| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Question Paper Code : X 10659

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020

Third Semester
Civil Engineering
MA 8353 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS (Common to Aeronautical Engineering/Aerospace Engineering/Agriculture Engineering/Automobile Engineering/Electrical and Electronics Engineering/ Electronics and Instrumentation Engineering/Industrial Engineering/ Industrial Engineering and Management/Instrumentation and Control Engineering/ Manufacturing Engineering/Marine Engineering/Material Science and Engineering/Mechanical Engineering/Mechanical Engineering (Sandwich) Mechanical and Automation Engineering/Mechatronics Engineering/ Production Engineering/Robotics and Automation/Bio Technology/Chemical and Electrochemical Engineering/ Food Technology/Pharmaceutical Technology) (Regulations 2017)

Time : Three Hours Maximum : 100 Marks

Answer ALL questions.
PART - A
(10×2=20 Marks)

1. Obtain the Partial differential equation by eliminating the arbitary constants a and b from $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.
2. Find the complete solution of $\mathrm{p}^{2}+\mathrm{q}^{2}=1$.
3. State Dirichlet's Conditions.
4. Write the Complex Fourier series.
5. Write the possible solutions of the steady state two dimensional heat flow equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$.
6. What is meant by steady state ?
7. If the Fourier transform of $f(x)$ is $F(s)$, then find the Fourier transform of $\mathrm{f}(\mathrm{x}) \operatorname{cosax}$.

www.binils.com
 Anna University | Polytechnic | Schools
 -2-
 * X10659*

X 10659
8. Write the Parsevals identity of Fourier transform.
9. Find the Z-transform of a^{n}.
10. State Final Value Theorem.
PART - B
(5×16=80 Marks)
11. a) i) Solve the equation $\mathrm{z}=\mathrm{px}+\mathrm{qy}+\sqrt{1+\mathrm{p}^{2}+\mathrm{q}^{2}}$.
ii) Solve $z^{2}\left(p^{2}+q^{2}\right)=x+y$.
(OR)
b) i) Solve $2(z+x p+y q)=y p^{2}$.
ii) Solve $\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{2} \partial y}=\sin (x+2 y)+3 x^{2} y$
(OR)
12. a) i) Find the Fourier series expansions of $f(x)=x^{2}+x$ in $(-\pi, \pi)$ of Periodicity 2π.
ii) Obtain half range Fourier Cosine series expansion of $f(x)=(x-1)^{2}$ in $0<\mathrm{x}<1$ and evaluate $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$
b) i) Obtain the Fourier series expansion of $f(x)=\left\{\begin{array}{rr}-x, & -\pi<x \leq 0 \\ x, & 0<x<\pi\end{array}\right.$ and evaluate $\frac{\pi^{2}}{6}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$
ii) Obtain the First three harmonics in the Fourier cosine series of $y=f(x)$ using the following table:

$\mathbf{x}:$	0	1	2	3	4	5
$\mathbf{y}:$	4	8	15	7	6	2.

13. a) A tightly stretched string of length l is fastened at bath end $\mathrm{A} \& \mathrm{C}$. The string is at rest, with the point $\mathrm{B}(\mathrm{x}=\mathrm{b})$ drawn aside through a small distance ' d ' and released to execute small transverse vibration. Find the transverse displacement of any point of the string at any subsequent time.
(OR)

www.binils.com
 Anna University | Polytechnic | Schools

* X10659*
$-3-$
X 10659
b) A uniform bar of length l through which heat flows is insulated at its sides. The ends are kept at zero temperature. If the initial temperature at the interior points of the bar is given by $k\left(l x-x^{2}\right)$, for $0<x<l$, find the temperature distribution in the bar after time t.

14. a) i) Find the Fourier sine transform of $f(x)=\frac{e^{-a x}}{x}$.
ii) Find Fourier transform of $f(x)=\left\{\begin{array}{ll}1, & |x|<1 \\ 0, & |x|>1\end{array}\right.$ and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$.
b) i) Verify Convolution theorem for Fourier transform, if $f(x)=g(x)=e^{-x^{2}}$.
ii) Find Fourier sine integral of $f(x)=\left\{\begin{array}{lc}1, & 0 \leq x \leq 1 \\ 0, & x>0\end{array}\right.$ and hence evaluate

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1-\cos (\pi \alpha)}{\alpha} \sin (\mathrm{x} \alpha) \mathrm{dx} . \tag{8}
\end{equation*}
$$

15. a) i) Find Z-transform of $2 \mathrm{n}+5 \sin \frac{\mathrm{n} \pi}{4}-3 \mathrm{a}^{4}$.
ii) Find the inverse Z-transform of $\frac{4 z^{2}-2 z}{z^{3}-5 z^{2}+8 z-4}$.
(OR)
b) i) Using Convolution Theorem, find the inverse Z-transform of $\frac{z^{2}}{(z-2)(z-3)}$.
ii) Using Z-transformation, solve $\mathrm{U}_{\mathrm{n}+2}+4 \mathrm{U}_{\mathrm{n}+1}+2 \mathrm{U}_{\mathrm{n}}=3^{\mathrm{n}}$ given that $u_{0}=0, u_{1}=1$.
