University, Polytechnic & Schools




RULE 8: Splitting Summing Point

B B

A+ A+B A+B-C
A B'E = A ' % e
® C

RULE 9: Combining Summing Point

G
e e | 07 R
- 1+ GH
L=

C=RACH)G| /| B / CFRGIAHG | »(C+QHG#RG

vV eNd
- C(1+HG)=RG ==
C{1+HG) ~ R 1+GH

Proof:

RULE 11: Elimination of Positive Feedback Loop

R C ' _
| — > »

| FJ‘ 1-GH

o
—e
A4

2.5 EXAMPLES OF BLOCK DIAGRAM REDUCTION TECHNIQUE:
EXAMPLE 1:

Reduce the Block diagram shown in figure and find C/R.

l »G. ]
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SOLUTION:

Step1l: Move the Branch point after the Block

Py
Y

o
3.
Ig

1+ G1H

----------------------------------------------

--------------

C_[_G G.I.%: G, (G1G2+Ga _GGy+Gy
R \1+GHJ * G ) (1+GHJ{ G, 1+GH

RESULT:

C G1G2+G
The Overall Transfer function of the system,~ = -2
R 1+G{H
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EXAMPLE 2:

Using Block diagram reduction technique find closed loop transfer function of the system

whose block diagram is shown in figure.

SOLUTION:

Step 1: Moving the branch point before the block

Step 3: Moving summing point before the block.

- @ @T@—f—’c
HGyje
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Step4: Interchanging summing points and modifying branch points

R @ N Gy(GoGg +Gy) =C
re
GGGy +Gy) GiG,G3 + GGy
1+ G,G,H, 1+ GG,H, - GG,G; + GG,
1+ Gi(G,G; +Ga) Hy R E: G.GoH; + G,G3H, + G4H, 1+ GGoH; + G,G3H, + G4H,
1+ G1G;H1 G, . 1+ GG,H, : '
Step 7: Eliminating the feedback path
R GG,G3 + GGy C
1+ G1GzH1 + G2G3H2 + G4H2
GG,Gs + GG,
C  15GGH +GGH, +GH,  _ G{G,Gs + GGj
R - 1+ G1G2G3 + G1G4 1+ G1G2H1 + G2G3H2 + G4H2 + GTGZG:; + G1G4
1+ G1GzH1 3 G2G3H2 + G4H2
RESULT:
G1Gy G3 +G1Gy

C
The Overall Transfer function of the system,— =
R 1+G1G2H1+G2G3H2+G4Hp+G1G2G3+G1 Gy
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EXAMPLE 3:

Determine the overall Transfer Function C(S)/R(S) for the system shown in figure.

SOLUTION:

Step 1: Moving the branch point before the block

Step 3: Eliminating the feedback path
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Step4: Combining the blocks in cascade and eliminating feedback path

Step 5: Combining the blocks in cascade

GGy
1+ G,H,G,
1+ ﬁ*.. HZ
/ 1+ GH,G,
G.Gy SN cy C(S)
1+ G3G4H1 + GQG3H2 . G‘
[GuJe
Step6: Eliminating the Feedbackspath
GGyG,
1+ G3G4H1 + GzG3H2
(G«

Step 7: Combining the blocks in cascade

GG,Gy
1+ GG, H; + G,G;H,
. GG,G,
1+ GG Hy + G,G4H,

A—

RES) | . GG,Gs 4 C(S)
| 1+ G3GHy + G,G5H, + GGLGLG, — ’

1

x G

Cls) GG,G,G,
R(S) 1+ G3G4H1 + G2G3H2 + G1G263G4
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RESULT:
The Overall Transfer function of the system,ﬁ =

G1G2G3Gy
1+G3G4H1+G2G3H2+G1G2G3Gy

EXAMPLE 4:

Obtain the closed loop transfer function C(s)IR(s) of the system whose diagram is shown in
fig.

R(S)

SOLUTION:

Step 1: Splitting the summing point and rearranging the branch points

Step2: Eliminating the Feedback Path:
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Step4: Combing the blocks in cascade and eliminating feedback path

.........

R(ﬂ GGy .y GGy
T+ GZHT + GzG3H2 ) j__GLH_L__
- 1 G2GaH,
. 1+ G2H1
Step 6: Eliminating forward path
PR . ) -GtG2G3
R(S) G{G,Gs C(8) 1+ GH; + G,GaH,
14 GyH, + G,G;H, - GGH ) C LN Rt
I GRS "T5G,H, + GG, | Gy
ol
CCls) _ G,G,Gs +G
TR(s) 1+ GH,+ G,GyH, - GGH, ¢
RESULT:
C(S G1G2G
The Transfer Function of the system is ®) _ 1273 +Gy

R(S) 1+G;H1+G2G3H,—G1G2Hy

EXAMPLE §:
The block diagram of a closed loop system is shown in fig. Using the block diagram reduction

technique determine the Closed Loop Transfer Function C(s)/R{s).
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SOLUTION:

Step1: Splitting the summing point

__Ga(s) c®)
1+ G,(s)Hy(s) {

C(S)

) I ................................ . e
—>GEH ’é | T2 G,(8)H ()

H .
---------------------------------

-----------------------------------------

4A
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Step S: Eliminating the feedback path and feed forward path

RGS) { ; % P G | c®
k) i '@_’ 1+ Giy($)Hy(s) o
_Ga(s)

A 14 G,(s)Ho(s) |
G1 H‘ 2 2
(s) Hi(s) 1 oM

T+ Gy (s)Hy(8) Gy(s)Hi(s)

Step 6: Combining the blocks in cascade

R(S) | 5u0s) '
_—'@ 114 G, (s)Hy(S) + Gy(S) G (5)He(s)

.........................

Cls) _ Gy(s) [Gy(s)+1]
R(s} 1+ Gy(s) Hay(s) + Gy(s) G(s) Hy(s)

RESULT:

) _ G2[G1+1]
R(S) 1+G;H1+G1G2Hq

The Transfer Function of the system is

EXAMPLE 6:
Using block diagram reduction technique find the transfer function C(s)/R(s) for the system

shown in fig.

R(S)
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SOLUTION:

Step 1: Rearranging the Branch points

R(S)

Step 3: Moving the branch point after the block.

. {Hle
R(S) : - C(S)
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Step 5: Combining the blocks in cascade

| e '
‘ [AILET )
c(s)
R(S) a (
2 X "@_—’ 1+ G HH, >
Y A -
Ha(1+ GaHH) |
s G3G.
GGG
A5 GHH, e X R
1= GoGuGals | T+ GHH, ~ GGG H, - |
1+ GHH2 _ ' 1l

Step 7: Combining the blocks in cascade and eliminating the feedback path

C(S)

R(S) , G,G3Gy
I H,(1+ G4HH,)
- 2 GaGy
G{G,G4Cy

G,G,G,G, } ( H 1+ G4H1H2)] T 1+ GHH, - GGGty + GGH. (1+ GHH,)
15 GHH, — GsGaGaHs | GsGe |

e
14}
{

N
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Step 8: Eliminating the unity feedback path

-------------------------------

G{G,G4Cy
1+ GyHH, — GoGyGaHs + GiGH, (1+ GHHL)

R(S)

------------------------------------------------------------------------------

G1G2G3G4
Cfs) 1+ GHH, - G,G3G4H, + GG,H,(1+ GHH,)
RO 1, GGEE,
1+ G HH, — G,G3G4H; + GGoH (1+ GeHH,)
- ’ . GG,G3Gy
" 1+ GHH, - G,G3GyH; + GGH(1+ GHH,) + GG,G5Gy
- G1G,G3Gy
T 1+ HH.(Gy + GyG2GyHe ) + GiGo(Hs + G3G4) - G,G3GsH,
RESULT:

. . C(S G1G2G3Gy
The Transfer Function of the system is — =
y R(S) 1+H1H2(G4+G1G2G4H4 )+G1G2(H4+G3G4)—G2G364H3

2.4 SIGNAL FLOW GRAPH:

The signal flow graph is used to represent the control system graphically and it was
developed by S.J. Mason. A signal flow graph is a diagram that represents a set of simultaneous
linear algebraic equations. By taking Laplace transform, the time domain differential equations
governing a control system can be transferred to a set of algebraic equations in s-domain. The.

signal flow graph of the system can be constructed using these equations.

2.4.1 EXPLANATION OF TERMS USED IN SIGNAL FLOW GRAPH:

Node: A node is a point representing a variable or signal.

Branch: A branch is directed line segment joining two nodes. The arrow on the branch
indicates the direction of signal flow and the gain of a branch is the transmittance.
Transmittance: The gain acquired by the signal when it travels from one node to another is
called transmittance. The transmittance can be real or complex.

Input node (Source): It is a node that has only outgoing branches.

Output node (Sink): It is a node that has only incoming branches.

Mixed node: It is a node that has both incoming and outgoing branches.
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Path: A path is a traversal of connected branches in the direction of the branch arrows. The
path should not cross a node more than once.

Open path: A open path starts at a node and ends at another node.

Closed path: Closed path starts and ends at same node.

Forward path: It is a path from an input node to an output node that does not cross any

more than once.

Forward path gain: It is the product of the branch transmittances (gains) of a forward path.
Individual loop: It is a closed path starting from a node and after passing through a certain
part of a graph arrives at the same node without crossing any node more than once.

Loop gain: It is the product of the branch transmittances (gains) of a loop.

Non-touching Loops: If the loops do not have a common node then they are said to be non-

touching loops.

2.4.2 PROPERTIES OF SIGNAL FLOW GRAPH:
The basic properties of signal flow graph are the following:

e The algebraic equations which are used to construct signal flow graph must be in the
form of ¢auise’and effectrelationship.

e Signal flow graph is applicable to linear systems only.

e A node in the signal flow graph represents the variable or signal.

¢ A node adds the signals of all incoming branches and transmits the sum to all outgoing
branches.

¢ A mixed node which has both incoming and outgoing signals can be treated as an output
node by adding an outgoing branch of unity transmittance.

e A branch indicates functional dependence of one signal on the other.

e The signals travel along branches only in the marked direction and when it travels it
gets multiplied by the gain or transmittance of the branch.

e The signal flow graph of system is not unique. By rearranging the system equations

different types of signal flow graphs can be drawn for a given system.

2.4.3 RULES FOR SIGNAL FLOW GRAPH:

Signal flow graph for a system can be reduced to obtain the transfer function of the
system using the following rules. The guideline in developing the rules for signal flow graph

algebra is that the signal at a node is given by sum of all.
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Rule 1: Incoming signal to a node through a branch is given by the product of a signal at

previous node and the gain of the branch.

s 0 %

X7, ‘ X;TaxX, Tax,

Example:

%o
Ne

Rule 2: Cascaded branches can be combined to give a single branch whose transmittance is
equal to the product of individual branch transmittance.

Example:

a b ab

C-
X % % X, X,

Rule 3: Parallel branches may be represented by single branch whose transmittance is the sum
of individual branch transmittances.

Example:

/_+\9 a+b
X - -

I
- o
b_;x:(.\

Rule 4: A mixed node can be eliminated by multiplying the transmittance of outgoing branch

(from the mixed node) to the transmittance of all incoming branches to the mixed node.

Example:
A X ac
a
B > ~ o = : X,
X, b x" X4 X, bc

Rule 5: A loop may be eliminated by writing equations at the input and output node and output
node and rearranging the equations to find the ratio of output to input. This ratio gives the gain

of resultant branch.
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Example:

ab
1—bc
o P :;S
b X,
3 A > X = 4
S o3 o I3bo
X, %, X,

2.5 SIGNAL FLOW GRAPH REDUCTION:

The signal flow graph of a system can be reduced either by using the rules of a signal
flow algebra (i.e.,) by writing equations at every node and then rearranging these equations to
get the ratio of output and input (transfer function). The signal flow graph reduction by above
method will be time consuming and tedious. S.J.Mason has developed a simple procedure to

determine the transfer function of the system represented as a Signal flow graph.

2.5.1 MASON'S GAIN FORMULA:

The Mason's gain formula is used to determine the transfer function of the system from the
flow graph of the system.

Let, R(s) = Input to the system

C(s) = Output of the system

O]

Transfer function of the system, T(s) = R(S)

Mason's gain formula states the overall gain of the system [transfer function] as follows,

: 1
Overall gain, T=Z ; P Ay

T(s) = Transfer function of the system
Px = Forward path gain of K" forward path
K = Number of forward paths in the signal flow graph
A =1 - (Sum of individual loop gains)
+ (Sum of gain products of all possible combinations of two non - touching loops)
- (Sum of gain products of all possible combinations of three non - touching loops)

AK = A for that part of the graph which is not touching K" forward path.
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2.5.1 APPLICATIONS OF MASON’S GAIN FORMULAE:
e Easily find out the overall gain of the given control system.
e To determine the input, output relationship, we may use mason’s gain formulae.

e [t is widely applied to linear system analysis.

EXAMPLE 7:

Find the overall transfer function of the system whose signal flow graph is shown in figure.
: -H
2

R(s) 1
O —)- O ' -0
11 7 8
GG
SOLUTION:
LLFORWARD PATH GAINS:
There are two forward path, K =2
Let forward path gains be P1, and P2.
R(s) 1 G, Gz G, G, Gs 1 C(s)
> o » o »> < > o > o—p O —F—
T 2 3 4 5 6 7 8
Forward path-1
Gain of forward path-l, P1= G1 G2G3G4G5
RGS) 1 G, G, 1 CE

Forward path-2

Gain of forward path-2, P, = G4 GsGg
ILINDIVIDUAL GAIN:

There are three individual loops. let individual loop gains be Py P2j ang P31.
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Loop-1 Loop-2 + Loop-3
Loop gain of individual loop -1, P;; =-G, H;
Loop gain of Individual 1oop-2, P»; = -G, Gs H;
Loop gain of Individual 1oop-3, P3; = -Gs Hs

III.GAIN PRODUCTS OF TWO NON-TOUCHING LOOPS:

There are Two combination of 2 non-touching loops. Let the gain products of 2 non-touching
loops be Py, Py,

- G 4 g Gs 7

First combination of 2 non-touching loops

Gain product of first combination of two non-touching loops P> = P;1P31= (-G2 H;)(- GsHs) =
G2 Gs H;y Hs,

@\/

Second combmatzon of 2 non-touching loops.

Gain product of second combination of two non-touching loops P2, = P2;P31= (-G2 G3 Hy)(-
GsH;) = G2 G; Gs Hy Hi,

IV. CALCULATION OF A AND Ak:
A=1-(Py; + Py +P3) + (P12 +Pp)
=1 - (-G2H;- G2G3H; — GsHs) + (G2GsH Hs+ G2G3GsH,H3)
= 1 + GoHi+ GoGsHa+ GsHs+ GaGsH Hs+ GoG3GsHoH;
A = 1., Since there is no part of graph which is not touching with first forward path.

The part of the graph which is non-touching with second forward path is shown in figure.
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Az = 1 - (P“)
A2= 1 + G2H1
V. TRANSFER FUNCTION, T

By Mason's gain formula the transfer function, T is given by,
1 1 .
T = XZ Pcag = X (PA,+P,4;)  (Number of forward paths is 2 and so K = 2)
K

G1G2G3G4G5+G4G5G6(1+G2H1)

T= 1+GyH1+GyG3Hy+GsH3+G,GsH{H3+G,G3GsHyH3
RESULT:
T = G1G2G3G4G5+G4G5G61+G4G5G6G2H1
1+G,H1+G,G3H, +GsHs + Gy GsH1 H3 4G, G3 G H2 Hg
EXAMPLE 8:

Find the overall transfer gain C(S) / R(S) for the signal flow graph is shown in figure.

-H,
, Gs
R(S) G, - G, Gs S
A & S I
SOLUTION: | |
LLFORWARD PATH GAINS:
There are two forward path, K =2
Let forward path gains be P1, and P2.
R(s) - G, G, G, G, C(s)
o > < > —> > o »—0
1 , 2 3 -4 5

_ Forward path-1
Gain of forward path-1, P1= G; G2G3Gy
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R(S) a, a (s
o > o > o
= 2 3 4 5
Forward path-2 G,

Gain of forward path-2, P, = G; G2Gg
ILINDIVIDUAL GAIN:

There are five individual loops. Let individual loop gains be Py, P»; P3jand 4; Ps;.

2 3 4
loop-1
Loop gain of individual loop -1, P;; = -G, G3H;
G
2 - 3
-H,
- loop-2

Loop gain of Individual 1oop-2, P,; = -G, Ha
2 - G

loop-3
Loop gain of Individual 1oop-3, P3; = -G, Gg Hj

loop-4

Loop gain of individual loop -4, P4; = -G, G3G4 H

G,

4
loop-5

Loop gain of Individual 1oop-5, Ps; = Gs
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ITII.GAIN PRODUCTS OF TWO NON-TOUCHING LOOPS:
There are Two combination of 2 non-touching loops.

Let the gain products of 2 non-touching loops be P, and Py

2 C:z 3 O

KJ GS
-H,
First combination of
two non-touching loops

Gain product of first combination of two non-touching loops

Pi; = P2 Ps1= (-G2 Hy) (Gs) =- G2 Gs Ha,

G
2‘ %o G, /5 OGs
4

Second combination of
two non-touching loops

Gain product of'seeond combination of two moen=touching.loops

P2 = P31Ps1= (-G2 G H3)('Gs) == G2G5Ge Hs.

IV. CALCULATION OF A AND Ak:

A=1-(Py;+ Py + P31+ Py +Psy) + (P12 + Pa)
=1 - (-Gz2 G3Hi- GoHz — G2 G3G4H3+Gs - GoGeH3) + (- G2 Gs Ha - GoGsGe Hi)
=1+ G, GsH; + GoHz + G2 G3G4H;3 - Gs+ G2GeH3 - G2 Gs Ha - GoGsGe Hj

A; = 1., Since there is no part of graph which is not touching with first forward path.

The part of the graph which is non-touching with second forward path is shown in figure.

G

A2=1—G5
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V. TRANSFER FUNCTION, T

By Mason's gain formula the transfer function, T is given by,
_— 1 -
- —Z Pcag = N (PA;+P,A,)  (Number of forward paths is 2 and so K = 2)

G1G2G3G4(1)+G1G2G6(1 Gs)

RESULT:

G1G2G3G4+G1G2Gg— G1G2G5G6

T= 1+G,G3H{+G,Hy+Gy G3G4H — Gg—GyGsH2+GGgH3— G, GsGgH3

EXAMPLE 9:

Find the overall gain C(S)/R(S) for the signal flow graph is shown in figure.

-H,
R(S) 1 s, G s\ @ 1 Q)
o—>—0 > > Q > > O > )
1 -6 7
SOLUTION:
LLFORWARD PATH GAINS:
There is only one forward path, K =1
Let the forward path gain be P1.
R(s) 1 G, G, G, G, 1 Cs)
o — o——p o » >0 p——0
1 2 3 & 5 6 7

_ _ Forward path-1
Gain of forward path-1, P1= G; G2G3Gy

ILINDIVIDUAL GAIN:

There are three individual loops. let individual loop gains be Py; P2j ang P31.

& &
4&_576
o
loop-1

Loop gain of individual loop -1, P;; =-G3 G4 H;
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G-

3 4 A S
loop-2

Loop gain of Individual 1oop-2, P»; = -G, Gs H;

1%
2

G, G,
iy 5
> >

5

loop-3
Loop gain of Individual 1oop-3, P31 =-G; G2 G3 Gy

II.GAIN PRODUCTS OF TWO NON-TOUCHING LOOPS:
There is no possible combination of two non-touching loops, three non-touching loops, etc.,
IV. CALCULATION OF A AND Ak:

A=1- Py + Py +P3)

=1-(-G3 G4 Hi-G2 G3 H> -G1 G2 G3 Gy)

=1+G3 Gy Hi+ G2 Gs Ho + G1 G2 G3 Gy
A; = 1., Since there is no part of graph which is not'touching with first forward path.
V. TRANSFER FUNCTION, T

By Mason's gain formula the transfer function, T is given by,

Cls) 1 A 1 :
-8 _1 Z PcAk =— P A, (Number of forward path is 1and so K = 1)
K . :

R(s) A A
RESULT:
T = G1G2G3Gy
EXAMPLE 10:

The Signal Flow Graph for a feedback system is shown in figure. Determine the closed loop

Transfer Function.

: G,
R® & a G, G, c. €O
1 2\ M 5 6
= =1 H,
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SOLUTION:
LLFORWARD PATH GAINS:
There are two forward path, K =2

Let forward path gains be P1, and P2.

R(:) Ci, G, Ga G, Gs C(S)
! O > 2 < o e e e e ]
1 -2 3 4 5 : 6

» : Forward path-1
Gain of forward path-1, P1= G; G2G3G4Gs

R(S) G, G2
o > >
1 2

Forward path-2

Gain of forward path-2, P, = G; G2Gs Gg
ILINDIVIDUAL GAIN:

There are Four individual loops. Let the individualdoop gains be Py;, P2y, P3;and Py;.

H,
loop-1
Loop gain of individual loop -1, P;; = G, H;

3‘\:_/'4
H

2
loop-2
Loop gain of Individual 1oop-2, P»; = G; Ha

NS
“H,
- loop-3

Loop gain of Individual 1oop-3, P3; = G4 H3
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loop-4 )

Loop gain of Individual 1oop-3, P4; = GeH, Hs
III.GAIN PRODUCTS OF TWO NON-TOUCHING LOOPS:

There is only one combination of two non-touching loops. Let the gain products of two non-

touching loops be P,

'®) G O G, )
H, - H,

- First combination of
two non touching loops

Gain product of first combination of two non-touching loops
Py = P11P31= (G2 Hy)(G4H3) = G2 G4 Hy Hj,
IV. CALCULATION OF A AND Ak:

A=1-(Py+Px+Ps)+(P12)
=1- (Gz Hi+ G3 Hy+ Gs H3 + GgHy H3) + (G2 Gy Hy H3)
=1-GyHi- Gs Hy- G4 Hs - GeHy, Hy + G, G4 Hy H;

Since there is no part of graph which is not touching with first forward path-1, path-2,
Al =A2 =1.

V. TRANSFER FUNCTION, T

By Mason's gain formula the transfer function, T is given by,
1 1 .
T = XZ Pcag = X (PA,+P,4;)  (Number of forward paths is 2 and so K = 2)
K

RESULT:

G1G2G3G4G5+G1G2G5Gg
1-G;H{—-G3H;-G4H3-GgH,H3+G,G4H1H3

T=
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EXAMPLE 10:

Find the overall transfer function of the system whose signal flow graph is shown in figure.

-G, :
R(s) 1 1 G, G, 1 C(s)
° > — > o > > )
1 2\—34-/4 | S i
. - .
SOLUTION:
LLFORWARD PATH GAINS:
There are two forward path, K =2
Let forward path gains be P1, and P2.
R 1 - 1 G, G, 1 Cs)
O - O > O » O P> O — ©
1 2 3 4 5 6
_ Forward path-1
Gain of forward path-1, P1= G; G,
-G,
R(s) 1 1 ' | 1 - C(s)
1 2 \/\A 'y 5 6

Forward path-z
Gain of forward path-2, P, = - G3
ILINDIVIDUAL GAIN:

There is only one individual loop. Let the individual loop gain be Py,

Loop gain of individual loop -1, P;; =-G; H

J G
. -H
loop-1

III.GAIN PRODUCTS OF TWO NON-TOUCHING LOOPS:
There is no combination of two non-touching loops.

IV. CALCULATION OF A AND Ak:

A=1-(Pp)

—1-(-GH)
=1+G;H
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Since there is no part of graph which is not touching with first forward path-1 and path-2,
Al1=A2=1.

V. TRANSFER FUNCTION, T

By Mason's gain formula the transfer function, T is given by,

1 1
T = XZ Pcag = X (PA;+P,4;)  (Number of forward paths is 2 and so K =2)
K

G1G,(1)-G3 (1)

T:

RESULT:

_ G1G2—-G3
1+G.H

2.6 COMPARISON OF BLOCK DIAGRAM REDUCTION AND SIGNAL FLOW
GRAPH:

BLOCK DIAGRAM SIGNAL FLOW GRAPH
block diagram: signal flow graph:
R(s) e )
—_— G(S) L - a
R(s) C(s)

e In this case at each step Block * Only one time SFG is to be drawn

diagram is to be redrawn. That’s why and the Mason’s gain formulae is to

it is Tedious method. So, wastage of be cvaluated. So, time and space is

saved.

time and space.

PART — A:

1.What are the Basic components of Block diagram?
2.What is Block diagram?

3.List any two advantages of Block diagram.
4.Write any two disadvantages of block diagram.
5.What is Block diagram reduction technique?
6.What is signal flow graph?

7.What is Node?

www.binils.com
Anna University, Polytechnic & Schools



8.What is Branch?

9.Define Transmittance.

10.What is Input Node (or) Source?
11.What is Output node (or) Sink?
12.Define mixed node.

13.What is Path?

14.Define Open path.

15.What is closed path?

16.What is Forward path?
17.What is Forward path gain?
18.Define Loop gain.

19.Define Non-Touching Loop.

20.Write the applications of Mason’s gain formulae
PART —B:

1.Write the rule for Combine the blocks in Cascade.

2. Write the rule for.Combine the blocks_in parallel.

3. Write the rule for Move the branch point ahead of the block.

4. Write the rule for Move the branch point before the block.

5. Write the rule for Move the summing point ahead of the block.
6. Write the rule for Move the summing point before the block.
7.Why is negative feedback mainly used in closed loop system?
8.Reduce the Negative feedback loop.

9.State the rule for Eliminating the positive feedback loop.
10.Write about Mason’s gain formulae.

11.Define Individual loop.

12.Define any two properties of Signal flow graph.

13.Compare the difference between Block diagram reduction & Signal flow graph.

PART - C:

1. Using block diagram reduction technique find the transfer function C(s)IR(s)

for the system shown in fig.
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R(s)

| G > C(s)

H, [*

H-

Ans:

C(S) _ Gy
R(S) 1+G;H;+GH,

2. The block diagram of a closed loop system is shown in fig. Using the block diagram

reduction technique determine the Closed Loop Transfer Function C(s)/R{s).

Gy

+ C(S)

HE a

Ans :

O G1G,G,+G;G3Gy
R(S) 1+G;G4H;+G;G2G4+G1G3Gy

3. The block diagram of a closed loop system is shown in fig. Using the block diagram

reduction technique determine the Closed Loop Transfer Function C(s)/R{s).
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R(S Gy = G, > ((S)
H H,
Hy
Ans:
IO G1G,

" R(S) A+ G H)QA + GyH,) + G,G,Hy

4. Find the overall gain C(S)/R(S) for the signal flow graph is shown in figure.

Gy
»_,_.—"'-_ T >— _--_-"~-».
/ G 1 C
———
r_C _ 2R I\ AR A [GF G

k=1

5. The Signal Flow Graph for a feedback system is shown in figure. Determine the closed

loop Transfer Function.

R(s)
1

—h
'_l
v Q)
@
yo
w
A
-
@)
~
- w
St

Ans:

G1G2G3+G4+G1G2G,H; +G,G3G,Hy+G,G,H
1+G;G,H;+G,G3H,+GoH,

T:
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UNIT 111

TIME RESPONSE ANALYSIS

3.1 TIME RESPONSE

Time Response is the output of the closed loop system c(t) as a function of time.
Time Response can be obtained when the transfer function and the input to the system are
known. It is denoted as c(t). It is given by Inverse Laplace transform of the product of the input
and transfer function of the system.

Response in s-Domain

C
Transfer function = £
R(s)

G(s
C(s) = ﬁ)i{(s) xR(s) 3.1)
Taking Inverse Laplace transform on both sides

Response in t-domain

- -1 G(s)R
cCW=LOEI= LS. (3.2)

Time Response of @ control Systeni consistsfof twolparts:
1. Transient response

2. Steady state response.

Transient response:
1. It shows the response of the system when the input changes from one state to another state.

2. Transient response is dependent upon the system poles only and not on the type of input.

Steady state response:
1. It shows the response of the system as time t approaches infinity.

2. The steady-state response depends on the system dynamics and the input quantity.

3.2 STANDARD TEST SIGNALS

To predict the response of the system we require input signal. The characteristics
of input signal are a sudden shock, a sudden change, a constant velocity and a constant
acceleration. Hence test signals which resemble these characteristics are used as input signals

to predict the performance of the system.
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The commonly used test signals are
1. Step signal
ii. Ramp signal
iii. Parabolic signal
iv. Sinusoidal signal

v. Impulse signal

3.2.1 STEP SIGNAL
The step signal is a signal whose value changes from zero to A at t=0 and remains
constant at A for t > (. The step signal resembles an actual steady input to a system.

A special case of step signal is unit step in which A is unity.

A1

Fig 3.1 : Step Signal

The mathematical representation of the step signal is
r(t)=A;t>0
=0; t<0

A
RO=2 (3.3)
For unit step signal r(t) = 1, R(s) = i

3.2.2 RAMP SIGNAL
The ramp signal is a signal whose value increases linearly with time. The ramp signal
resembles a constant velocity input to the system. Ramp signal is the integral of step signal. A

special case of ramp signal is unit ramp signal in which the value of A is unity.

Y l“{”

Fig 3.2 » Ramp Signal
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The mathematical representation of the ramp signal is
r(t)=At;t>0
= 0;t<0

R(s) = S% ...... (3.4)

1
For unit ramp signal r(t) = t, R(s)= =

-3.2.3 PARABOLIC SIGNAL

In parabolic signal, the instantaneous value varies as square of the time from an initial
value of zero at t = 0. The parabolic signal resembles a constant acceleration input to the system.
Parabolic signal is an integral of ramp signal. A special case of parabolic signal is unit parabolic

signal in which A is unity.

>t

Figd3 & Parabolic Signal
The mathematical representation of the parabolic signal is,
2
r(t)=A otz 0
=0;t<0

R(s) = S% ...... (3.5)

t2
For unit parabolic signal r(t) = > R(s)= =

3.3 ORDER OF THE SYSTEM

The input and output relationship of a control system can be expressed by n™ order
differential equation. If the system is governed by nth order differential equation, then the
system is called nth order system.

Also, the order of the system can be determined from the transfer function of the system.
The transfer function of the system can be obtained by taking Laplace transform of the
differential equation governing the system and rearranging them as a ratio of two polynomials

n s.
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P(s) _ bos™+ bysm 14+ bysm=24 b 15+ by
Q(s) aps"+ ags" 1+ aysn2+ . a,_1s+ ap

Transfer function T(s) = K

where, P(s) = Numerator Polynomial

Q(s) = Denominator Polynomial

The order of the system is given by the maximum power of s in the denominator
polynomial, Q(s). The order of the system is given by the order of the differential equation

governing the system.
Here, Q(s) = ags™ + a;s" 1+ a,s"2+....a,_4s+ a,

Now, n is the order of the system
when n=0, the system is zero order system
when n=1, the system is first order system

when n=2, the system is second order system and so on.
3.4 TYPE NUMBER OF THE SYSTEM

The number of poles lying at the origin decides the type number of the system. The
type number is specified for loop transfer function G(s)H(s). In general, if N is the number of
poles at the origin, then the type number is N.

The loop transfer function can be expressed as a ratio of two polynomials is s.

_ P(s) _ (s+z1)(s+23 )(5+2Z3) ...
G(s)H(s) = K W) K Netp) ) Gpy) (3.7)

where, zi, z,, z3, .... are zeros of transfer function

P1, P2, P3, - ... are poles of transfer function
K = Constant
N = Number of Poles at the origin.
The value of N in the denominator polynomial of loop transfer function decides the type
number of the system.
If N = 0, then the system is type - 0 system
If N = 1, then the system is type - 1 system and so on.
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3.5 RESPONSE OF FIRST ORDER SYSTEM FOR UNIT STEP INPUT

A closed loop system with unity feedback is shown as

R(S} 1 C(i} —— R(h) . 1

TS 1+T18

Fig 3.4: Closed loop first order system

C(s)
>

First order system may represent RC circuit, thermal system etc. All systems having the

same transfer function will exhibit the same output in response to the same input.
The Closed loop transfer function of first order system,

€ _ _1
R(s) T ots+l

Response in s —Domain

1
C(s) = R(s) (TS+ 1)
When Unit Step signal is applied

R(S) = -

Substitute equation 3.10 in equation 3.9

1

C(s) = s(ts+1)
Using partial differential expansion method,

B
Ts+1

Cs) = £+

A is obtained by multiplying C(s) by s and letting s=0

1 1
C(S)XS ‘ 0 <S(S+%)>XS| 0 <S+%> ‘ 0

A=1

AlRrR IR
Il
f—

B is obtained by multiplying C(s) by (s + %) and letting s = —%

1
BZC(S)XS‘S:.UTZ <S(S‘1%)>X(S+%)‘s_1/’[ =

9 |qiR

1
| =% =-1
T

B=-1
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Substitute A and B in equation 3.12,

. _1_ 1
"C(S)_s Ts+1

On rearranging the denominator, we have

- 1_ 1 1
=571 L{e™} =

s+a

On taking the Inverse Laplace transform. The response in time domain is

given by,

e(t)= L7 C(s) = £ {g - %} _letT

ct)y=l-et/v* (3.13)
The equation (3.13) is the response of the closed loop first order system for unit

step input. For step input of magnitude, A, the equation (3.13) is multiplied by A.

. For Closed loop first order system,
Unit step response c(t) = 1-e~%/*
Step Response with magnitude A, c(t) = A (1-e"Y/7)

When t=0, c(0)= 1-e7%=1-e® =1-1=0

When t=1, o(t) = l-e"/™=l-e7! =1-0.36=0.632=63.2%
When t=21,  ¢(21)= 1-e72¥"=1-e72 =1-0.135=10.864 = 86.4%
Whent=31,  ¢(31)= 1-e73¥"=1-e73 =1-0.049 = 0.950 = 95%
Whent=41,  c(41)= l-e7#¥/"=1-e7* =1-0.018=0.981 =98.1%
When t=51,  ¢(5T)= 1-e75¥™=1-e7> =1-0.0 =0.993 = 99%
When t= oo, c(o)= l-e"®/=1-e™® = 1-0=1=100%

Initially the output c(t) is zero and finally it becomes 1. When t = 1, the value of c(t) reaches
63.2% of its total change. In a time of 51, the system is assumed to have attained the steady

state. Here 7 is called Time Constant.
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A r(t)

0.95

0.865

0.632

0 >t s ' >
T 2T 3T 4T

Fig 3.5a : Unit step input Fig 3.3b : Response for unit step input

Fig 3.5 : Response of first order system to unit step input

3.6 SECOND ORDER SYSTEM

The Closed loop second order system is shown in Fig 3.6

R(s) @2 Cis) Ris) P C(s)

8 + 208 Sz+2{_,mnﬂ+mnl

Fig 3.6 : Response of second order system

The Standard form of closed loop transfer function of a second order system is given by,

C(s) _ op”
R(s) 2+ 2(0,S + 0,2

where, ®, =Undamped natural frequency, rad/sec.
¢ = Damping ratio.

The Damping Ratio is defined as the ratio of the actual damping to the critical
damping. The response c(t) of second order system depends on the value of damping ratio.
Depending on the value of the system can be classified into the following four cases,

Case 1: Undamped system, =0
Case 2: Under damped system, 0<C<1
Case 3: Critically damped system, (=1
Case 4: Over damped system, c>1
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The characteristics equation of the second order system is,
s 2608 + 0" =0

It is a quadratic equation and the roots of this equation is given by,

—2Con + (4C%03— 4 02 —2Cont [403((*-1)
= _ + 2 _ 1
Lo 0y [C

roots are real and imaginary and
the system is undamped

when =0, s;, =% jou: {

roots are real and equal and
the system is critically damped

’ roots are real and unequal and
= _ + 2 — .
when G>1, 51, 5= -Gont 0 &7 = 1: { the system is Over damped

when 0 <{<1,s,8=-Con O /Qz—l = =-Lo, T Oy /(—1)(1—@2)
Lot oy V-1 /1—@2 =-gmnijcon/1—q2

_ e _ {roots are Complex conjugate and
S1, 82 = -G £J0g the system is Under damped

when £ =1, s, 2= - op: {

2
where 4=, |1 —

Here 4 is called damped frequency of oscillation of the system and its unit is rad/sec.

3.6.1 RESPONSE OF UNDAMPED SECOND ORDER SYSTEM FOR UNIT STEP

INPUT

The standard form of closed loop transfer function of second order system is

C(s) _ (Dnz
R(s) s2+2Lw,5+0,2

C(s) _ (Drlz
R(s)  s2+wp?

For undamped system, { = 0,

1
When the input is unit step, r(t) =1 R(s) = S
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2

2
On__ 1 _% (3.22)

.. The response in s-domain, C(s) = R(s
P » C(s) ( )sz+co$l s s2+03

By partial Fraction expansion,
z A B

) =———— == ——
) s(s2+m3) s s?+ o3

A is obtained by multiplying C(s) by s and letting s=0

o _ o _ o _

A= C(S) XS |S:0= s(sz+co$1) XS |S:o— m |S:o = co_% =1 . (323)

A=1
B is obtained by multiplying C(s) by (s* + ®2) and letting s> = —®3 or s=jm,.

0% _ 0% I

B = C(s) x (s* + w7) ‘s:jcon Tsstral) (s® + o7) | s=jo, ~ | s=ion G J¥nT S

B=-s

A B __ 1 s _ 1 _ (_s
Cls) = s + sZ+03 s sZ+2 L1} = s’ L{cos ot} = (SZ+60121)

Time Domain Response,/c(t) = LH{C(s)}= L1 { % B ﬁ} =l-cosw,ti ... (3.24)

The equation (3.24) is the response of undamped closed loop second order system for unit step

input. For step input of magnitude, A, the equation (3.24) should be multiplied by A.

"« For Closed loop undamped second order system,
Unit Step response c(t) = 1- cos w,t

Step Response with magnitude, A, c(t) = A (1- cos w,t)

®r(t) 4 i)

Fig : 3.7a Input Fig : 3.7b Response

Fig 3.7 : Response of undamped second order system for unit step input
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Using equation (3.24), the response of undamped second order system for unit step

input is sketched in fig 3.7, and observed that the response is completely oscillatory.

3.6.2 RESPONSE OF UNDERDAMPED SECOND ORDER SYSTEM FOR UNIT STEP
INPUT
The standard form of closed loop transfer function of second order system

C(s) _ oon2
R(s) s2+2Lo,S+o,2

For underdamped system, 0 < £ < 1 and roots of the denominator (characteristic equation) are
complex conjugate.

0h
(s2+2Lmps+o3)

The response in s-domain, C(s) = R(s)

1
For unit step input, r(t) = 1 R(s) = .

®f
s (s? + 2Cwys + 3)

C(s) = R(s)

By partial Fraction expansion method,

z A Bs+C
C(s) = o - ars il el & & 3.25
) s (s2+2Cwns+d2) LN (s2+2Copst a2 ) ( )

A is obtained by multiplying C(s) by s and letting s = 0,

=1

2
o A = s X C(S)|s=0 =S X i 2o

s (sz+2§cons+coﬁ)|5:0 ®

5N

To solve for B and C, cross multiply equation (3.25) and equate like power of s.
On cross multiplication equation (3.25) after substituting A = 1, we get,

0% = s? + 2Lw,s + w4 + (Bs + CO)s

02 = s? + 2Lw,s + 02 + Bs? + Cs

Equating the Coefficients of s>, we get, 0 =1 + B S.B=-1
Equating the Coefficients of s, we get, 0 = 2Cw,, + C S C=-2Cm,
. _A Bs+C — 1_ s+2Cmp
S C(s) = S + —(SZ+2§mns+wr21) s T Trestel e (3.26)

Let us add and subtract {*02 to the denominator of second term in the equation (3.26)

C(S) =§ . s+2Cop _ 1 s+2Cop

s2+2Cops+od Pl +EP0d s s2+2Lmps+l0d +of —CFol

1 S+260n _ 1 _ __st2Gon 2 2 2
s (stlop)?+od (1-¢3) s (s+op)?+od og = op (1-C7)
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1 s+Con Con
s (s+Con)2+03 (s+Con)?+03

Let us multiply and divide by 4 in the third term of the equation (3.27)

. C(S) — 1 S+Con _ C(D_n Wd

(s+Con)?+03 og (s+Cop)2+od

The response in time domain is given by,

_ -1 — -1 l _ S‘l‘C_,(Dn _ Cﬂ (Dd
(V) = LHC(s)} = £ { . —

— Q) — .
=1— e 5ot cosmyt — E)—n e~ 5“nt sin gt
d

Con

mn\j:

_g(l)nt
=1-2 </1—§2coscodt+ Csincodt>
[1-¢2
H=1- 0 <sin £ 3. prcosiogt | 1= &2 >
C =1—- (OF] (QF] =5
l1-¢2

Let us express c(t) in a standard form as shown below,

=1— e 5t | cos gt + sin mgt

g (S+Ccon)2+cog}

0q = o (1= C%)

1

L{1} = —

s

0)2
_at . t —
L{e sin ot} —(s Tt o
L{e % coswt} = __sta
ob = (s +a)? + 02
...... (3.28)

nt
c(t)y=1-— g (sinwgt X cos O + coswyt sinB)

1-¢°

—Cont

=1-2 sin(o,t + 6)
1-¢°
1—¢2
where, 8 = tan™! CC
The equation (3.28) is the response of
underdamped closed loop second order system with § and
for unit step input. For Step input of value, A | sing = |1 —
the equation (3.28) should be multiplied by A. | cos® = g
tan0 =

Note : On constructing right angle triangle

, we get

1 \/T

A
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"« For Closed loop underdamped second order system,

2
e—Gont . _ 1-¢
= sin(o,t + 0); 6= tan 1

e

~Cont 1-¢
e 1 sin(w,t+ 6) |;0 = tan™?
1-¢C

Unit Step response c(t) =1 —

Step Response with magnitude,A, c(t) = A1 —

2

4 r(t) L oe(t)

0 — - 1 /

Fig 3.8a : Input Fig 3.8b : Response

Fig 3.8 Response of underdamped second order system for unit step input

Using equation (3.28) the response of underdamped second order system for unit step
input is sketched and observed that the response oscillates before setting to a final value. The

oscillations depend on the value of damping ratio.

3.6.3 RESPONSE OF CRITICALLY DAMPED SECOND ORDER SYSTEM FOR
UNIT STEP INPUT

The standard form of closed loop transfer function of second order system is,

C(s) _ of
R(s) sZ+2Lops+m3

For critical damping C=1,

C) _ of of

R(s)  s?420opstod  (ston)? e (3.29)
When input is unit step, r(t) = 1 R(s) = %

. . 0i 1 0d of

7 C(O)=RGs) (stop)?2 s (stop)?  s(stop)2 T (3.30)
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By Partial Fraction expansion, we can write,

2
_ o3 _ A B C
Cs) = s(s+op)2 s + (s+mp)? s+mp
03 03

A= SXC(S)lS:(): |s:0=_2= 1
®n

s(s+wp)?

2

(9121 ®p
B =[(s + 0,)?>X C(S)] |s=-0n = (5 + ®,)? T, |s=-@n = <?)|S ®p =- Oy

d d (of —of
C= = [(s + 0,)?%X C(S)] |s= -0 = = (0)—) |s=-®n = <S—(§) |s= -0 = -1

S

o 1 Oy, 1

:s(s+con)2_ s (s+(on)2_ s+ o,

C(s)

The response in time domain,

1 1
c® =LHCE)}= £ {g_ (s +¢°:) 2 s+o }

c)=1— o,te Ont — g7ont

c=1— e“t(1+w,t) (3.31)

The equation (3.31) is the response of critically damped closed loop second order system for

unit step input. Fot.step input.of magnitude,.A,.the equation (3.31) should.be;multiplied by A.

=~ For closed loop critically damped second order system,
Unit step response, c¢(t)=1 — e “n'(1 + o, t)
Step response with magnitude A, c(t) =A [1 — e ®'(1 + 0,t)]

1 r(t) c(t)

Fig 3.9a : Input Fig 3.95 ; Response
Fig 3.9 Response of critically damped second order system for unit step input

Using equation (3.31), the response of critically damped second order system is

sketched as shown in fig 3.9 and observed that the response has have no oscillations.
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3.6.4 RESPONSE OF OVER DAMPED SECOND ORDER SYSTEM FOR UNIT STEP
INPUT
The standard form of closed loop transfer function of second order system is,

C(s) _ oF
R(s) s2+2Lops+m3

For overdamped system C >1. The roots of the denominator of transfer function are real and

distinct. Let the roots of the denominator be s,, Sp.

Sa»Sp = —Co, + 0y, /gz 1= — lgmn T o, /gz — 1] ....... (3.32)
LSy = [gmn - o, /gz - 1] ....... (3.33)
S, = lgmn + o, /g - 1] ...... (3.34)

Lets; = —s, 8, = —Sp

The closed loop transfer function can be written in terms of s; and s, as shown below,

C 2 2
& o e (3.35)
R(s) s2+2ConS+0h (s+s1)(s+s3)
When input is unit stepis applied, R(s) = =
_ o3
= €(s) =R(s) (s+51)(s+sz) s(s+sl)(s+sz)
By partial fraction expansion we can write, C(s) = __of _ A + B ¢
yp p > s(s+s1)(s+s3) (s+s1) (s+s3)
of _ oh
R N e L
_ o} _ o 0F ok _,
[con = on 21 [con +on 1] ok C-D  Coh-Cofred  of
_ _ of  _ _of o
B= G+ s)x U ks = 5+ s 6me) = S |55 T Tytosi )
2
—(D —®
- n Z On C=(s+ sp)X
[c;mn+@n<; 14+ + on -1 ] [Zmn(; ]1 2)c*—1 Sl
2
(Dn (l)n mn — (’)n
C(s) |s=s2 = =(s+ S2 ) s(s+sl)(s+sz) s(s+s1) | s=52= —s,(— 52+S1) —S,(—Sy+s1)

—of —of of

= __op 1
= 52[ Con — o P —1+Con — mn\/gi] [an c2— ] 5 [an@]SZ [2@] Sy

The response in time domain, c(t) is given by,
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1 On

®p 1 1
-1 S1 (S+S1) [ZJE] S; (s+s2)

e =L c——L e Sty 2 L =St

2]t 51 [z@] 2
()= 1- r (S” :t) ...... (3.36)

The equation (3.36) is the response of overdamped closed loop system for unit step

c(t)y=L"1

input. For step input of value, A, the equation (3.36) is multiplied by A.

=~ For Closed Loop Overdamped second order system,

< Slt Szt)
2 / 52

Unit step response, c(t) = 1-

Step response of magnitude, A, c(t)= A |1-

T (59
where, s; = [Cmn — ®, ,C I l [Cwn + o, /C —1]

c(t)

| r(t)

Fig 3. Ia : Inpui Fig 3.10b : Response

Fig 3.10 Response of over damped second order system for unit step input

Using equation (3.36), the response of overdamped second order system is sketched as
shown in fig 3.10 and observed that the response has no oscillations but it takes longer time for

the response to reach the final steady value.
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EXAMPLE 3.1:

1. Obtain the response of unity feedback system whose open loop transfer function is

4 . . .
G(s) = Sor’ when the input is unit step.
Solution:
Given: G(s) = Sot5) H(s) =1
4 4
C(s) _ G(s) _ s(s+5) _ s(s+5) __ 4
We know that, RG) _ 11G(OHG) — 172 @ T G5+t T 215544
s(s+5) s(s+5)

Also, given that the input is unit step -".r(t)=1 R(s)= i

14 4 4
S

4 _
C(s) = R(s) s24+5s+4 s s2+5s+4  s(s2+55+4)  s(s+1)(s+4)

By partial Fraction expansion method, we get

A, B, C
=3 ot
To Find A, multiply C(s) by s and let s =0
4 4 4
AT Emem - Tom T AT
To Find B, multiply €(s)/by (s+1)and let's = -1
- __* -4 _ 4 __
B= C(S)X (S + 1) |s:-l = S(S+4)|S:-l 13 =57 1.33
To Find B, multiply C(s) by (s+4) and let s = -4
B 4 I S
C=C(s) X(st4) |s=a = —S(S+1)|S:-4 rarrariabrie 0.33

Substitute A, B and C in equation 3.37,

1 1.33 0.33

CO=5- T
_ 1 (1 1.33 0.33
o) = LHEEY = L7 - 5+

RESULT:

Response c(t) = 1- 1.33e"+0.33¢*
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3.7 TIME DOMAIN SPECIFICATION

The desired performance characteristics of control systems are specified in terms of
time domain specifications. Systems with energy storage elements cannot respond
instantaneously and will exhibit transient responses, when they are subjected to inputs or
disturbances.

The transient response characteristics of a control system to a unit step input are specified
in terms of the following time domain specifications.

1. Delay time, tq

2. Rise time, t,

3. Peak time, t,

4. Maximum Peak overshoot, M,

5. Settling Time, t;

c(t)
A

il =~ = == \L
1 m@/—\uﬁ;/]‘é: ji?g? EI:. arror

()] ——

b

-
0 ta t, & ts t

Fig 3. 11 Damped Oscillatory response of second order system for unit step input

The time domain specifications are defined as follows

Delay Time (tq):

It is the time taken for response to reach 50% of the final value for the very first time.
Rise Time (t,):
It is the time taken for the response to rise from 0 to 100% for the very first time. For

underdamped system, the rise time is calculated from 0 to 100%. But for over damped system,
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it is the time taken by the response to rise from 10% to 90%. For critically damped system, it

is the time taken for response to raise from 5% to 95%. t.

£ = [f;de] ..... (3.38)

2

1-¢
C =n

where, 6 = tan’!

Peak Time (tp):

It is the time taken for the response to reach the peak value the very first time. (or) It

is the time taken for the response to reach the peak overshoot, M,

ty = [%] ...... (3.39)

The damped frequency of oscillation w; = o, |1 — QZ

Peak Overshoot (M,):
It is defined as the normalized difference between the time response peak and the steady
output.
c(tp)—c()
%M, = ——‘2-——-x100 ... 4
YoM, o (3.40)

where, c(t) = Peak response at t = t,,
¢ (o0) = Final steady state value
-
%M, = el x 100

Settling Time (t;):

It is defined as the time taken by the response to reach and stay within a specified error.
It is usually expressed as % of final value. The usual tolerable error is 2% to 5% of the final

value.

4
ty = [E] = 4t (For 2% error)

3
t, = [E] = 31 (For 5% error)

In general, for a specified percentage error, settling time can be evaluated using
equation.

—In(%error)
tg = [ Co, ]
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EXAMPLE 3.2:

20
The open loop transfer function of a unity feedback system is G(s) = ——. Find the

s(s+6)°
following
i. Time constant
ii. Rise time
iii. Peak Time
iv. Peak overshoot
v. Settling Time for 5% tolerance.
Solution:
Given: G(s) = —— , H(s) =1
n: = =
ive S 510 S
20 20
C(s) G(s) s(s+6) s(s+6) 20
We know tha R(s) 1+G(H(S) 1+ (1) s6H0)+20 (2166420

s(s+6) s(s+6)

On comparing with the general equation

20 0%

$2+65+20  s2+2CopS+02

Undamped Natural Frequency (0,): o5 = 20; o, =/ V20 =4.47 rad/sec.
Damping Ratio (§): 26ay, = 64 2x447x¢ = 6; ( =-2-=.0671

94
This system is underdamped system as the value of damping ratio is less than 1.
(i) Time Constant, (7):
1 1 1

T= — =

Lon  447X0.671  2.999

=0.33 sec.

Damped Natural Frequency, (,):

0g = Oy /1 - CZ = 4.47,\/1—(0.671)? = 4.47xV0.549 = 4.47x0.741

oq = 3.314 rad/sec.
(ii) Rise Time, ( t,):

m—0
o = [z
1 _ 2
g V1= (0671)2 1 0741

=t
c an 0.671 M 0671

By Converting Degrees to Radians
0 = 0.83 radians

0=tan’! =tan~11.104 = 47.82°
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47.82° = (% x47.82) radians= 0.83 radians

_3.14-0.83 _ 231

t, = 33t 3_314=0.697 sec.

(iii) Peak Time, (tp):

o 3.14
tp = [cod ] = [3_314 ] =0.947 sec.

(iv) Peak Overshoot, (M},):
—Cm
2
%M, = eV'™>'X 100

—(0.671)(3.14) —2.106
%M, = e 0741 x 100 = e 074 x 100 = e 2842x 100 = 0.058 x 100=5.8%

(v) Settling Time, (t,):

_In(%error)  _jp0.05) 299
oy 7 (0.671)(447) ~ 2.9993

ts = = (0.996 sec.

RESULT:

(i) 7=0.33 sec  (ii) t. =0.697 sec (iii) t, =0.947 sec
(iv) %M, =5.8%  (v) tg = 0.996 sec

3.8 STEADY STATE ERROR

The steady state error is the value of error signal e(t), when t tends to infinity. The
steady state error is a measure of system accuracy. These errors arise from the nature of inputs,
type of system and from non-linearity of system components. The steady state performance of
a stable control system is generally judged by its steady state error to step, ramp and parabolic
inputs.

Consider a closed loop system shown in fig 3.12

Ris) E(s) Cis)
—>®—> G6)
Let R(s) = Input signal | ‘
His)

E(s) = Error signal e
C(s)H(s) = Feedback signal i dande
C(s) = Output signal or response
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The error signal, E(s) =R(s)-C(s)H(s) .. (3.42)
The output signal, C(s) =E(s)G(ss) .. (3.43)
On substituting for C(s) from equation (3.43) in equation (3.42) we get,

E(s) = R(s) - [E(s)G(s)]H(s)

E(s) + E(s)G(s)H(s) = R(s)

E(s) [1 + G(s)H(s)] = R(s)

. _ R(s)
“EO) = teone e (3.44)
Let, e(t) = error signal in time domain.
. _1-l _ R(s)
Le@-L'EO o) e (3.45)

Let ey = steady state error.
The steady state error is defined as the value of error signal e(t) when t tends to infinity.

€= Lt e()

The final value theorem of Laplace transform states that,

If F(s)= L{f(t)} then, tLt f(t) = LtO s F(s)
Using Final Value theorem,

= — =3 SI{—(S)
The steady state error e = tEEO e(t) = sI—'>to s E(s) s[_.:co (1+ Go) H (S)) ...... (3.46)

3.9 STATIC ERROR CONSTANTS

When a control system is excited with standard input signal, the steady state error may
be zero, constant or infinity. The value of steady state error depends on the type number and
the input signal. Type-0 system will have a constant steady state error when the input is step
signal. Type-1 system will have a constant steady state error when the input is ramp signal or
velocity signal. Type-2 system will have a constant steady state error when the input is
parabolic signal or acceleration signal. For the three cases mentioned above, the steady state

error is associated with one of the constants defined as follows.

Positional error constant, K, = Lt0 G(s)H¢s) (3.47)
Velocity error constant, K, = Lto sG(s)Hs) (3.48)
Acceleration error constant, K, = Lt0 sG(s)HGs) (3.49)

The K,, K, , K, are in general called static error constants .
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3.10 STEADY STATE ERROR WHEN THE INPUT IS UNIT STEP SIGNAL

- Lt (—R®__
The steady state error e = Sli>to (1+G(s) H(S))

When the input is unit step, R(s)= é

1
e LA L = ]
" s = SEt()(HG(s) H(s)) - sEto(HG(s) H(s)) T I+ LLGEHE) T 14K

where, [, = Lt G(s) H(s) e =—I (3.50)

ss
1+ K,

The constant K,, is called the positional error constant.

Type-0 System

(s+z1)(s+2z5 )(s+2z3)...... Z1.Z2.23 ...
K, = LtG(s)H(s)=Lt K =K = Constant
P o (s) H(s) s—0  (s+p1)(s+p2)(s+P3).... P1.P2-P3-
SBgg = = Constant

T 14K,
Hence in type-0 systems when the input is unit step, there will be a constant steady state
error.

Type-1 System

. _ (s+z1)(s+2z5 )(s+23)...... _
Kp = in»toG(S) H(s) sl—‘>t0 K S(s+p1)(s+pp) (5+P3) v *

1 1
SBgg = = =0
1+ Kp 1+

Type-2 System

(s+2z1)(s+2z3 )(s+2z3)...... .
s2(s+p1)(s+P2) (5+P3) .-t

Ky = L1 GO HE =L K

1 1

T 14K, 1+

eSS

In systems with type number 2 and above, for unit step input, the value of K, is infinity

and so the steady state error is zero.

3.11 STEADY STATE ERROR WHEN THE INPUT IS UNIT RAMP SIGNAL

R
The steady state error eis = Lt (&)
50 \1+G(s) H(s)

When the input is unit ramp, R(s)= Siz

. —_— —52 = 1 - 1 = 1
“ e = LU <1+G(S) H(S)) = Ly (s+sG<s) H(s)) ~ sGOEHE) Ky

where, K, = Lt s G(s) H(5) N o (3.51)

The constant K, is called velocity error constant.
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Type-0 System

(s+z1)(s+z3 )(s+Z3)...... _

Ky = Lt s G(s)His) =Lt s K (s+p1)(5+po)(5+Pg)-s 0
1 1
Css = E - 6 = ®

Hence in type-0 system when the input is unit ramp, the steady state error is infinity.

Type-1 System

(stz1)(s+z )(s+23)...... Z1.Z22.23 ...

K, = Lt sG(s) H(s) =Lt sK = K === = Constant
[— (s) H(s) $—0 S s(s+pq)(s+py)(stp3)-me- P1-Py-Ps- onstan
Sy = KLV = Constant

Hence in type-1 system when the input is unit ramp there will be a constant steady state
error.

Type-2 System

(S+Z1)(S+Z2 )(S+Z3) ...... _
s2(s+p;)(s+py)(s+p3) -

Ky = LtsG(s) H(s)=Lt sK
s—0 s—0

In systems with type number 2 and above, for unit ramp input, the value of K, is infinity

so the steady state error is zero.

3.12 STEADY STATE ERROR WHEN THE INPUT IS UNIT PARABOLIC SIGNAL

— Lt (—R®__
The steady state error e = Sli>to (1+G(s) H(S))

When the input is unit parabola, R(s)= S%

1
e o Le (2 ) ! =5t =1
"G T sL—':cO <1+G(s) H(s)> B sL_':Eo (sz+ s% G(s) H(S)) ~ s2GEHE)  Ka

where, [, = Lt s2G(s) H(s) feg=— (3.52)

The constant K, is called Acceleration error constant.

Type-0 System

(S+Zl)(S+Z2 )(S+Z3) ...... _

= 2 = 2 =
Ka SL_‘POS G(s) H(s) SI_':E() s°K (s+p1)(s+py)(s+P3) - 0
1 1
ess - E - 6 = 00

Hence in type-0 systems for parabolic input, the steady state error is infinity.

Type-1 System

(s+21)(s+2p )(5+23) s _
s (s+p1)(s+P2)(5+P3)-eon

K, = Lt s®2G(s) H(s) =Lt s?K
s—0 s—0
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Hence in type-1 systems for parabolic input, the steady state error is infinity.

Type-2 System

(S+Zl)(S+Z2 )(S+Z3) ...... Z1.29.23...

K, = Lt s®2G(s) H(s) =Lt s?K
s—0 s—0

s2(s+p;)(s+p,)(s+Pg) e

= = Constant

oo eSS =

1
— = Constant.

P1-PyP3--

Ka
Hence in type-2 system when the input is unit parabolic there will be a constant steady
state error.

Type-3 System

(s+z1)(s+2zy )(s+2Z3)...... _
s3(s+p;)(s+p,) (s+Pg)-ee--

K, = Lt s®G(s) H(s) = Lt s?K
s—0 s—0

In systems with type number 3 and above, for unit parabolic input, the value of K, is

infinity and so the steady state error is zero.

Table: 3.1 Static error constant for various type number of systems

Error Constant Type 0 Type 1 Type 2 Type 3
K, Constant 0 0 0
Ky 0 Constant 0 0
Ka 0 0 Constant 0
Table: 3.2 Steady state error for various types of input
Input signal Type 0 Type 1 Type 2 Type 3
Unit Step 1 0 0 0
1+K,
Unit Ramp 0 1 0 0
Ky
Unit Parabolic o0 o0 i 0
Ka

qQ1
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EXAMPLE 3.2:
Determine Positional, velocity and acceleration error constants for the following unity

feedback system for which the open loop transfer function is/are

20 K _ K(s+2)

L 6O = et 90 " s@iztanral) 00 T s@rrstiaze)

Solution:

20
(0.5s+1) (s+10)

1. G(s) =

For unity feedback system, H(s) = 1
". Loop Transfer Function G(s)H(s) = G(s)

Positional error constant

Lt G(s) H(s) = L 0(0 5571) (5710) 20/10=2
Ky=2
Velocity error constant
- CLts— 20
Ky _SI_JFOSG(S) H(s) = 1_‘>tos (0.5s+1) (s+10) =0

K.,=0
Acceleration error constant
20

_ 2 _ 2 —
Ka sI:>t0 s°G(s) Hs) s]__.:to S (0.5s+1) (s+10) 0
K.=0
K
2.G(s) = s(s2+260n+®32)

For unity feedback system, H(s) = 1
". Loop Transfer Function G(s)H(s) = G(s)

Positional error constant
K

= Lt G(s) H(s) = L ———— =K/l =o
OS(s +2Con+nd)
K, =0
Velocity error constant
K, =Lts G(s) H(s) = Lts - kX
0 s(s +2optm3) O
K
KV = —
o,
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Acceleration error constant

K K
K.= Lt s?G(s) H(s) = Lt s? = =
s—0 (5) Hs) s—0 (s +2Con+od) (s*+2Con+o2)
K.=0
_ K(s+2)
3.G(s) = s(s3+7s2+125s)

For unity feedback system, H(s) = 1
.". Loop Transfer Function G(s)H(s) = G(s)

Positional error constant
K(s+2)

Ko = LLGO HE) = Lt Somvrerrizg 20—
K, =00
Velocity error constant
_ _ K(s+2) _ _
Ky sl_‘>tos G(s) H(s) SL_‘P()S s(s3+7s2+12s) 2K/0 =
K,=wo
Acceleration error constant
_ 2 y 2 K(s#+2) i | 2! (K(s+2) - K(s+2)
Ka s]_—‘>t0 s“G(s) H(s) SI_'FO . s(s347s24+12s) | 5§50 7 5A(s247s%12) SI'_'>0 (s247s+12)
K.=2K/12
K.=K/6
EXAMPLE 3.3:
) ) 10(s+2)
For a unity feedback control system, the open loop transfer function, G(s) = 2D’
Find (i) The position, velocity and acceleration error constants.
(i1) The steady state error when the input is R(s), where R(s)= % — S% + 3%
S
i.  To Find Static error constants
For a unity feedback system, H(s) = 1
.. _ _ _ 1, 10(s+2) _
Position error constant, K, sl—ﬁtoG(S) H(s) SL_.)tOG(s) sL—'>to 2(s+1)
, _ _ 10(s+2) _ 10(s+2) _
Velocity error constant, K, SI_‘)tos G(s) H(s) S[_.)tos 264D oSSt
5 10(s+2) _ 10(s+2)

Lt

26t o s 20

Acceleration error constant, K,= Lt0 s?2G(s) H(s) = Lt0 S
S—> S—
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ii. To Find Steady state error

. . . _ R(s)

The error signal in s-domain, E(s) = ===~ GOH®)

. 3 2 1
Given that, R(s)== — 5+ —

s s 3s
3 2, 1 3 2, 1
. _s s2° 352 __ _ s s2'3s3
- E(s) = 10(s+2) ~  s2(s+1)+10(s+2)
s2(s+1) s2(s+1)

3 [ s?(s+1) ]_i[ s?(s+1) ]+ i[ s?(s+1) ]

s Ls2(s+1)+10(s+2) s2 Ls2(s+1)+10(s+2) 3s3 Ls2(s+1)+10(s+2)

The steady state error e can be obtained from final value theorem.

Steady state error, e =tLt e(t) = LtO s E(s)
—0 §—

. — Lt {g [ s2(s+1) ] _i[ s2(s+1) ] n 1 s2(s+1) ]}
S By = S_}()S s Ls?(s+1)+10(s+2) s2 Ls2(s+1)+10(s+2) 3s3 Ls2(s+1)+10(s+2)

~ Lt 3s%(s+1) _ 2s(s+1) (s+1) }z 0_0+ L
o0 [S2s+D+10(s+2)  sA(s+D+10(s+2)  35%(s+1)+10(s+2) 60
Css — 5
RESULT:
(i) Position error constant, K, =

Velocity error constant, K, =«

Acceleration error constant, K, =20

.. 3 2 1 1
(i) When, R(s)= Pl + 357 Steady state error, e = 50

REVIEW QUESTIONS
PART A
1. What is the importance of test signals?
2. What is transient and steady state response?
3. Name the test signals in control system.
4. Define: Damping ratio.
5. How the system is classified according to the value of damping?
6. Sketch the step response of a 1* order system.

7. Sketch the response of a second order undamped system.
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8. Write the expression of a damped frequency of oscillations.
9. List the time domain specifications.
10. Define Delay time.

11. Define Rise time.

12. Define time.

13. Define Settling time.

14. Define Peak overshoot

15. What is steady state error.

16. Define: Positional error constant.
17. Define: Velocity error constant.

18. Define: Acceleration error constant.
19. Write the Final Value Theorem

20. Write the Time Domain Response of First order system to unit step input.

PART-B
21.Define Step signal and give its graphical representation and mathematical expression.
22. Define: Ramp signal and give its graphical representation and mathematical expression.
23. Define: Paraboli¢ signal and give.its.graphical representation and mathematical expression.
24. What is time response? Write the expression for time response in ‘s’ domain and time
domain.
25. The transfer function of a system is 10/1+s. Find the steady state error to step input When
operated as unity feedback.
26. For unit step input, a system with forward transfer function G(s)=20/s> and feedback path

transfer function is H(s)=(s+5). Find the steady state output.

PART-C

27. For a unity feedback system, G(s)=36/s(s+0.72). Determine the characteristic equation and
hence calculate damping ratio, peak time, settling time, peak overshoot and number of cycles
completed before output settles for unit step input.

28. The open loop transfer function of a unity feedback system is given by G(s)=40/s(0.2s+1).
Determine the steady state error using constants.

29. The response of control system has an overshoot of 30% for a step input and overshoot
takes place 0.05 seconds later after the excitation is applied. Find the second order transfer

function to achieve this.
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30. The open loop transfer function of a system is G(s)=20 /(s+1)(0.2s+1) and feedback path
transfer function is H(s) = 1/5. Determine the natural frequency of oscillations, damped
frequency of oscillations, damping ratio, maximum overshoot and settling time for 2%
tolerance band.

31. The following expression denotes the time response of a servomechanism

c(t) =1+ 0.2¢°" - 1.2 ¢'” Obtain the expression for the closed loop transfer function of the
system. Determine the undamped frequency and damping ratio.

32. Consider a unity feedback system with a closed loop transfer function

C(s)/R(s)= (Ks +b)/(s*+as+b). Determine the open loop transfer function G(s). Show that the

steady state error with unit ramp is given by (a-K) / b
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UNIT IV

FREQUENCY RESPONSE

4.1 SINUSOIDAL TRANSFER FUNCTION AND FREQUENCY RESPONSE

The response of a system for the sinusoidal input is called sinusoidal response. The
ratio of sinusoidal response and sinusoidal input is called sinusoidal transfer function of the
system and in general, it is denoted by T (jw). The sinusoidal transfer function is the frequency
domain representation of the system, and so it is also called frequency domain transfer function.
The sinusoidal transfer function can be obtained as shown below.

1. Construct a physical model of a system using basic elements/parameters.

2. Determine the differential equations governing the system from the physical model of the
system.

3. Take Laplace transform of differential equations to convert them to s-domain equation.

4. Determine s-domain transfer function, T(s), which is ratio of s-domain output and input.

5. Determine the frequency domain transfer- function, T (jw) by replacing s by jo in the s-
domain transfer function, T(s).

Frequency Response:

The frequency domain transfer function T (jo) is-a,complex function of . Hence it can
be separated into magnitude function and phase function. Now, the magnitude and phase
functions are real functions and they are called frequency response.

The frequency response can be evaluated for open loop system and closed loop system.
The frequency domain transfer function of open loop and closed loop systems can be obtained
from the s-domain transfer function by replacing s by jo shown below.

Open loop transfer function G(s) _s=jo . G(jo) = |G(jw)| 2G(jw)

Closed loop transfer function % =M (jo) = |[M(jw)| £M(jw)
The advantages of frequency response analysis are the following.

1. The absolute and relative stability of the closed loop system can be estimated from the
knowledge of their open loop frequency response.

2. The practical testing of systems can be easily carried out with available sinusoidal signal
generators and precise measurements

3. The transfer function of complicated systems can be determined experimentally by

frequency response tests.
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4. The design and parameter adjustment of the open loop transfer function of a system for
specified closed loop performance is carried out more easily in frequency domain.

5. When the system is designed by use of the frequency response analysis, the effects of noise
disturbance and parameter variations are relatively easy to visualize and incorporate corrective
measures.

6. The frequency response analysis and designs can be extended to certain nonlinear control

systems.

4.2 FREQUENCY DOMAIN SPECIFICATIONS

The performance and characteristics of a system in frequency domain are measured in
terms of frequency domain specifications. The requirements of a system to be designed are
usually specified in terms of these specifications.

The frequency domain specifications are,
1. Resonant peak, M,

2. Resonant Frequency, o,

3. Bandwidth

4. Cut-off rate

5. Gain margin, K,

6. Phase margin, y

Resonant Peak:

The maximum value of the magnitude of closed loop transfer function is called the
resonant peak. A large resonant peak corresponds to a large overshoot in transient response.
Resonant Frequency:

The frequency at which the resonant peak occurs is called resonant frequency. This is
related to the frequency of oscillation in the step response and thus it is indicative of the speed
of transient response.

Bandwidth:

The Bandwidth is the range of frequencies for which normalized gain of the system is
more than -3db. The frequency at which the gain is -3db is called cut-off frequency. Band width
is usually defined for closed loop system and it transmits the signals whose frequencies are less
than the cut-off frequency. The Bandwidth is a measure of the ability of a feedback system to
reproduce the input signal, noise rejection characteristics and rise time. A large-bandwidth

corresponds to a small rise time or fast response.
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Cut-off Rate:

The slope of the log-magnitude curve near the cut off frequency is called cut-off rate.
The cut -off rate indicates the ability of the system to distinguish the signal from noise.
Gain Margin, K:

The gain margin, K, is defined as the reciprocal of the magnitude of open loop transfer

function at phase cross over frequency.
1

Gain Margin, K, = W
(A)pc

The gain margin in db can be expressed as,

1
K in db = 20 log Kg = 20 log W
(.l)pc

Phase cross-over frequency, Mp.:

The frequency at which the phase of open loop transfer function is 180° is called phase
cross-over frequency.
Phase margin, y:

The phase margin is defined as the additional phase lag to be added at the gain cross
over frequency to bring the system to the vetrge of instability.

Phase margin ¥ =180°+_ @,
Gain cross over frequency Wg,:

The frequency at which the magnitude of the open loop transfer function is unity (or it

is the frequency at which the db magnitude is zero) is called gain cross over frequency Wgc.

The phase margin is obtained by adding 180°to the phase angle ¢ of the open loop
transfer function at the gain cross over frequency.
4.3 BODE PLOT

The Bode plot is a frequency response plot of the sinusoidal transfer function of a
system.

A Bode plot consists of two graphs.

1. One is a plot of the magnitude of a sinusoidal transfer function versus logw,

2. The other is a plot of the phase angle of a sinusoidal transfer function versus

logw.

The Bode plot can be drawn for both open loop and closed loop system. Usually

the bode plot is drawn for open loop system. The standard representation of the

logarithmic magnitude of open loop transfer function of G(jw)is 20 log|G(jw)].
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Where the base of the logarithmis 10. The unit used in this representation of the magnitude
is the decibel, usually abbreviated in db. The curves are drawn on semi log paper using
the log scale (abscissa) for frequency and the linear scale (ordinate) for either magnitude

(in decibels) or phase angle (in degrees).

The main advantage of the bode plot is that multiplication of magnitudes can be
converted into addition. Also, a simple method for sketching an approximate log-magnitude
curve is available.

K(1+ST1)
s(1+sTp)(1+sT3)

Consider the open loop transfer function, G(s) =

K(1+jwT,)
s(1+jwT,)(1+jwT;3)

G(jo) =

4.3.1 PROCEDURE FOR MAGNITUDE PLOT OF BODE PLOT

From the analysis of previous sections, the following conclusions can be obtained.

1. The constant gain K, integral and derivative factors contribute gain (magnitude) at
all frequencies.

2. In approximate plot/the first, quadratic and~higher order factors contribute gain
(magnitude) only when the frequency is greater than the comer frequency. Hence the low
frequency response up to the lowest comer frequency is decided by K or K / (jo)" or K(jo)"
term. Then at every comer frequency, the slope of the magnitude plot is altered by the first,
quadratic and higher order terms. Therefore the magnitude plot can be started-with K or K/(jw)"
or K(jo)" term and, then the db magnitude of every first and higher order terms are added one
by one in the increasing order of the corner frequency.

This is illustrated in the following example.

_ K(14ST1)?
G) =5 (trsT2)(145T3)
: 2
G(jw) _ K(1+(wT1)

S(1+(wT2)(1+(wT3)
Let, T1<T3<T,
The corner frequencies are oc1=1/T;; wc2=1/T,; wc3=1/Ts.

Let, oci<mocs<wmcs,

www.binils.com
Anna University, Polytechnic & Schools



The magnitude plot of the individual terms of G(jw), and their combined magnitude
plot are shown in figure.
The step by step procedure for plotting the magllitude plot is given below:
Stepl: Convert the transfer function into Bode form or time constant form. The Bode form of

the transfer function is,

K(1+sT1)
G(s) = " 7 s
S(1+S 2)(1+m+2 w—n)

K(1+jwT,)

G(jm) = . w2 .
]w(1+]wT2)(1—m—nz+]28w—n)

Step 2: List the corner frequencies in the increasing order and prepare a table as shown below.

Term Corner frequency Slope | Change in slope
rad/sec db/dec db/dec

In the above table, enter K or K/ (jw)" or K(jw)" as the first term and the other terms in
the increasing order of comer frequencies. Then enter the comer frequency, slope contributed

by each term and change in slope at every corner frequency.

Step 3: Choose an arbitrary frequency (1) which is lesser than the lowest corner frequency.
Calculate the db magnitude of K or K/ (jo)" or K(jw)" at ®; and at the lowest comer frequency.
Step 4: Then calculate the gain (db magnitude) at every corner frequency one by one by using
the formula,

Gainat wy, = change in gain from oy to @, + Gain at ®y

= [slope from wy to w,+log(m,/ my)] + gain at o«
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+db
0db
—db

:. Magnitude ploléof the term U—I{-g

°

+db
Odb

0db

(1+joTs)

Magnitude indb ——»

Magnitude plat of the term

0db

- db ; | | | S Loy
F - . : 1
40% : : - Magnitude plot of the term ————
+db % Odbidec : _ : (1+joTy)

0db i ﬂ@"’* :
; : %
= 5 %
0, ' “;u fﬂ.ue w(log sca]t)
Fig 4.1

Step 5: Choose an arbitrary frequency, o, which is greater than the highest frequency. Calculate
the gain at o, by using the formula in step 4.

Step 6: In a semi log graph sheet mark the required range of frequency on x-axis and the range
of db on y-axis (ordinary scale) after choosing proper unit.

Step 7: Mark all the points obtained in steps 3, 4, and 5 on the graph and join the plot by
straight lines. Mark the slope at every part of the graph.
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v

v

Fig 4.2
4.3.2 PROCEDURE FOR CONSTRUCTING PHASE PLOT OF BODE PLOT:

The phase plot is an exact plot and no approximations are made while drawing the phase
plot. Hence the exact phase angles of G(jw) are computed for various values of ® and tabulated.
The choice of frequencies is preferably chosen for the magnitude plot. Usually the magnitude
plot and phase plot are drawn in a single semi log sheet on a common frequency scale. Take
another y axis in the graph where the magnitude plot is drawn and in this y-axis, mark the
desired range of phase.angles after choosing proper units from.the.tabulated values of ® and

phase angles, mark all the points ‘on the'graph. Join the'points by‘a‘'smooth curve.

4.3.3 DETERMINATION OF GAIN MARGIN AND PHASE MARGIN OF BODE

PLOT:
+db +db
T [ e T
A 1] A o |—SM

in
db —db

-90
b

-180

o —PF

_ 270 - - 270

©g ®.  o(log scale) ©pe O w(log scale)

Fig 4.3
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The gain margin in db is given by the negative of db magnitude of G(jw) at the phase
cross over frequency, op.. The o, is the frequency at which the phase of G(jo) is 180°. If the
db magnitude of G(jo) is negative then the gain margin is positive and vice versa.

Let ¢ be the phase angle of G(jw) at gain cross over frequency mg.. The o is the
frequency at which the magnitude of G(jw) is zero. Now the phase margin is given by
Y=180°+ ¢pgc. If Py 1s less than -180° then the phase margin is positive and vice versa.

The positive and negative gain and phase margins are illustrated in above figure 4.3.

4.3.4 GAIN ADJUSTMENT IN BODE PLOT:
In the open loop transfer function G(jw) the constant K contributes only magnitude.

Hence by changing the value of K the system-gain can be adjusted to meet the desired
specifications. The desired specifications are gain margin, phase margin. In a system transfer
function if the value of K required to be estimated to a desired specification then draw the-bode
plot of the system with K = 1. The constant K can add, 20 log K to every point of the magnitude
plot and due to this addition, the magnitude plot will shift vertically up or down. Hence shift
the magnitude plot vertically up or down to meet the desired specification. Equate the vertical
distance by which the magnitude plot i8 shifted.to 20logK and solve.for K.

Let, x = changein'db

Now, 20logK = x;

Log K =x/20;
K =10%/20
EXAMPLE 4.1

Sketch Bode plot for the following transfer function and determine gain cross over

frequency and phase cross over frequency.

10
5(140.45)(1+0.15)

G(s) =

SOLUTION
The sinusoidal transfer function G(jo) is obtained by replacing s by jo in the given

transfer function.

10
jw(140.4jw)(1+0.1jw)

G (jo) =

MAGNITUDE PLOT:
The corner frequencies are, ®c; = 1/0.4 =2.5 rad/sec

ocy; = 1/0.1 =10 rad/sec
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The various terms of G(jo) are listed in Table-1 in the increasing order of their corner
frequency. Also, the table shows the slope contributed by each term and the change in slope

at the comer frequency.

TABLE-1
Term Corner frequency Slope Change in slope
rad/lsec db/dec dbidec
Jﬂ =t = .
Jm ‘.( .......
. i 20 020 = - 40
1+ j0.40 L2V " Y
. 1 _10 ol e i o
— — = —_— - — | —
1+j0.%0 ®2=73 el >

Chose a low frequency ) such that m< ®.; and chose a high frequency oy such that ®p- ®co.
Let ;=0.1 rad/sec and ®,-50 rad/sec.
Let A= |G(jw)] in db.

Let us calculate A'at' @) '®¢;, @2 and ®y
At o= o, A= 2010g|;—:)| =20 log (10/0.1) = 40db.
At o= 0 A= 20log|;—:)| — 20 log (10/2.5 = 12db.
At 0= ©,, A= [slope from o, wcleogz—z] + A (at o= o))
= -40xlog (10/2.5) +12 = -12db.
At o= oy, A= [slope from ® 1 (ohxlog::—;] + A (at 0= 0.)

=-60xlog (50/10) +(-12) = -54db.

Let the points a, b, ¢ and d be the points corresponding to frequencies ®;, w1, ®c, and
on respectively on the magnitude plot in a semi log graph sheet choose a scale of 1unit-10 db.
on y-axis. The frequencies are marked in decades from 0.1 to 100 r/s on logarithmic scales in
x-axis, Fix the points a, b, ¢ and d on the graph. Join the points by a straight line and mark the

slope in the respective region.
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PHASE PLOT:
The phase angle of G (jw) as a function of w is given by,

¢ =-90°-tan 1 0.4w-tan"! 0.1w
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Fig 4.4
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The phase angles of various values of ® are calculated and listed in table 2.

TABLE:2
{ ® 040 tan" 0.1 ¢ = 2G(jo) Points in
rad/sec deg ’ deg deg phase plot

0.1 229 0.57 -92.86~-92 e |
1 21.80 5.71 -1175 ~-118 f
25 450 14.0 -149 =150 g
4 57.99 218 ~169.79~-170 h
10 75.96 450 -210.96 %210 i
20 82.87 63.43 -236.3 =236 j

On the same semi log graph sheet, choose a scale of 1 unit=20° on the y-axis on the
right side of semilog graph sheet. Mark the phase angles on the graph sheet and join the graph
by smooth curve.

RESULT:

1. Gain cross over frequency = 5 rad/sec

2. Phase cross over frequency = 5 rad/sec.

EXAMPLE 4.2
Sketch Bode plot for the following transfer function and determine system gain K for

Ks?
(1+0.25)(140.02s)

the gain cross over frequency to be 5t/s. G(s) =

SOLUTION

The sinusoidal transfer function G(jo) is obtained by replacing s by jo in the given
transfer function.

K(jw)?
(1+0.2jw)(1+40.02jw)

Let, K=1, we get, G(jw)=

MAGNITUDE PLOT:
The corner frequencies are,
oc; = 1/0.2 = 5 rad/sec
oc; = 1/0.02 = 50 rad/sec
The various terms of G(jo) are listed in Tatile-1 in the increasing order of their corner
frequencies. Also, the table shows the slope contributed by each term and the change in slope
at the comer frequency.

Chose a low frequency ®; such that o< ®.; and chose a high frequency oy such that wp> ;.
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Let ©=0.5 rad/sec and », =100 rad/sec.
Let A= |G(jw)| in db.

TABLE-1
Term Gnrngr frequency Slope Change in slope
rad/sec db/dec db/dec
(joyf s +40 .
1 - 1 -5 i .hm"'-h
1+ j0.20 Pe1=932 " 0 020
1 & = 50 R o T
1+ j0.020 | <7002 2-.? -0 -_:.3'0=0

Let us calculate A at @), ®¢1, ®z and @y,
At o= o, A=20log|(jw)?| = 20 log (0.5)* = -12db.
At 0= o, A= 20log|(jw)?| = 20 log (5)° = 28db.
At 0= ©, A= [slope from [ ¢ wcleogz—i] + A (at 0=0))
=20Xlog (50/5)+ 28 = 48db.
At o= o, A= [slope from ®; ¢, oahxlogww—chz] + A (at 0= 0.)

= 0xlog (100/50) + (48) = 48db.

Let the points a, b, ¢ and d be the points corresponding to frequencies ®;, .1, ®c2 and ©y
respectively on the magnitude plot in a semi log graph sheet choose a scale of 1unit-10 db on
y-axis. The frequencies are marked in decades from 0.1 to 100 rad/sec on logarithmic scales in
x-axis, Fix the points a, b, ¢ and d on the graph. Join the points by a straight line and mark the

slope in the respective region.

PHASE PLOT:
The phase angles of various values of ® are calculated and listed in table 2.

The phase angle of G (jw) as a function of w is given by,

¢ =-180°-tan" 1 0.2w-tan"1 0.02w
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TABLE-2

o tan-' 0.2 tan-' 0.02o ¢ = 2G(jm) Pgint in
rad/sec deg deg deg phase plot
0.5 5.7 06 173.7=174 e
1 11.3 1.1 167.6=~ 168 f
5 45 57 129.3=130 g
10 634 113 105.3=106 h
50 84.3 45 50.7 = 50 i
100 871 63.4 29.5 =30 i

On the same semi log graph sheet choose a scale of 1 unit=20° on the y-axis on the right
side of semi log graph sheet. Mark the phase angles on the graph sheet and join the graph by

smooth curve.

CALCULATION OF GAIN K:

The gain cross over frequency is = 5 rad/sec. At w= 5 rad/sec the gain is 28db.

At the gain cross over frequency the gain should be 0. Hence to every point of
magnitude the gain -28db should be added.

This addition, of ,gain will shift, the plot downward,.The.magnitude correction is
independent of frequencies.

Hence the gain is calculated by,

20 log K =-28

LOgKZX

—28

K=10 20
K =0.0398

EXAMPLE 4.3
5(1+2s)
(1+4s)(1+40.255)

Sketch Bode plot for the following transfer function G(s) =

SOLUTION
The sinusoidal transfer function G(jo) is obtained by replacing s by jo in the given

transfer function.
5(1+2jw)
(1+4jw)(1+0.25jw)

Let, K=1 get, G (jo) =
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MAGNITUDE PLOT:
The corner frequencies are,
wc; =1/4=0.251/s
oc,=1/2=0.51/s
wcy =1/0.25=41/s
The various terms of G(jw) are listed in Table-1 in the increasing order of their corner
frequency. Also, the table shows the slope contributed by each term and the change in slope
at the comer frequency.
Choose a low frequency ; such that w< ®.; and chose a high frequency wy, such that
Oh > Oc2.

Let ©=0.1 r/s and 0, =101/s.

TABLE-1
Term Corner frequency Slope Change in slope
rad/sec db/dec db/deg

1 - 0. -
1 PG A ST :

1+ 4o o= i ~20 ‘2—2‘“;,.

. 1 ! "o NN R "‘__,..--"

1+j20 "-'ng=-‘—2‘?ﬂ-5 | 20 - .-;2uz+ 20=0

1 1 _ S
1+ 10256 ®a=7g5 1 b PRl R o

Let A= |G(jw)| in db.
Let us calculate A at @), ®¢1, ®2 and oy,
At o= o, A= 20log|(jw)| = 20log (5) = 14db.
At 0= o, A= 20log|(jw)| = 20log (5) = 14db.
At = 0, A= [slope from w) 1o mcleogZ—z] + A (at o= ©¢1)
=-20xlog (0.5/0.25) +14 = 8db.
At = op, A= [slope from ®¢; 1 cohxlog:—;] + A (at 0= )

= 0xlog (4/0.5) +(8) = 8db.
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Let the points a, b, ¢ and d be the points corresponding to frequencies ®;, w1, ®c and

op respectively on the magnitude plot in a semi log graph sheet choose a scale of 1unit-5db on

0.1



y-axis. The frequencies are marked in decades from 0.1 to 100 /s on logarithmic scales in x-
axis, Fix the points a, b, ¢ and d on the graph. Join the points by a straight line and mark the

slope in the respective region.

PHASE PLOT:

The phase angle of G (jw) as a function of w is given by,
¢ =-tan ! 2w-tan ! 4w-tan~1 0.25w

The phase angles of various values of @ are calculated and listed in table 2.

TABLE-2

tan' 2o tan' 4o tan' 0.250 $ = £G(jm) Points in
deg deg deg : phase plot

01 11.3 218 143 -11.93~-12 f

0.25 26.56 45.0 35 -21.94=-22 g

0.5 45.0 63.43 71 -25.53~=-26 h

P 75.96 . 82.87 26.56 -33.47=-33 i

4 82.87 86.42 45.0 -48.55~-49 i

10 87.13 88.56 6819 -69.62=-70 k

50 89.42 8971 8542 —85:71 ==86 I

On the same semi log graph sheet, choose a scale of 1 unit=10° on the y-axis on the
right side of semilog graph sheet. Mark the phase angles on the graph sheet and join the graph

by smooth curve.

4.4 POLAR PLOT

The polar plot of a sinusoidal transfer function G(jo) is a plot of the magnitude of
G(jo) versus the phase angle of G(jo) on polar coordinates as ® is varied from zero to
infinity. Thus, the polar plot is the locus of vectors |G(jw)| £G(jw) as o is varied from zero
to infinity. The polar plot is also called Nyquist plot.

The polar plot is usually plotted on a polar graph sheet. The polar graph sheet has
concentric circles and radial lines. The circles represent the magnitude and the radial lines
represent the phase angles. Each point on the polar graph has a magnitude and phase angle
the magnitude of a point is given by the value of the circle passing through that point and the
phase angle is given by the radial line passing through that point. In polar graph sheet a positive
phase angle is measured in anti-clockwise from the reference axis (0°) and a negative angle is

measured clockwise from the reference axis (0°).
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+90°
-270° \
¥
N
@Q* Positive
@ : angle
+180° G(jo)} '0°
-180° Reference
Negative
angle
+270°
-90°
Fig 4.7

To draw the polar plot, magnitude and phase of G(jw) are computed for various values

of  and tabulated.

Alternatively, if G(jo) can be expressed in rectangular coordinates as,
G(jo) = Gr(o) +Gi(jo)
where, Gr(jo) = Real part of G(jm),
G|(jo) = Imaginary part of G(jo).

Then the polar plot can be plotted in ordinary graph sheet between Gr(jo) and Gi(jo)
by varying o from 0 to c. To draw the polar plot on ordinary graph sheet, the magnitude and
phase of G(jw) are computed for various values of . Then convert the polar coordinates to
rectangular coordinates using P—R conversion (polar to rectangular conversion) in the

calculator. Sketch the polar plot using rectangular coordinates.

Start uil?pa—si

system End of 3% End of 4"
order system order system
Start of type-2—» «— Start of type-0
o e End of 2™ End of 1%
i order system order system
Start of type-1|
system
Start of polar plot of all pole Start of polar plot of all pole

minimum phase system.

Fig 4.8

www.binils.com
Anna University, Polytechnic & Schools



For minimum phase transfer function with only poles, type number of the system
determines the quadrant at which the polar plot starts and the order of the system determines
the quadrant at which the polar plot ends. The minimum phase systems are systems with all
poles and zeros on left half of s- plane. The start and end of polar plot of all pole minimum
phase system are shown in figures respectively. Some typical sketches of polar plot are shown
in table.

The change in shape of polar plot can be predicted due to addition of a pole or zero.

1. When a pole is added to a system, the polar plot end will shift by -90°.

2. When a zero is added to a system the polar plot end will shift by +90°.

4.4.1 TYPICAL SKETCHES OF POLAR PLOT:

1
Type : 0, : Gie)=—= . \
Type Order: 1 _[5} 45T ‘-2?0

. 1 I 1 4
Gjw)= - = = Z—-tan"oT _4g0" 0°
I+joT ‘{l-i-u:bz'[‘2 Ztan™' @T ;;Hsz“ & @
Aso =0, G(jn) > 120
As@ = o,  Gjo) - 0£-90°

Type : 1. Order:2 Gis)= i o |-270°
s(1+5T) e of

G(jo)= = l = : £(-90° - tan"10T) §

jo(l+ joT) o /o0 Jl+m2TZ£tan‘lmT m\l{1+m2T1 i _ ET

O

. 3 g

Asw =0, G(jo) > «2£L-90 =

Aso 2o, . G(jo) - 0£-180° 0=0)|-90°

1
(1+4sT,)(1+5sT,)
3 1 o 1

(1+ joTy) (1+ joTy) J1+m3ﬁ2£ tan”'0T, Jlﬂl:-?'l}2 Ztan 0Ty
= ' Z(-tan” 0T, - tan” 0T)
J(Hszf)(lq-mle]
Asm =0, G(jo) - 1£0°
Aso 5o, G(jo) - 0£-180°

Type: 0, Order:2 G(s) =

G(jo)
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: 0, Order:3

Gls) = :
(1+ST,)(1+5Ty)(1+5Ty)

G(jo)= I
(1+joT) (1+ joT,) (1+ joT;)
> 1
J1+m2T52£tan‘1mTI Jl+m2’l‘§étm_lm'1‘3 Jl+ m21‘3z£tan"mT3

1
o L= =1 " o =1 T o —1
J(]+m2‘]}2)(1+m2‘[§][l+¢;21‘§} (—tan"'oT, - tan™ 0T, - tan"" aT;)

As o =0,

Gljo) = 120°

Asw 5w, G(jo) > 0£-270°

Type:1, Order:3

B it
s(1+5T,)(1+5sT,) .
0 P |
Gjo) = T YL ‘ iy 3
jo(+joT) (14+0T)  o290° J1+0?T Ltan 0T, {1+ T Lan T,

. =270°

1

U

£ £(~90" - tan"' 0T, — tan " 0T;) o
mJ(Hszf)(Hszaf)

As o =0,

AS @ — o,

e
]
G(jw) = 0L-90° 0=
G(jo) = 0£-270°

o -90°

. G
. Type:2, Order:4 g 8
| E2 0y A FOR T I
P TRERA. . 1
(jo)* (1+joT)) (1+joT,) o2/ -180° Jl+m11‘,2£tan'lm‘rl Jﬁmﬁgmn"mn
1

= £(~180° - tan'0T, - tan”'oT.
sz[HmI'qz){Hmﬁg} o &

Asw =0,

-27¢"

=0 o

w %\\
%

G(jm) = oL -180°

o
: =1
Aso ==,  G(jo) - 0£-360

-90°

Ivpe : 2, Order: §' :

1
o & (145T,)(1+sT,)(1+5Ty)
G(jo) ‘

" (j0)’ (1+ joT,) (1+ joTy) (1+ joTy)

and _270°
word,

o=0
r 0’
-180° -

1 @
= 7 -80
02 2-180° 1+ 0°T2 Ltan 0T, |1 +©7TF £tan 0T, /1401 Ztan T,
= : £(-180" ~ tan”'oT; - tan"0T, - tan"'0T;)

N e s

Aswo =0,

=3

G(jw) - L~ 180°

Aso —x, G(jo) = 0£-450"=0£-90°
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Type: 1, Order:1 G(s) = :
5

. 1 1 1 &

G(jo)=—=——=— =90 oL g
o 0% o T @

i ]

Aso =0, G{n) - 0s-90° £
Aso 5®,  G(jo) = 0£-90° o=0]

— -a0°
Fig 4.9

4.4.2 DETERMINATION OF GAIN MARGIN AND PHASE MARGIN FROM
POLAR PLOT:
The gain margin is defined as the inverse of the magnitude of G(jw) at phase crossover
frequency. The phase crossover frequency is the frequency at which the phase of G(jw) is 180°.
Let the polar plot cut the 180° axis at point B and the magnitude circle passing through
the point B be Gg. Now the Gain margin, Kg = 1/Gg_ If the point B lies within unity circle, then
the Gain margin is positive otherwise negative. (If the polar plot is drawn in ordinary graph
sheet using rectangular coordinates then the point B is the cutting point of G(jo) locus with

negative real axis and K.#=l/|Gg ['where GB is theymagnitude correspondingto point B).

The following figure showing positive gain and phase margin.
|-270°

1 |80
- G
Phase margin, y =180 + ¢,

Fig 4.10

Gain margin, K,=

The following figure showing negative gain and phase margin.
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—270°

Nty circle
n e \'(e] .
-180 0
PB \ \J'%

i
Gain margin, K, -90°

-
G
Phase margin, '!"-'1330"'1&

Fig 4.11

The phase margin is defined as, phase margin, y=180°+¢,. where ¢, is the phase angle
of G(jw) at gain crossover frequency. The gain crossover frequency is the frequency at which

the magnitude of G(jw) is unity.

4.4.3 GAIN ADJUSTMENT USING POLAR PLOT:
Draw G(jo) locus with K = 1. Let it cut the -180° axis at point B corresponding to a
gain of G. let the specified gain margin be x db. For this gain margin, the G(jo) locus will cut

-180° at point A 'whose magnitude'is Ga.

f(—- Gy -270°
-180°—Af B AG —0°
11; ih 1\_"
X »
-90°
Fig 4.12

Now, 20log Gi =X
A

1
loga =x/20

1 1020
Gy
1
GA: i
1020

Now the value of K is given by, K = GA/Gg
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EXAMPLE 4.4
Sketch the polar plots of 1/s. o

SOLUTION
Given that, G(s) = 1/s

Puts= jo, we get « > G
G(jw) = lj | 3 |
If ©=0, then |G(jw)| = m
If ®=00, then |G(jw)| =0 - 4 5
Fig 4.13
EXAMPLE 4.5
Sketch the polar plots of 1/s (1+sT).
SOLUTION ~ R
Given that, G(s) = 1/s(1+sT) Ll

Puts= jo, we get

G(jo) = jo(1+joT) _;ga-7m e
1 by

£6(w) = -90°tan 1 wT 'T
j

—T—+{ -90°

If ©=0, then |G(jw)| = o0 and £G(jw) = -90°

If ®=c0, then |G(jw)| = 0 and £G(jw) =-180°
Fig 4.14
EXAMPLE 4.6
The open loop transfer function of a unity feedback system is given by
G(s) =1/s(1+s) (1+2s). Sketch the polar plot and determine the gain margin and phase
margin.
SOLUTION
Given that, G(s) = 1/s (1+s) (1+25)
Puts=jo, G (jo) = 1/ jo (1+jo) (1+2jo)
The corner frequencies are mc;= 1/2= 0.5 rad/sec, oc2 = 1 rad/sec. The magnitude and
phase angle of G(jo) are calculated for the corner frequencies and for frequencies around comer

frequencies and tabulated in table. The polar plot using polar coordinates is sketched on a polar

graph sheet as shown in figure.
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. 1
GU0) =5 i) 1220

1
 ©290° (1+w?2) ztan"1 wy(1+4w2)2tan"1 2w
1 o -1 -1
= Z90° —tan”""w —tan” " 2w
o (1+w?2) /(1+4w?2)

. _ 1
Gio) | = e arion

1
C oV1t402+ w2 +4ws

_ B 1
GO = sarraer

£ G(jw) =-90°-tan"! w-tan"! 2w

Table:
Magnitude and phase of G(jw) at various frequencies
®
rad/sec 0.35 04 0.45 fos 0.6 0.7 1.0
G} 2.2 18 | 15 12 | 0.9 0.7 0.3
£G(jo) 144 -150 -156 -162 171 -1795 | 198
 deg =-180,
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L T
R, S Mﬁ’ o \

-180

1807

e, m.mﬂu_ﬁ-t e
ié% m!rﬂii_ﬂl - .I.
ZINSE Sy

R %«Wﬂ. 4 m.mw,w.a.”m?}@\\@%&%
i &ﬁfﬁv%@%
:...,_, il A N0k S8 e A D e ,._mewﬁ@%%W@% %

CRALTY,

i
%ﬂ.\\.&..ﬂ.%
= % 4
S \ .
= M&\““%% %\N\ \\M
s \ m,\ . \ \

-150°
210°

-160°
200°

-170° &
19¢0° Ef

Fig 4.15
121,
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-190°
170°

1.42
+12°

-200°
160°

-210°

150°

1. Gain margin, K,
2. Phase margin, y

RESULT:



EXAMPLE 4.7
The open loop transfer function of a unity feedback system is given by
G(s) =1/s(1+ s)*. Sketch the polar plot and determine the gain margin and phase margin.
SOLUTION
Given that, G(s) =1/s (1+ s)’
Puts= jo
G (jo)=1/jo (1+ jo)’
The corner frequency wcl= lrad/sec. The magnitude and phase angle of G (jo) are
calculated for the corner frequencies and for frequencies around comer frequencies and
tabulated in table. The polar plot using polar coordinates is sketched on a polar graph sheet as

shown in figure.

G (o) =

jo (1+ jw)?
_ 1
®w290°/(1+w?2) 2ztan" 1 wy/(1+w?2) 2tan" 1 w
1
= £290° —tan" ' w — tan™!
w0/ (1+@2) /(1+02) 1
. 1
G(w) | = 2
w(/(1+w?2))
__ 1
w(1+w?)
_ 1
GG0) | ==

£ G(w) =-90°-2tan ! w

Table:
Magnitude and phase of G(jw) at various frequencies
o | | |
[ rad/sec | 04 05 | 086 | 0.7 0.8 a9 1.0 1.1
| | I
| Gl 22 6 | 12 | 1 08 | 06 05 04
' £Glo) | | |
| de 134 | 143 | —151 | —189 | _ =i
L g : 143 |, 151 ‘ 159 ! 167 | 174 -180 -185
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ZZ /ﬁ = 3 -
iR é?—" e pmeeai A s = g
W ——=——==C 8

///%% — - N 25

S = |

L] 8
60 e

B 7 ===~
e G e \

70°

-2140° ] ' AN

A W \ \ | 1\'\ 5

2] et SO N
-280°

Il"{{aﬂng.‘:{f‘ W \ AN Ty ™

J| [
‘ .1 | = I’ h“'*“u 3 \ \ _
90° ii'{' L] ] \.'.,."", :#Eé“' i . \] ]' ML 270°
-270° l |l| ;! 1 i 1 T O 1] I [ T -90°
'(h L E L AL
i SRR ‘.\- ) v\ ; fl -'fl:' / SESERNERN
— LY \ll\ AR e L/ gt L /] L ]] 2600
2600 [ 11T\ RERR VA Y & ; ¥ 7 / ,f: .f' fj.-"-“r'f -100°
\x "'.\\-.‘ : / f ! Jj / /
\ \\ : ’ / ,’: /
\ ; (L) (] 250°
1107 | \ A 7100
-250° N . 7 / a
\‘\ :\‘\ "f
. “__'_: g
0% " / 240°
-l24cr° . : S a0
. i e e S 230°
20 = =t s
5 ‘—4—_—!—'
: = S e BRSO oS ]
o = —— 220°
140° % \ % T e s ~140°
-220° e
~210° -200° ~190° ~180° -170° —160°% ~130°
150° 160° 170° 180° 190° 2000 4 210°
Fig 4.16
RESULT:
1. Gain margin, K= 2
2. Phase margin, y =-21°
122,
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EXAMPLE 4.8

The open loop transfer function of a unity feedback system is given by
G(s) =1/s(1+0.5s) (1+4s). Sketch the polar plot and determine the value of K so that (i) gain
margin is 20db and (ii) phase margin is 30°.

SOLUTION
Given that, G(s) =1/s (1+0.5s) (1+4s)
The polar plot is sketched by taking K=1.
Puts= jo in G(s),
G (o)=1/jo (1+0.5j0) (1+4jo)

The corner frequency wc,;= 1/4 = 0.25 rad/sec and wc, = 1/0.5 = 2 rad/sec. The
magnitude and phase angle of G(jw) are calculated for the corner frequencies and for
frequencies around comer frequencies and tabulated in table. The polar plot using polar

coordinates is sketched on a polar graph sheet as shown in figure.

Do 1
G(w) = jo (14 0.5jw) (1 +4j®)
_ 1
®290°/(1+(0.5w)2) 2tan~1 0.5w/(1+(4w)2)2tan" 1 4w
— 1 o -1 -1
= £90° — £tan™" 0.5w — tan™ " 4w
W/ (1+0.25w2) / (1+16w?2)
1
G(w =
IG(e) | 0/ (140.25w2)(1+16w?2)
£ G(jw) =-90°-tan"10.5 w-tan~! 4w
Table:
Magnitude and phase of G(jw) at various frequencies
® | ' \ 1.
rad/sec 03 | 04 0.5 06 | 08 _ 1.0 1.2
Giio) 211 | 13 0.87 0.61 0.35 0.22 0.15
Zcio | |
deg -149 | -159 -167 -174 | 184 -193 -199
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From the polar plot,

(1). Gain margin K,=2.27, in db K, = 7.12db.

(i1). Phase margin y = 15°.
Case(i):

With K=1, let the G(jw) cut the -180° axis at the point B and gain corresponding to that
point be Gg. From the polar plot, Gg = 0.44.

The gain margin of 7.12db with K=1 has be increased to 20db and so K must be
decreased to a value less than 1.

Let Ga be the gain at -180° for a gain margin of 20db.

Now 20log(1/Ga) =20
Log (1/Ga)=20/20=1

o = 10'=10
GAo=1/10=0.1
Then the value of K = GA/Gg = 0.1/0.44 = 0.227
Case(ii):

With K=1, let the phase margin is_15°. This must be increased to.30°.
Let ¢y be the phase of G(jo) for‘a phase margin.of:30°
30° =180+ ¢pye2
P2 = 30°-180° = -150°
In the polar plot the -150° line cuts the locus of G(jw) at point A and cut the unity circle
at point B.
Let Ga = magnitude of G(jw) at point A.
Gg = magnitude of G(jw) at point B.
From the polar plot, Gy =2.04 and G = 1
Then the value of K = Gg/G, = 1/2.04 = 0.49
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-150°
210°

-1607

-170°

Fig4.17

RESULT:

227, in db K, = 7.12db.
15°.

3. For gain margin of 20db, K=0.227

4. For phase margin of 30°, K=0.49

1. Gain margin K,

2. Phase margin y
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REVIEW QUESTIONS
PART A
What is frequency response?
List the advantages of frequency response analysis.
List the frequency domain specifications.
What is resonant peak?
Define resonant frequency.
What is gain cross over frequency?

What is phase cross over frequency?

What is Bode plot?
What is Polar plot?
. _ 1
. Mention the type number and order of G(s) = ArsToarsTy
PART B

. Explain gain margin and phase margin.

Draw the Bode plot of G(s) =

s(1+sT)

How can you determine gain margin-and phase margin in polar plot?

1
(1+ST1)(1+ST2)

Draw the polar plot of G(s) = 1/s

Draw thepolar plot'of G(s) =

PART C

. Explain the procedure for constructing Bode plot.

Sketch Bode plot for the following transfer function and determine gain cross over

20

frequency and phase cross over frequency. G(s) = S(1735)(1745)

Sketch Bode plot for the following transfer function and determine gain cross over

1
S(1+0.55)(1+0.25)

frequency and phase cross over frequency. G(s) =

Sketch Bode plot for the following transfer function and determine gain cross over

10(s+10)

frequency and phase cross over frequency. G(s) = SG1D)(545)

The open loop transfer function of a unity feedback system is given by

G(s) =1/s*(1+s) (1+2s). Sketch the polar plot and determine the gain margin and

phase margin.
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UNIT V
STABILITY

5.1 STABILITY
5.1.1 DEFINITIONS OF STABIITY

The term stability refers to the stable working condition of a control system. Every
working system is designed to be stable. In a stable system, the response or output is
predictable, finite and stable for a given input (or for any changes in input or for any changes
in system parameters).

The different definitions of the stability are the following.
Stable system:

“A system is stable, if its output is bounded (finite) for any bounded (finite) input.”
Asymptotically stable system:

“A system is asymptotically stable, if in the absence of the input the output tends
towards zero (or to the equilibrium state) irrespective of initial conditions”

Unstable system:

“A system is unstable if for a bounded disturbing input signal the output is of infinite
amplitude or oscillatory’,
Limitedly stable system:

“For a bounded input signal, if the output has constant amplitude oscillations then the
system may be stable or unstable under some limited constraints. Such a system is called
limitedly stable system”

Absolutely stable system:

“If a system output is stable for all variations of its parameters, then the system is called
absolutely stable system”
Conditionally stable system:

“If a system output is stable for a limited range of variations of its parameters, then the
system is called conditionally stable system”
BIBO stability:

“A linear relaxed system is said to have BIBO stability if every bounded (finite) input
results in a bounded (finite) output”

Relative stability:
“The Relative stability indicates the closeness of the system to stable region. It is an

indication of the strength or degree of stability”
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RESPONSE OF A SYSTEM

C(S
Let the Closed loop transfer function ﬁ = M(s)

The response or output in s domain C(s)= M(s)R(s)

C(s) = Output in s-domain.

R(s) = Input in s-domain.

5.2 LOCATION OF POLES ON s-PLANE FOR STABILITY

The closed loop transfer function, M(s) can be expressed as a ratio of two polynomials
in s. The Denominator polynomial of closed loop transfer function is equated to zero, the
equation obtained is called as characteristic equation. The roots of characteristic equation are
poles of closed loop transfer function.

For BIBO stability the integral of impulse response should be finite, which implies that
the impulse response should be finite as t tends to infinity. [The impulse response is the inverse
Laplace transform of the transfer function]. This requirement for stability can be linked to the
location of roots of the characteristic equation in the s-plane.

The closed loop transfer function M(s) can be expressed as a ratio of two polynomials,

(s+z1) (s+z3) (8+z3)....(S+zg)
(8+p1) (stp2) (s+Pp3)...(5+Pn)

The roots of numerator polynomial z;, 7,73, ..... z, are zeros.

M(s)

The roots of denominator polynomial py, p2,ps....pm are poles.

The denominator polynomial gives the characteristic equation and so the poles are roots
of characteristic equation.

From table, the following conclusions are drawn based on the location of roots of
characteristic equation.
1. If all the roots of characteristic equation have negative real parts (i.e., lying on left half s-
plane) then the impulse response is bounded (Le.,. it decreases to zero, as t tends to ).

Hence, the system has bounded-input and bounded-output so the system is stable.
2. If any root of the characteristic equation has a positive real part (i.e., lying on right half s-
plane) then impulse response is unbounded, (i.e., it increases to o as t tends to o).

Hence the system is unstable.
3. If the characteristic equation has repeated roots on the imaginary axis then impulse response

is unbounded (i.e., it increases to oo as t tends to o). Hence the system is unstable.
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Transfer function, M(s) and location
~of roots on s-plane

Impulse response, m(t)

A j(ﬂ,‘L
5t+a

Mis) =

-a '0-'

Root on negative real axis

A

mit) o mt)= L"{—} =Ae™
s+a

A

-
>

t
Im;lmfse response is exponentially
decaying. Stable system.

M(s} = i j(l]j;
5=a

> 4

qr

Root on positive real axis

M(s) = JZ'L{ e

} = At
5—a

m(t}“

P
>

t
Impulse response is exponentially
increasing. Unstable system.

: % A A
A A’ m(t)= L =+ .
M(s) = = ~ i m(th s+a+jb s+a-jb
s+a+jb s+a-jb 4 . 7 :
- Ae-(n—]b)t +A e'“"‘"“
+io 2% .
| ... =2Ae™ cosbt=2Ac™ sin[m + qn')
S IR
G S
\ - et
Complex conjugate roots Pl Impulse response is damped simusoidal
on left half of s-plane (i.e., Damped oscillatory). Stable system
bpl o A
gL {s—a+jb * s—a—jb}
s—a+jb s—a—j b -
+ib f—x m(o) =2Ae" cosbt = Zf‘g_” sin (bt +90°)
1 o
-
Complex conjugate roots
on right half of s-plane

Impulse response is exponentially increasing sinusoidal
(ie., Amplitude of oscillations exponentiglly increases
with time). Unstable system.
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mO4  m(1)= ;:'{”‘} =A

5

-
L

s t
Single root at origin Impulse response is constant.
Marginally stable system.
' o A*
tl=
. =1 {s+jb +s—-jb}
* jo -] * 4
M=ty A 2 m(t)4 =Ae T+ AT
s+jb s-jb =2A cos bt =2A sin (bt +90°)

+jb '

= 3 >

" /

Single pair of roots on imaginary axis Impudse response is os cifiaz-;)!y
i Marginally stable
A A*
t)y=L" +
; o [{s+jb)2 (s-jb)‘}
A A* =Ate P A% et
M= —ra b ——— = 2At cos bt = 2At sin (bt +90°)
o (s+jb) (s-jb)
Jo mt) 4
+ib
5

.lb

Double pair of roots on imaginary axis

Impulse response is linearly increasing sinusoidal
(i.e., amplitude of oscillations linearly increases
with time). Unstable system.
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A
Mgs) = Zio

o >
t
Impulse reponse linearly increases

with time. Unstable sysiem

Double root at origin

Fig 5.1

4. If one or more non - repeated roots of the characteristic equation are lying on the
imaginary axis, then impulse response is bounded (i.e., it has constant amplitude oscillations)
hence the system-is unstable.

5. If the characteristic equation has single root at origin then the impulse response is
bounded (i.e., it has constant amplitude) hence the system is unstable.

6. If the characteristic equation_has repeated roots at origin then the impulse response
is unbounded (i.e., it lineatly in¢reases to infinity as t tends to ) and so the system is unstable.

7. In system with one or more non-repeated roots on imaginary axis or with single root
at origin, the output is bounded for bounded inputs except for the inputs having poles matching
the system poles. These cases may be treated as acceptable or non-acceptable. Hence when the
system has non-repeated poles on imaginary axis or single pole at origin, it is referred as
limitedly or marginally stable system.

In summary, the following three points may be stated regarding the stability of the
system depending on the location of roots of characteristic equation.

1. If all the roots of characteristic equation have negative real parts, then the system is
stable.

2. If any root of the characteristic equation has a positive real part or if there is a
repeated root on the imaginary axis then the system is unstable.

3. If the condition (i) is satisfied except for the presence of one or more non-repeated
roots on the imaginary axis, then the system is limitedly or marginally stable.

In summary, the following conclusions can be made about coefficients of characteristic

polynomial.
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1. If all the coefficients are positive and if no coefficient is zero, then all the roots are
in the left half of s- plane.

2. If any coefficient a; is equal to zero then, some of the roots may be on the Imaginary
axis or the right half of s- plane.

3. If any coefficient a; is negative, then at least one root is in the right half of $- plane.

5.3 ROUTH HURWITZ CRITERION

The Routh-Hurwitz stability criterion is an analytical procedure for determining
whether all the roots of a polynomial have negative real part or not. '

The first step in analyzing the stability of a system is to examine its characteristic
equation. The necessary condition for stability is that all the coefficients of the polynomial be
positive. If some of the coefficients are zero or negative it can be concluded that the system is
unstable.

When all the coefficients are positive, the system is not necessarily stable. Even though
the coefficients are positive, some of the roots may lie on the right half of s-plane or on the
imaginary axis. For all the roots to have negative real parts, it is necessary but not sufficient
that all coefficients of the characteristic equation be positive, If all the coefficients of the
characteristic equation are positive, .then/the 'system may be'stable and one should proceed
further to examine the sufficient conditions of stability.

A. Hurwitz and E.J. Routh independently published the method of investigating the
sufficient conditions of stability of a system. The Hurwitz criterion is in terms of determinants
and Routh criterion is in terms of array formulation. The Routh stability criterion is presented
here.

The Routh stability criterion is based on ordering the coefficients of the characteristic

equation,
aosn+alsn'1+azsn'2+. ..+a,.1sta,=0, where a>0 into a schedule, called the Routh array as

shown below.
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The Routh stability criterion can be stated as follows.

"The necessary and sufficient condition for stability is that all of the

elements in the first column of the Routh array be positive. If this condition is

not met, the system is unstable and the number of sign changes in the elements of the first
column of the Routh array corresponds to the number of roots of the characteristic equation in
the right half of the s-plane.

Note: If the order of sign of first'column element is +,+,-, +iand +. Then + to - is considered

as one sign change and - to + as another sign change.

5.3.1 CONSTRUCTION OF ROUTH ARRAY
Let the characteristic polynomial be,
aps"+a;s" H+a,s" . . +a, sta,=0

The coefficients of the polynomial are arranged in two rows as shown below.

n

S . doy Ay A4 ag ...

n-1

S : a as as as ...

When n is even, the s" row is formed by coefficients-of even order terms (i.e., co-
efficient of even powers of s) and s™' row is formed by coefficients of odd order terms (i.e.,
coefficients of odd powers of's).

When n is odd, the s" row is formed by coefficients of odd order terms (i.e., co-efficients
of odd powers of s) and s™' row is formed by coefficients of even order terms (i.e., coefficients

of even powers of s).
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The other rows of Routh array up to s” row can be formed by the following procedure.

Each row of the Routh array is constructed by using the elements of previous two rows.

Consider two consecutive rows of Routh array as shown below,

ST I Xp Xy Xp X3 Xz Xseeew
n—x—1 ,

5 Y0 Y1 Yz ¥3. Ya ¥see
Let the next row be,

- n—x—2

s t 20 2y Zyp Z3  Zg e
The =lements of s"*2 row are given by,

X4 - .
R :ﬂ s Xo
Z, = 0 1 _ YoM 1
Yo Yo
X X
-z _ Yo Y2i _YoX2—¥2%o
Yo » £
X
(—1) Xo0 3 |
z, = Yo Y3| _ YoX3 —¥3Xo
Yo Yo
X
(-1) Xo 4
" Yo Yal _YoXs—Y¥YasXo
ZB — ——
Yo ‘ Yo
Xo Xs
(=D e
- Yo Ysl_ YoXs }'_5 2  and so on.
Yo Yo

The elements z, z1, 7, 73...... are computed for all possible computations as shown
above.

In the process of constructing Routh array the missing terms are considered as zeros.
Also, all the elements of any row can be multiplied or divided by a Positive constant to simplify
the computational work.

In the construction of Routh array one may come across the following three cases.
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Case-I: Normal Routh array (Non-zero elements in the first column of Routh array).

Case-I: A row of all zeros.

Case-III: First element of a row is zero but some or other elements are not zero.

Case-I: Normal Routh Array

In this case, there is no difficulty in forming Routh array. The Routh array can be
constructed as explained above. The sign changes are noted to find the number of roots lying
on the right half of s-plane and the stability of the system can be estimated.

In this case,

1. If there is no sign change in the first column of Routh array then all the roots are
lying on left half of s-plane and the system is stable.

2. If there is sign change in the first column of Routh array, then the system is unstable
and the number of roots lying on the right half of s-plane is equal to number of sign changes.
The remaining roots are lying on the left half of s-plane.

Case-I1: A row of all zeros

An all zero row indicates the existence of an even polynomial as a factor of the given
characteristic equation, In an even polynomial, the exponents of s are even integers or zero
only. This even polynomial factor is.also.called auxiliary polynomial: The coefficients of the
auxiliary polynomial will always be the elements of the row directly above the row of zeros in
the array.

The roots of an even polynomial occur in pairs that are equal in magnitude and opposite
in sign. Hence, these roots can be purely imaginary, purely real or complex. The purely
imaginary and purely real roots occur in pairs. The complex roots occur in groups of four and
the complex roots have quadrant symmetry, that is the roots are symmetrical with respect to

both the real and imaginary axes. The following figure shows the roots of an even polynomial.

Joa _]u) A jo 4
X X X
# ——T—K—> >
o G g
X X x
Fig 5.2

The case-1II polynomial can be analyzed by anyone of the following two methods.

12A
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METHOD: 1

1. Determine the auxiliary polynomial, A(s)

2. Differentiate the auxiliary polynomial with respect to s, to get dA(s)/ds

3. The row of zeros is replaced with coefficients of dA(s)/ds.

4. Continue the construction of the array in the usual manner (as that of ease-L) and the
array is interpreted as follows.

a. If there are sign changes in the first column of Routh array, then the system is
unstable.

The number of roots-lying on right half of s-plane is equal to number of sign changes.
The number of roots on imaginary axis can be estimated from the roots of auxiliary polynomial.
The remaining roots are lying on the left half of s-plane.

b. If there are no sign changes in the first column of Routh array then the all zeros row
indicates the existence of purely imaginary roots and so the system is limitedly or marginally
stable. The roots of auxiliary equation lie on imaginary axis and the remaining roots lies on

left half of s-plane,

METHOQOD-2

1. Determine 'the ‘auxiliary polynomial; A(s).

2. Divide the characteristic equation by auxiliary polynomial.

3. Construct Routh array using the coefficients of quotient polynomial.

4. The array is interpreted as follows.

a. If there are sign changes in the first column of Routh array of quotient polynomial
then the system is unstable. The number of roots of quotient polynomial lying on right half of
s- plane is given by number of sign changes in first column of Routh array.

The roots of auxiliary polynomial are directly calculated to find whether they are purely
imaginary or purely real or complex.

The total number of roots on right half of s-plane is given by the sum of number of sign
changes and the number of roots of auxiliary polynomial with positive real part. The number
of roots on imaginary axis can be estimated from the roots of auxiliary polynomial. The

remaining roots are lying on the left half of s-plane,
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b. If there is no sign change in the first column of Routh array of quotient polynomial
then the system is limitedly or marginally stable. Since there is no sign change all the roots of
quotient polynomial are lying on the left half of s-plane.

The roots of auxiliary polynomial are directly calculated to find whether they are purely
imaginary or purely real or complex. The number of roots lying on imaginary axis and on the
right half of s-plane can be estimated from the roots of auxiliary polynomial. The remaining

roots are lying on the left half of s-plane.

Case-III: First element of a row is zero

While constructing Routh array, if a zero is encountered as first element of a row
then all the elements of the next row will be infinite. To overcome this problem let 0— € and
complete the construction of array in the usual way (as that of case-I)

Finally let €= 0 and determine the values of the elements of the array which are
functions of €.

The resultant array is interpreted as follows.

Note: If all the elements of a row are zeros then the solution is attempted by
considering the polynomial as case-I1 polyndmial. Even.if there.is a single element zero on S'
row, it is considered as a row of all zeros.

a. If there is no sign change in first column of Routh array and if there is no row with

a zero, then all the roots are lying on left half of s-plane and the system is stable.

b. If there are sign changes in first column of Routh array and there is no row with
all zeros, then some of the roots are lying on the right half of s-plane and the system
is unstable. The number of toots lying on the right half of s-plane is equal to number
of sign changes and the remaining roots are lying on the left half of s-plane.

c. If there is a row of all zeros after letting 0—¢€ then there is a possibility of roots on
imaginary axis. Determine the auxiliary polynomial and divide the characteristic
equation by auxiliary polynomial to eliminate the imaginary roots. The Routh array
is constructed using the coefficients of quotient polynomial and the characteristic
equation is interpreted as explained in method-2 of case-II polynomial.

EXAMPLE 5.1

Using Routh criterion, determine the stability of the system represented by the

characteristic ~ equation, s*+8s’+18s*+16s+5=0Comment on the location of the roots of

characteristic equation.
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SOLUTION

The characteristic equation of the system is, s*+8s*+18s*+16s+5=0

The given characteristic equation is 4™ order equation and so it has 4 roots. Since the
highest power of s is even number, form the first row of Routh array using the coefficients of

even powers of s and form the second row using the coefficients of odd powers of's.

$ . 1 18 5 .. Row
' o, 1x18-2x1 1x5-0x1
T I s ROW-2 o 1
The elements of s* row can be divided by 8 to simplify the s 16 5
computations. o '

| I 5" 15!2-5!1

I R(:W—I . |

1 : 2 .. Rowe2 §': 1.6875x1.7

: 16: 5 - RoW-3 & 1.7x5-0x16
5 1171 ... Row4 Y

i | SD' 5
¢ 5 il ..Row-5 '

O

— Colurfp-1

On examining the elements of first column of Routh array it is observed that all the
elements are positive and there is no sign change. Hence all the roots are lying on the left half

of s-plane and the system is stable.

RESULT
1. Stable system
2. All the four roots are lying on the left half of s-plane.

EXAMPLE 5.2
Construct Routh array and determine the stability of the system whose characteristic
equation is s*+25™+8s*+12s’+20s*+16s+16=0. Also determine the number of roots lying on

right half of s-plane, left half of s-plane and on imaginary axis.

SOLUTION

The characteristic equation of the system is, s®+2s™+8s*+12s+20s+16s+16=0.
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The given characteristic polynomial is 6™ order equation and so it has 6 roots. Since
the highest power of s is even number, form the first row of Routh array using the coefficients

of even powers of S and form the second row using the coefficients of odd powers of's.

¢ 01 8 20 16 . Rowl
§ 2 12 1 . ROW-2
The elements of ° row can be divided by 2o simplfy the calculatins,

f ¥ 7738 20. 18...Row1
(IR =i | e S ...RoOW-2
.-S: 1 _: ._I_ i :5_' 8 ....Row-4
FE N Rowd
s ‘: 1 : 3 ...Row4
g < 3.8 ....Row-5
CTAVAVL "< A ....Row-6
$ :! g ! ....Row-7

y

e Column-1
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4  1x8—6x1 1x20—8=x1 Tx16—-0x=x1

e 3 1 A
s4 - 2 g & 16
divide by 2 -
s4 : 1 6 8
o 1x6—6x1 1x8—-8x1
1 1
s3: o o

The auxiliary eguation is, A = s%*+6s2+8. On
differentiating A with respect to s we get,

A e i
ds '
: dA
The coefficients of Py are used to form s row.
s*: 4 12
divide by 4
s?: 1 3
s2. 1x6—-3x1 1x8—-0x1
) 1 1
" 3 8
5’1_ 3x3 - 8=1
3
s': 0.33
ks 033 <x8-0x3
, a33
s°4 8

On examining the elements of 1* column of Routh array it is observed that there is no
sigh change. The row with all zeros indicates the possibility of roots on imaginary axis. Hence
the system is limitedly or marginally stable,

The auxiliary polynomial is,

s* +65°+8 =0
Let, =X
X +6x+8=0
) —6+/36-4x8
The roots of quadratic are, x = —
=-3+1
x=-2or-4

The roots of auxiliary polynomial are s=vx =+ +—2and ++V—4
=+jV2, -jv2, +j2 and -2
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The roots of auxiliary polynomial are also roots of characteristic equation. Hence 4
roots are lying on imaginary axis and the remaining two roots are lying on the left half of s-

plane.

RESULT
1. The system is limitedly or marginally stable.
2. Four roots are lying on imaginary axis and remaining two roots are lying on left half

of s-plane.

EXAMPLE 5.3
Construct Routh array and determine the stability of the, system represented by the
characteristic equation, s™+s*+2s’+2s*+3s+5=0. Comment on the location of the roots of

characteristic equation.

SOLUTION

The characteristic equation of the system is, s’+s*+2s’+2s*+35+5=0.

The given characteristic polynoial is 5™ ordér equation and so it has 5 roots. Since the
highest power of's 18 odd number, form the first row of Routh array using the coefficients of

odd powers of s and form the second row using the coefficients of even powers of s.
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s® 1 2 3 ...Row-1
st 1 2 5 ...Row-2
s & -2 ... Row-3
2e+2 1%2-2x1 3 -5x1
s : 5 ... ROw-4 g s i ad e
e 1 1
—[SEZHE+4] s 0 -2
s A .. Row-5 Replace 0 by €
3- —
s 5 ... Row-6 s < _
On letting €0, we get sﬂ_exz—[-zxn ex5-0x1
F AT R - :
I I 2. 2e42
54 z I 1 1 2 5 ...-RW"Q S'T 5
¢ ;.02 .. Row-3
. 2e+2
. ..;J ¢ :'a!s Row - »;t 2>2 (59
% | I e+
%Jv e s : -2 i ... ROW-5 T
# i i§ o ... ROW-6' g8 Hed)
L —‘l-—: a 1 ’ 2e+2
_[5E2+4&+4)x5—0x26+2
sc: 2e+2 €
—!SEZ’MEM)
2e+2
s 5

On observing the elements of first column of Routh arrayj, it is found that there are two
sign changes. Hence two roots are lying on the right half of s- plane and the system is unstable.

The remaining three roots are lying on the left half of s-plane.

RESULT
1. The system is unstable.
2. Two roots are lying on right half of s-plane and three roots are lying on left half of s-

plane.
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EXAMPLE 5.4

By Routh stability criterion determine the stability of the system represented by the
characteristic equation, 9s°-20s*+10s’-s?-9s-10=0. Comment on the location of roots of
characteristic equation.

SOLUTION

The characteristic polynomial of the system is, 95°-20s"+10s’-s*-9s-10=0.

On examining the coefficients of the characteristic polynomial, it is found that some of
the coefficients are negative and so some roots will lie on the right half of-s-plane. Hence the
system in is unstable. The Routh array can be constructed to find the number of roots lying on
right half of s-plane.

The given characteristic polynomial is 5th order equation and so it has 5 roots. Since
the highest power of s is odd number, form the first row of Routh array using the coefficients

of odd powers of s and form the second row using the coefficients of even powers of S.

| s 977 10 -9  ..Row-
28 I 1 _
Ql"' st I 20 —1 —10 .... Row-2
k ] >
' élﬁ \/\NRA/ €3 | Qw3
- | I
2 1-293 1 -10 ... Row-4
| 1
s :—16.8 : ... Row-5
st L.-10 ! ... Row-6
| A 1
; + =i=_<Column-1

§3.220x10-(-0x9 -20x(-9)-(-10)x9 |
~ 20 20
s 955 -135

§2.955% (-1 (13.9 x(-20) 955x(-10) *i
' 955 955 1‘
s -293 -10
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g -25.3 x (=135) - (-10) x 955
' 293

s- —168

50- -16.8 x (~10)
" -168
g% —10

By examining the elements of first column of Routh array it is observed that there are
three sign changes and so three roots are lying on the right half of s-plane and the remaining

two roots are lying on the left half of s-plane.

RESULT
1. The system is unstable.
2. Three roots are lying on right half of s-plane and two roots are lying on left half of s-

plane.

EXAMPLE 5.5

Determine the range of K for stability of unity feedback. system whose open loop

K

transfer function is G(s) = m .

SOLUTION

The closed loop transfer function R(s)  14G(s)
K
_ s(s+ 1)(s+ 2)

. K
s(s+ 1)(s+ 2)

_ K
B s(s+ 1)(s+2)+K

The characteristic equation is,
s(s + D(s+ 2)+K=0
s(s*+3s+2) +K=0
s'+3s+25+K=0

The Routh array is constructed as shown below.
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The highest power of s in the characterstic polynomial is odd number, hence form the
first row using the co-efficient of odd powers of s and form the second row using the

coefficients of even powers of s.

& %y 2
1 1 = Ix2-Kx1

§? 13 1 K ’ 3
. . 8K

s ’__6—K' S

40 i

i 3 i B—KXK—OxS
1 1 s0: 3

s’ t K (6-K)/3
e Sl 0.

—Column-1 §°:K

For the system to be stable there should not be any sign Change in the elements of first
column. Hence choose the value of K so that the first column elements are positive.

From s’ row, for the system to be stable, K> 0

6—K
From s' row, for the system to be stable, = >0

-K
For 6T >(), the value of K should be less than 6.

The range of K for the system to be stable is O<K<6.

RESULT
The value of K is in the range 0<K<6 for the system to be stable.

5.4 ROOT LOCUS

The root locus technique was introduced by W.R. Evans in 1948 for the analysis of
control systems. The root locus technique is a powerful tool for adjusting the location of
closed loop poles to achieve the desired system performance by varying one or more

system parameters.
K

Consider the open loop transfer function of system G(S) = m
1 2

The closed loop transfer function of the system with unity feedback is given by,

K

Cs) _ _G) _ _s(s+p1)(s5+pp)

R(s 1+G(s ____K
©) &) YemneD
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K
s(s+p1)(s+pz)+K

The denominator polynomial of C(s)/R(s) is the characteristic polynomial of the
system. The characteristic equation is given by,

s(s + p1)(s + pz) + K=0

The roots of characteristic equation is a function of open loop gain K. [ In other
words, the roots of characteristic equation depend on open loop gain K]. When the gain K is
varied from 0 to oo, the roots of characteristic equation will take different values.

When K = 0, the roots are given by open loop poles.

when K— oo the roots will take the value of open loop zeros.

The path taken by the roots of characteristic equation when open loop gain K is varied
from 0 to oo are called root loci (or the path taken by a root of characteristic equation when
open loop gain K is varied from 0 to oo is called root locus).

Note: In general the roots of characteristic equation can be varied by varying any other

system parameter other than gain.

5.4.1 CONSTRUCTION OF ROOT LOCUS:

The exact'root locus is'sketched\by trial and error‘procediire.dn this method, the poles
and zeros of G(s)H(s) are located on the s-plane on a graph sheet and a trial point s = s, is
selected. Determine the angles of vectors drawn from poles and zeros to the trial point. From
the angle criterion, determine the angle to be contributed by these vectors to make the trial
point as a point on root locus. Shift the trial point suitably so that the angle criterion is satisfied.

Several points are determined using the above procedure. Join the points by a smooth
curve which is the root locus. The value of K for a root can be obtained from the-magnitude
criterion.

The trial arid error procedure for sketching root locus is tedious. A set of rules have
been developed to reduce the task involved in sketching root locus and to develop a quick
approximate sketch. From the approximate sketch, a more accurate root locus can be obtained

by a few trials.

5.4.2 RULES FOR CONSTRUCTION OF ROOT LOCUS

Rulel: The root locus is symmetrical about the real axis.
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Rule 2: Each branch of the root locus originates from an open-loop pole corresponding to K =
0 and terminates at either on a finite open loop zero (or open loop zero at infinity) corresponding
to K = co. The number of branches of the root locus terminating on infinity is equal to n-m, (i.e.
The number of open loop poles minus the number of finite zeros)
Rule 3: Segments of the real axis having an odd number of real axis open-loop poles plus zeros
to their right are parts of the root locus.
Rule 4: The n - m root locus branches that tend to infinity, do so along straight line asymptotes
making' angles with the real axis given by,

_ +180°[2q+1]

(n—m)
q=0, 1, 2...., (n-m).

Rule 5: The point of intersection of the asymptotes with the real axis is at s = g A where,

_ Sum of poles—Sum of zeros

OA
n—-m

Rule 6: The breakaway and break in points of the root locus are determined from the roots of
the equation dK/ds =0. If r numbers of branches of root locus meet at a point, then they break
away at an angle of +180°/r.

Rule 7: The angle/of/departure from a complex open-loop pole is given by
dp=1180°2q + 1)+ d;g=0,1,2,.....n — m

where ¢ is the net angle contribution at the pole by all other open loop poles and zeros.

Similarly, the angle of arrival at a complex open loop zero is given by,
¢pz==180°(2q+ 1) +d; q=0, 1,2, ..... n—m

Where ¢ is the net angle contribution at the zero by all other open-loop poles and zeros.

Rule 8: The points of intersection of root locus branches with the imaginary axis can be
determined by use of the Routh criterion. Alternatively, they can be evaluated by letting s = jo
in the characteristic equation and equating the real part and imaginary part to zero, to solve for
o and K. The values of o are the intersection points on imaginary axis and K is the value of
gain at the intersection points.

Rule 9: The open-loop gain K at any point s = s. on the root locus is given by,

K= Hin=1|5a+pi|
H?;llsa‘l'zil

__ Product of vector lengths from open loop poles to the point s,

Product of vector lengths from open loop zeros to the point s,
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Note: The length of vector should be measured to scale. If there is no finite zero then the

product of vector lengths from zeros is equal to 1.

5.4.3 TYPICAL SKETCHES OF ROOT LOCUS:

= 2% =
Angle of departure Jjm %2
2a
2 = S-plane jos
) /-—"" ==
) =8
Root locus on real axis V e
ol 1. &% "
Centroid {(meeting point of 2 s c
5 . 5 —
asymptote with real axis) %\_ -3 .g
. B -
=2
==
Angle of departure EE
&S
jo4
__Angie of ! j S-plane
Arrival - P
s-plane
g
Ly Breakaway
Centraid ”-‘q,o;_‘ oint
Angle of
Fig 5.3

5.4.4 EXPLANATION FOR VARIOUS STEPS IN THE PROCEDURE FOR
CONSTRUCTING ROOTS LOCUS:

Step 1: Location of poles and zero:

Draw the real and imaginary axis on an ordinary graph sheet and choose same scales
both on real and imaginary axis.

The poles are marked by cross "X" and zeros are marked by small circle "0". The
number of root locus branches is equal to number of poles of open loop transfer function.
The origin of a root locus is at a pole and the end is at a zero.

Let, n=number of poles

m = number of zeros
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Now m root locus branches end at finite zeros. The remaining n-m root locus branches will
end at zeros at infinity,
Step 2: Root locus on real axis

To determine the part of root locus on real axis, take a test point on real axis. If the
total number of poles and zeros on the real axis to the right of this test point is odd number,
then the test point lies on the root locus. If it is even then the test point does not lie on the root
locus.
Step 3: Angles of asymptotes and centroid

If ‘n’ is the number of poles and m is number of zeros, then n-m root locus branches
will terminate at zeros at infinity.

These n-m root locus branches will go along an asymptotic path and meets the
asymptotes at infinity. Hence number of asymptotes is equal to number of root locus branches

going to infinity. The angles of asymptotes and the centroid are given by the following formula.

+180(2q + 1)

Angles of asymptotes = —

Where,q=0, 1, 2, 3, ... (n-m)

Sum of poles—Sum of zeros

Centroid (meeting point of asymptote with real axis) = —

Step 4: Breakaway and Break in points

The breakaway or break in points either lie on real axis or exist as complex conjugate
pairs. If there is a root locus on real axis between 2 poles then there exists a breakaway point.
If there is a root locus on real axis between 2 zeros then there exist a break in point, if there is
a root locus on real axis between pole and zero, then there may be or may not be breakaway or
break in point.
Let the characteristic equation be in the form,

B(s) + K A(s)=0

_ —B(s)
A(s)

The breakaway and break in point is given by roots of the equation dK/ds = 0. The roots
of dK/ds = 0 are actual breakaway or break in point provided for this value of root, the gain K
should be positive and real.
Step 5: Angle of departure and angle of arrival
Angle of Departure (from a complex pole A) = 180°- (sum of angles of vector to the complex
pole A from other poles) + sum of angles of

vectors to the complex pole A from zeros)
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If poles are complex then they exist only as conjugate pairs. Consider the two complex
conjugate poles A and A*,

Angle of departure at pole A = 180°- (61+ 03 + 65) + (02 + 64)

Angle of departure at pole A* = - [Angle of departure at pole A]

9, = 180°~tan™ =
0, =180°—tan™ =
C
0, = 90°
Sl
4
d
0, bt
R
(6]

Fig 5.4

Angle of arrival (from a complex pole A) = 180°- (sum of angles of vector to the complex
pole A from other zeros) + (sum of angles of
vectors to the complex pole A from poles)

If zeros are complex then they exist only as conjugate pairs. Consider the two complex

conjugate zeros A and A*,

Angle of arrival at pole A = 180°-(61+ 83) + (62 + 64 + 65)
Angle of arrival at pole A* = - [Angle of departure at zero A]
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Fig 5.5

Step 6: Point of intersection of root locus with imaginary axis

The point where the root loci intersects the imaginary axis can be found by following
three methods.

1. By Routh Hurwitz array.

2. By trial and error approach.

3. Lettings=jo the characteristic equation and separate the real part and imaginary part.
Two equations are obtained one by equating real part to zero and the other by equating
imaginary' part to zero. Solve the two equations for ® and K: The value of @ gives the points
where the root locus crosses imaginary axis. The value of K gives the value of gain K at the
crossing points. Also, this value of K is the limiting value of K for stability of the system.
Step 7: Test points and root locus

Choose a test point using a protractor roughly estimate the angles of vectors drawn to
this point and adjust the point to satisfy angle criterion. Repeat the procedure for few more test
points. Sketch the root locus from the knowledge of typical sketches and the information
obtained in steps 1 through 6.
Note: In practice the approximate root locus can be sketched from the information steps 1

through 6 and from the knowledge of typical sketches of root locus.
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5.4.5 DETERMINATION OF OPEN LOOP GAIN FOR A SPECIFIED DAMPING OF
THE DOMINANT ROOTS:

The dominant pole is a pair of complex conjugate pole which decides the transient
response of the system. In higher order systems, the dominant poles are given by the poles
which are very close to origin provided all other poles are lying far away from the dominant
poles. The poles which are far away from the origin will have less effect on transient response
of the system.

The transfer function of higher order systems can be approximated to a second order

transfer function. The standard form of closed loop transfer function of second order system is,

cs) wi

R(s) s24+28wps+w3

The dominant poles are given by the roots of quadratic factor s + 28wns + wn? = 0.
Sq-—28Wp + jWyV1 — 82
a=cos 1§

To fix a dominant pole on root locus, draw a line at an angle of cos™* & with respect to
negative real axis. The meeting point of this line with root locus will give the location of
dominant pole. Thewvalueof K corresponding to-dominantpole can beobtained from magnitude
condition.

The gain K corresponding to dominant pole,

product of lendth of vectors from open loop poles to dominant pole

Sd=
d product of lendth of vectors from open loop zeros to dominant pole
EXAMPLE 5.6
. . K
A unity feedback control system has an open loop transfer function G(s) = ——————
s(s?+4s+13)

Sketch the root locus.

SOLUTION

Step 1: To locate poles and zeros

The poles of open loop transfer function are the roots of the equation, s(s? + 4s + 13) = 0.

—4+V42-4x3

The roots of the quadratic are, S= 5

= 24j3

The poles are 0, -2+j3 and -2-j3.
The poles are marked by X.
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Step 2: To find the root locus on real axis

There is only one pole on real axis at the origin. Hence if we choose any test point on
the negative real axis then to right of that point the total number of real poles and zeros is one,
which is an odd number. Hence the entire negative real axis will be part of root locus. The root
locus on real axis is shown as a bold line in fig
Step 3: To find angles of asymptotes and centroid

Since there are 3 poles, the number of root locus branches is three. There is no finite
zero. Hence all the three root locus branches end at zeros at infinity. The number of asymptotes

required is three.

+180°(2q+1
Angles of asymptotes = % hence n=3 and m=0.

If g=0, Angles = + %00 =160°

If ¢=1, Angles = + == = +180°

180°%5

If g=2, Angles = +

180°x7

If g=1, Angles = + 60°

-+

sum of poles—sum of zeros

Centroid=
n—m

~ 0-2+j3-2-j3-0
3

=43 =-133

The centroid is marked on real axis and from the centroid the angles of asymptotes are
marked using a protractor. The asymptotes are drawn as dotted lines as shown in fig.
Step 4: To find the break away and break in points

The closed loop transfer function of the system with unity feedback is given by,

K

C(s) _ G(s) _ s(s2+4s+13)
R 1 ___K
) +G(s) 1+s(52+45+13)

C(s) K
R(s)  s(s2+4s+13)+K

The characteristic equation is s(s? + 4s + 13) + K=0
s*+4s*+13s+K =0
K =-s’-4s°-13s
dK/ds = -(3s*+8s+13)
Put dK/ds = 0; - (3s*+8s+13) =0
_ —8+V64-4x13x3

2X3

s = -1.334j1.6
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- S-plane
o
Pax P A
; ~ay
& e

. ) .
¥ RH60°+]1
Root locus on realiaxis P,

€< T
- 5
_ /‘%V_ﬁou‘_'ﬂ +1 +2
%
133/ %, \ i

centroid )
px———— B

Fig 5.6
Check for K,
When s=-1.33+j1.6, K = [(-1.33+]1.6)*+4(-1.33+j1.6)*+13(-1.33+j1.6)]
# Positive and real
When s= -1.33-j1.6, K = [(-1.33-j1.6)*+4(-1.33-j1.6)*+13(-1.33-j1.6)]
# Positive and real
Hence the values aremotreal and-positive; the poeits atenot-actualbreakaway or break
in points. The root locus has neither breakaway nor break’ inpoint.
Step S: To find angle of departure
Let us consider the complex pole A, draw vectors from all other poles to the pole A. let
the angles of these vectors be 81 and 02.
Here, 1= 180°-tan"*(3/2) = 123.7°
02=90°
Angle of departure from the complex pole A =180° - (61 + 62)
=180° - (123.7° + 90°) = -33.7°
Angle of departure at complex pole A* =+33.7°
Mark the angles of departure at complex poles using protractor.
Step 6: To find the crossing point on imaginary axis
The characteristic equation is given by
$*+4s™+13s+K =0
Puts=jo, (jo)+4(jo)+13(jo) +K=0
o -4jo*+13jotK =0

On equating imaginary part to zero, -®’+13® =0
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©*=13, = +3.6rad/sec
On equating real parts to zero,

“4®*+K =0

K =40, K=4(13)=52
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The crossing point of root locus is = j3.6. The value of K at this crossing point is K =
52. (This is the limiting value of K for the stability of the system)

The complete root locus sketch is shown in figure 5.7. The root locus has three
branches. One branch starts at the pole at origin and travel through negative real axis to meet
the zero at infinity. The other two root locus branches start at complex poles (along the angle
of departure) cross the imaginary axis at + j3.6 and travel parallel to asymptotes to meet the

zeros at infinity.

EXAMPLE 5.6

__ K
s(s+2)(s+4)

A unity feedback control system has an open loop transfer function G(s) =
Sketch the root locus. Find the value of K so that the damping ratio of the closed loop system
is 0.5.

SOLUTION

Stepl: To locate poles and zeros

The poles of open loop transfer function are the roots of the equation, s(s + 2)(s + 4) = 0.
The poles are s= 0, -2 and -4.
The poles are'marked by X.

Step 2: To find the root locus on real axis

There are three poles on real axis. Choose a test point on real axis between s=0 and a=-
2. To the right of this point the total number of real poles and zeros is one which is an odd
number. Hence the real axis between s=0 and s= -2 will be a part of root locus.

Choose a test point on real axis between s = -2 and s = -4. To the right of this point, the
total number of real poles and zeros is two which is an even number. Hence the real axis
between s= -2 and s = - 4 will not be a part of root locus.

Choose a test point on real axis to the left of s=-4. To the right of this point, the total
number of real poles and zeros is three, which is an odd number. Hence the entire negative
real axis from s =4 to o will be a part of root locus.

The root locus on real axis are shown as bold lines in figure 5.8
Step 3: To find angles of asymptotes and centroid

Since there are 3 poles, the number of root locus branches is three. There is no finite
zero. Hence all the three root locus branches end at zeros at infinity. The number of asymptotes

required is three.
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Angles of asymptotes = hence n=3 and m=0.

n—m

If g=0, Angles = + %Oo =160°

If ¢=1, Angles = + == = +180°

If g=2, Angles = + 18078 = +60°

If =1, Angles =+ 22227 + 602

Centroid = sum of poles—sum of zeros _ 0-2-4-0 )
n—-m 3

The centroid is marked on real axis and from the centroid the angles of asymptotes are
marked using a protractor. The asymptotes are drawn as dotted lines as shown in figure 5.8.
Step 4: To find the break away and break in points

The closed loop transfer function of the system with unity feedback is given by,

K
C(S): G(s) _ s(s+2) (s+4)
R(s) 14G(S) 14— —
s(s+2) (s+4)
- K
s(s+2)(s+4)+K

The characteristic equation is s(s + 2)(s + 4) + K=0
s'+65°+8s+K = 0
K = -s’-65°-8s
dK/ds= -(3s*+12s+8)
put dK/ds = 0; -(3s*+12s+8) = 0
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G = —124+144—-4x3%8

2%X3
=-0.845 or -3.154
Check for K,
When s= -0.845, K = [(-0.845)*+6(-0.845)*+8(-0.845)]
= positive and real for K = -0.845, this point is actual breakaway point.
When s=-3.154, K = [(-3.154)*+6(-3.154)*+8(-3.154)]
=-3.08
# Positive, hence K=-3.154 is not a breakaway point.
Step 5: To find angle of departure
Since there is no complex pole or zero, we need not find angle of departure or arrival.
Step 6: To find the crossing point on imaginary axis
The characteristic equation is given by
$*+6s™+85+K = 0
Puts=jo,  (jo)+6(jo)+8(jo)+K =0
[jo’-6j0*+8jo+K = 0

On equating imaginary part to zero,

-0 +80 =0
=8
o=1238
On equating real parts to zero,
60’ +K =0
K =60’
K=6(8)=48

The crossing point of root locus is = j2.8. The value of K at this crossing point is K =
48. (This is the limiting value of K for the stability of the system),

The complete root locus sketch is shown in fig. The root locus has three branches. One
branch starts at the pole at s = - 4 and travel through negative real axis to meet the zero at
Infinity. The other two root locus branches start at s = 0 and s = - 2 and travel through negative
real axis, breakaway from real axis at s= -0.845, then crosses imaginary axis at s= + j2.8 and
travel parallel to asymptotes to meet the zeros at infinity.

To find the value of K corresponding to 6 = 0.5
Given that §= 05
Leta=cos 18 =cos™* 0.5 =60°
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Draw a line OP, such that the angle between line OP and negative real axis is 60° (a=

60°) as shown in fig 4.23.2. The meeting point of the line OP and root locus gives the dominant

pole, sq.

=
= = — =
....... 2 . = -#u = = = =
St S —
- '—ﬁﬁ ; = L
= = —

e Eﬂﬂr

v -
¥

“g

|
il

e = S oonieemes
= i === e
g = 5
;
=== ‘ N
' RN -5 =
== : s
Ll %
N
= 1A =
1 B rery
et = ; =
= i = ==
= =
T =
== =
—
T = = =

i

b

|
Ll

|
I

www.binils.com
Anna University, Polytechnic & Schools



[a—

A S I AN L S

[S—
=]

REVIEW QUESTIONS
PART A
Define stability.
What is stable system?
What is absolutely stable system?
What is limitedly stable system?
Define asymptotically stable system.
Define BIBO stability.
What is root locus?
What is root locus on real axis?
Write the formula for find centroid.

. Write the formula for angle of asymptote.

PART B
Comment the location of roots on s-plane for stability.
State Routh Stability criterion.
Determine the stability of the system S*+8°-28*-3S°-78%-4S-4=0.Comment on the
location of the toots of characteristic equatien.
Draw the typical sketches of Root locus.

What is break away and break in points and how can you find it?

PART C

. Construct Routh array and determine the stability of the, system represented by the

characteristic equation, s™+9s°+24s™+24s*+24s’+24s°+23s+15=0.Comment on the

location of the roots of characteristic equation.

. Construct Routh array and determine the stability of the, system represented by the

characteristic equation, s'+5s°+9s’+9s*+4s’+20s*+36s+36=0. Comment on the

location of the roots of characteristic equation.

. Construct Routh array and determine the stability of the, system represented by the

characteristic equation, s’+s+3s*+3s’+3s°+2s+1=0.Comment on the location of the

roots of characteristic equation.

. Determine the range of K for stability of unity feedback system whose open loop

K
s(s+1) (s2+s+1)

transfer function is G(s) =
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5. Explain the step by step procedure for constructing Root locus.

6. A unity feedback control system has an open loop transfer function G(s) =
K(s+9)
s(s?+4s+11)
Sketch the root locus.

7. A unity feedback control system has an open loop transfer function G(s) =
K(s+4)

——————— Sketch the root locus.
s(s+0.5)(s+2)
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