Question Paper Code: X85081

M.E./M.Tech. DEGREE EXAMINATIONS - NOV / DEC 2020

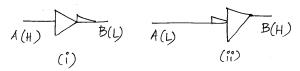
First Semester

VLSI Design and Embedded Systems

AP5151 Advanced Digital System Design

(Common to: Applied Electronics/ M.E. VLSI Design)

(Regulations 2017)


Time: 3 Hours Answer ALL Questions Max. Marks 100

PART- A (10 x 2 = 20 Marks)

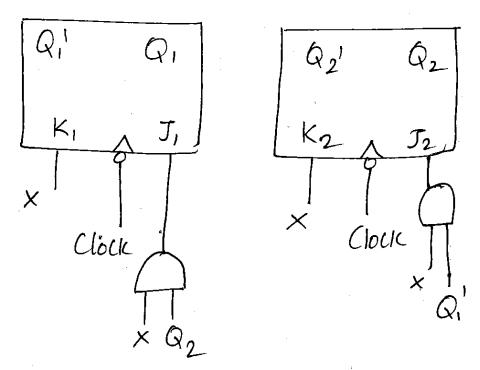
1. Draw the state diagram for the following state table :

	x =0	<i>x</i> =1	0	1
S_0	S_1	S_0	0	0
S_1	S_0	S_2	1	0
S_2	S_2	S_2	1	1
S_3	S_0	S_1	0	1

- 2. What is an iterative network?
- 3. Name the two types of Asynchronous sequential circuit.
- 4. Give the truth tables for Inverter with positive logic for the input and negative logic for the output



- 5. Define S-a-0 and S-a-1 faults.
- 6. Define Fault Equivalence and Fault Dominance.
- 7. Draw the structure of an EEPROM transistor used in FPGA programming technologies.
- 8. What is a dedicated carry logic in Xilinx 4000 series FPGA? Give its significance.
- 9. What are functions and tasks in Verilog?
- 10. Write the Verilog code for an half adder using data flow modeling?


www.binils.com Anna University | Polytechnic | Schools

PART- B $(5 \times 13 = 65 \text{ Marks})$

11. a) Analyze the following sequential network using a state table and timing chart. (13)

b) (i) Construct a timing chart for the network for an input sequence X=10011. Indicate at what timer Z has the correct value and specify the correct output sequence.(Assume that X changes midway between clock pulses) Initially, $Q_1=Q_2=0$

(ii) With an example, explain the ASM chart.

12. a) (i) Explain cycles and races in asynchronous sequential circuits with suitable examples.

(7)

(6)

(7)

www.binils.com Anna University | Polytechnic | Schools

(11) Reduce 1	the following	primitive flo	wtable				
	$X_1 X_2$						
	00	01	11	10	$Z_1 Z_2$		
1	1	7	-	4	$\begin{array}{c c} Z_1 \ Z_2 \\ \hline 1 & 1 \end{array}$		
2	(2)	5	-	4	0 1		
3	-	7	3	11	1 0		
4	2	-	3	4	0 0		
5	6	5	9	-	1 1		
6	6	7	-	11	0 1		
7	1	7	14	-	1 0		
8	8	12	-	4	0 1		
9	-	7	9	13	0 1		
10	-	7	10	4	1 0		
11	8	-	10	11	0 0		
12	6	12	9	-	1 1		
13	8	-	14	13	1 1		
14	-	12	14	11	0 0		

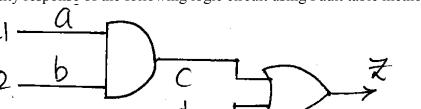
(6)

OR

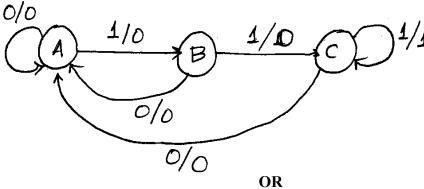
- b) (i) Design a synchronizer circuit to synchronize the input changes with clock in a sequential network.
 - (ii) Explain static and dynamic hazards with suitable example.

(8)

(5)


www.binils.com

13. a) A pisquesthe Compatibility matrix to fold a given PLA. (13)

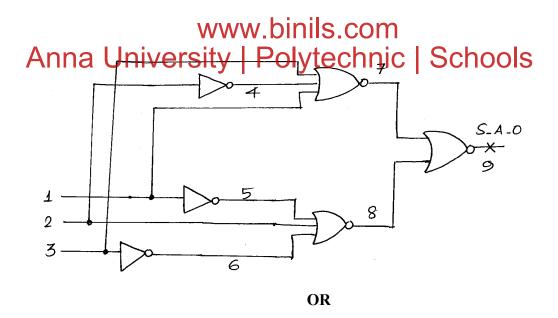

OR

(8)

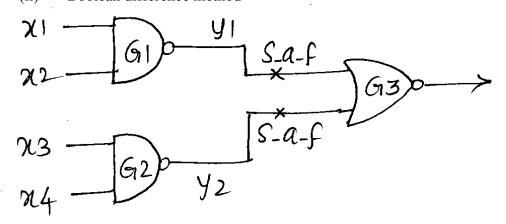
- b) (i) Explain design for testability (DFT) scheme. (5)
 - (ii) Deduce the set of all possible single stuck –at-faults and the fault –free and faulty response of the following logic circuit using Fault table method:

- 14. a) (i) With suitable examples, explain the basic difference between PLA and PAL. (5)
 - (ii) Design the following circuit and realize it with a sequential PLA. (8)

- b) Discuss the configurable logic block architecture and Input-Output block of Xilinx 4000 series FPGA. (13)
- 15. a) Design a full adder and write the Verilog code using
 - (i) Structural modeling (5)
 - (ii) Behavioral modeling (4)


Also write the test bench. (4)

OR


- b) (i) Write the Verilog code for a D flip flop using behavioral modeling. (5)
 - (ii) Design Moore based serial adder and Mealy based Serial adder. Write the Verilog code to realize it using structural modeling. (8)

PART- C (1 x 15 = 15 Marks)

16. a) Derive the test vector to detect the Stuck- at-o fault in line 9 of the following logic circuit using D-Algorithm: (13)

- b) Derive the test vector to detect the single Stuck- at-fault using
 - (i) Path Sensitization method (7)
 - (ii) Boolean difference method (8)
