ANNA UNIVERSITY, CHENNAI NON - AUTONOMOUS COLLEGES AFFILIATED TO ANNA UNIVERSITY REGULATIONS 2021 # B. E. ELECTRONICS AND COMMUNICATION ENGINEERING CHOICE BASED CREDIT SYSTEM I AND II SEMESTERS CURRICULA AND SYLLABI SEMESTER I | S. | COURSE
CODE | COURSE TITLE | CATE- | PERIODS
PER WEEK | | | TOTAL
CONTACT | CREDITS | | |--------|----------------|----------------------------|-------|---------------------|------|----------|------------------|---------|--| | NO. | | | GORY | L | Т | Р | PERIODS | | | | 1. | IP3151 | Induction Programme | - | - | - | - | - | 0 | | | THEORY | | | | | | | | | | | 2. | HS3151 | Professional English - I | HSMC | 3 | 1 | 0 | 4 | 4 | | | 3. | MA3151 | Matrices and Calculus | BSC | 3 | 1 | 0 | 4 | 4 | | | 4. | PH3151 | Engineering Physics | BSC | 3 | 0 | 0 | 3 | 3 | | | 5. | CY3151 | Engineering Chemistry | BSC | 3 | 0 | 0 | 3 | 3 | | | 6. | GE3151 | Problem Solving and Python | ESC | 3 | 0 | 0 0 | 3 | 3 | | | | GESISI | Programming | | 3 | U | | | 3 | | | PRAC | TICALS | AMIC | 74 | | 31.7 | \ | - | | | | 7. | GE3171 | Problem Solving and Python | ESC | 0 | 0 0 | 4 | 4 | 2 | | | GES1/1 | GEST/T | Programming Laboratory | | U | | 7 | 4 | 2 | | | 8. | BS3171 | Physics and Chemistry | BSC | 0 | 0 | 4 | 4 | 2 | | | | 000171 | Laboratory | | U | U | 4 | 4 | _ | | | | | | TOTAL | 15 | 2 | 8 | 25 | 21 | | VVVVVV SEMESTER IS CC | S
NO | COURSE | COURSEILLE | | ATE-
WEEK | | TOTAL
CONTACT | CREDITS | | |---------|------------|--------------------------------------------|-------|--------------|---|------------------|---------|----| | NO. | CODE | | GORY | L | T | P | PERIODS | | | THE | THEORY | | | | | | | | | 1. | HS3251 | Professional English - II | HSMC | 3 | 1 | 0 | 4 | 4 | | 2. | MA3251 | Statistics and Numerical Methods | BSC | 3 | 1 | 0 | 4 | 4 | | 3. | PH3254 | Physics for Electronics Engineering | BSC | 3 | 0 | 0 | 3 | 3 | | 4. | BE3254 | Electrical and Instrumentation Engineering | ESC | 3 | 0 | 0 | 3 | 3 | | 5. | GE3251 | Engineering Graphics | ESC | 2 | 0 | 4 | 6 | 4 | | 6. | EC3251 | Circuit Analysis | PCC | 3 | 1 | 0 | 4 | 4 | | 7. | | NCC Credit Course Level 1* | - | 2 | 0 | 0 | 2 | 2* | | PRA | PRACTICALS | | | | | | | | | 8. | GE3271 | Engineering Practices Laboratory | ESC | 0 | 0 | 4 | 4 | 2 | | 9. | EC3271 | Circuits Analysis Laboratory | PCC | 0 | 0 | 2 | 2 | 1 | | | • | | TOTAL | 17 | 3 | 10 | 30 | 25 | ^{*}NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA. - 3. Determination of total, temporary & permanent hardness of water by EDTA method. - 4. Determination of DO content of water sample by Winkler's method. - 5. Determination of chloride content of water sample by Argentometric method. - 6. Estimation of copper content of the given solution by lodometry. - 7. Estimation of TDS of a water sample by gravimetry. - 8. Determination of strength of given hydrochloric acid using pH meter. - 9. Determination of strength of acids in a mixture of acids using conductivity meter. - 10. Conductometric titration of barium chloride against sodium sulphate (precipitation titration) - 11. Estimation of iron content of the given solution using potentiometer. - 12. Estimation of sodium /potassium present in water using a flame photometer. - 13. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method. - 14. Estimation of Nickel in steel - 15. Proximate analysis of Coal **TOTAL: 30 PERIODS** #### **COURSE OUTCOMES:** - To analyse the quality of water samples with respect to their acidity, alkalinity, hardness and DO. - To determine the amount of metal ions through volumetric and spectroscopic techniques - To analyse and determine the composition of alloys. - To learn simple method of synthesis of nanoparticles - To quantitatively analyse the impurities in solution by electroanalytical techniques #### **TEXT BOOKS:** 1. J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas and B. Sivasankar, Vogel's Textbook of Quantitative Chemical Analysis (2009). HS3251 **PROFESSIONAL ENGLISH - II** L T P C 3 1 0 4 #### **COURSE OBJECTIVES** - To engage learners in meaningful language activities to improve their LSRW skills - To enhance learners' awareness of general rules of writing for specific audiences - To help learners understand the purpose, audience, contexts of different types of writing - To develop analytical thinking skills for problem solving in communicative contexts - To demonstrate an understanding of job applications and interviews for internship and placements #### UNIT I MAKING COMPARISONS 12 Listening – Evaluative Listening: Advertisements, Product Descriptions, -Audio / video; Listening and filling a Graphic Organiser (Choosing a product or service by comparison) Speaking - Marketing a product, Persuasive Speech Techniques. Reading - Reading advertisements, user manuals, brochures; Writing – Professional emails, Email etiquette - Compare and Contrast Essay; Grammar – Mixed Tenses, Prepositional phrases Vocabulary – Contextual meaning of words #### UNIT II EXPRESSING CAUSAL RELATIONS IN SPEAKING AND WRITING 12 Listening - Listening to longer technical talks and completing— gap filling exercises. Listening technical information from podcasts — Listening to process/event descriptions to identify cause & effects - Speaking — Describing and discussing the reasons of accidents or disasters based on news reports. Reading - Reading longer technical texts- Cause and Effect Essays, and Letters / emails of complaint, Writing - Writing responses to complaints. Grammar - Active Passive Voice transformations, Infinitive and Gerunds Vocabulary – Word Formation (Noun-Verb-Adj-Adv), Adverbs. #### UNIT III PROBLEM SOLVING 12 Listening – Listening to / Watching movie scenes/ documentaries depicting a technical problem and suggesting solutions. Speaking – Group Discussion(based on case studies), - techniques and Strategies, Reading - Case Studies, excerpts from literary texts, news reports etc., Writing - Letter to the Editor, Checklists, Problem solution essay / Argumentative Essay Grammar - Error correction; If conditional sentences Vocabulary - Compound Words, Sentence Completion. #### UNIT IV REPORTING OF EVENTS AND RESEARCH 12 Listening – Listening Comprehension based on news reports – and documentaries – Precis writing, Summarising, Speaking –Interviewing, Presenting an oral report, Mini presentations on select topics; Reading –Newspaper articles; Writing – Recommendations, Transcoding, Accident Report, Survey Report Grammar – Reported Speech, Modals Vocabulary – Conjunctions- use of prepositions #### UNIT V THE ABILITY TO PUT IDEAS OR INFORMATION COGENTLY 12 Listening – Listening to TED Talks, Presentations, Formal job interviews, (analysis of the interview performance); Speaking – Participating in a Role play, (interview/telephone interview), virtual interviews, Making presentations with visual aids; Reading – Company profiles, Statement of Purpose, (SOP), an excerpt of interview with professionals; Writing – Job / Internship application – Cover letter & Resume; Grammar – Numerical adjectives, Relative Clauses Vocabulary – Idioms. #### **TOTAL: 60 PERIODS** #### **COURSE OUTCOMES:** At the end of the course, learners will be able - To compare and contrast products and ideas in technical texts. - To identify cause and effects in events, industrial processes through technical texts - To analyze problems in order to arrive at feasible solutions and communicate them orally and in the written format. - To report events and the processes of technical and industrial nature. - To present their opinions in a planned and logical manner, and draft effective resumes in context of job search. #### **TEXT BOOKS:** 1. English for Engineers & Technologists (2020 edition) Orient Blackswan Private Ltd. Department of English, Anna University. 2. English for Science & Technology Cambridge University Press 2021.Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University. #### **REFERENCES:** - 1. Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New Delhi. - 2. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, New Delhi. - 3. Learning to Communicate Dr. V. Chellammal. Allied Publishers, New Delhi, 2003 - 4. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi. - 5. Krishna Mohan, Meera Banerji, "Developing Communication Skills", Trinity Press, 2017. #### MA3251 #### STATISTICS AND NUMERICAL METHODS L T P C 3 1 0 4 #### **COURSE OBJECTIVES:** - This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology. - To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems. - To introduce the basic concepts of solving algebraic and transcendental equations. - To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines. - To acquaint the knowledge of various techniques and methods of solving ordinary differential equations. #### UNIT I TESTING OF HYPOTHESIS 9 + 3 Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) - Tests for single variance and equality of variances - Chi square test for goodness of fit - Independence of attributes. #### UNIT II DESIGN OF EXPERIMENTS 9 + 3 One way and two way classifications - Completely randomized design – Randomized block design – Latin square design - 2² factorial design. #### UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS 9 + 3 Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices. ### UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION 9 +3 Lagrange's and Newton's divided difference interpolations – Newton's forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson's 1/3 rules. UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 9 +3 Single step methods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order differential equations - Multi step methods: Milne's and Adams - Bash forth predictor corrector methods for solving first order differential equations. **TOTAL: 60 PERIODS** #### **COURSE OUTCOMES:** Upon successful completion of the course, students will be able to: - Apply the concept of testing of hypothesis for small and large samples in real life problems. - Apply the basic concepts of classifications of design of experiments in the field of agriculture. - Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems. - Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations. - Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications. #### **TEXT BOOKS:** - 1. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi, 2015. - 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015. #### **REFERENCES:** - 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016. - 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014. - 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 7th Edition, 2007. - 4. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020. - 5. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics", Tata McGraw Hill Edition, 4th Edition, 2012. - 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 9th Edition, Pearson Education, Asia, 2010. PH3254 PHYSICS FOR ELECTRONICS ENGINEERING L T P C 3 0 0 3 #### **COURSE OBJECTIVES:** - To make the students to understand the basics of crystallography and its importance in studying materials properties. - To understand the electrical properties of materials including free electron theory, applications of quantum mechanics and magnetic materials. - To instil knowledge on physics of semiconductors, determination of charge carriers and device applications - To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications - To inculcate an idea of significance of nano structures, quantum confinement and ensuing nano device applications. #### UNIT I CRYSTALLOGRAPHY 9 Crystal structures: Crystal lattice – basis - unit cell and lattice parameters – crystal systems and Bravais lattices – Structure and packing fractions of SC, BCC, FCC, diamond cubic, NaCL, ZnS structures – crystal planes, directions and Miller indices – distance between successive planes – linear and planar densities – crystalline and noncrystalline materials –Example use of Miller indices: wafer surface orientation – wafer flats and notches – pattern alignment - imperfections in crystals. #### UNIT II ELECTRICAL AND MAGNETIC PROPERTIES OF MATERIALS 9 Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression - Quantum free electron theory: Tunneling - degenerate states - Fermi- Dirac statistics - Density of energy states - Electron in periodic potential - Energy bands in solids - tight binding approximation - Electron effective mass - concept of hole. Magnetic materials: Dia, para and ferromagnetic effects - paramagnetism in the conduction electrons in metals - exchange interaction and ferromagnetism - quantum interference devices - GMR devices. #### UNIT III SEMICONDUCTORS AND TRANSPORT PHYSICS 9 Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors - Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – Carrier transport in Semiconductors: Drift, mobility and diffusion – Hall effect and devices – Ohmic contacts – Schottky diode. #### UNIT IV OPTICAL PROPERTIES OF MATERIALS 9 Classification of optical materials – Optical processes in semiconductors: optical absorption and emission, charge injection and recombination, optical absorption, loss and gain. Optical processes in quantum wells – Optoelectronic devices: light detectors and solar cells – light emitting diode – laser diode - optical processes in organic semiconductor devices –excitonic state – Electro-optics and nonlinear optics: Modulators and switching devices – plasmonics. #### UNIT V NANO DEVICES 9 Density of states for solids - Significance between Fermi energy and volume of the material – Quantum confinement – Quantum structures – Density of states for quantum wells, wires and dots – Band gap of nanomaterials –Tunneling – Single electron phenomena – Single electron Transistor. Conductivity of metallic nanowires – Ballistic transport – Quantum resistance and conductance – Carbon nanotubes: Properties and applications – Spintronic devices and applications – Optics in quantum structures – quantum well laser. #### **TOTAL: 45 PERIODS** #### **COURSE OUTCOMES:** At the end of the course, the students should be able to - know basics of crystallography and its importance for varied materials properties - gain knowledge on the electrical and magnetic properties of materials and their applications - understand clearly of semiconductor physics and functioning of semiconductor devices - understand the optical properties of materials and working principles of various optical devices - appreciate the importance of nanotechnology and nanodevices. #### **TEXT BOOKS:** - 1. S.O. Kasap. Principles of Electronic Materials and Devices, McGraw Hill Education (Indian Edition), 2020. - 2. R.F.Pierret. Semiconductor Device Fundamentals. Pearson (Indian Edition), 2006. - 3. G.W.Hanson. Fundamentals of Nanoelectronics. Pearson Education (Indian Edition), 2009. #### REFERENCES: - 1. Laszlo Solymar, Walsh, Donald, Syms and Richard R.A., Electrical Properties of Materials, Oxford Univ. Press (Indian Edition) 2015. - 2. Jasprit Singh, Semiconductor Optoelectronics: Physics and Technology, McGraw-Hill Education (Indian Edition), 2019. - 3. Charles Kittel, Introduction to Solid State Physics, Wiley India Edition, 2019. - 4. Mark Fox, Optical Properties of Solids, Oxford Univ. Press, 2001. - 5. N.Gershenfeld. The Physics of Information Technology. Cambridge University Press, 2011. **BE3254** ### **ELECTRICAL AND INSTRUMENTATION ENGINEERING** L T P C #### **COURSE OBJECTIVES:** - To impart knowledge in types, construction and working of transformers - To impart knowledge in types, construction and working of DC machines - To impart knowledge in types, construction and working of AC rotating machines - To introduce the functional elements and working of measuring instruments. - To introduce the basics of power system and protection schemes #### UNIT I TRANSFORMER ξ Introduction - Ideal and Practical Transformer – Phasor diagram-– Per Unit System – Equivalent circuit- Testing- Efficiency and Voltage Regulation– Three Phase Transformers –Applications-Auto Transformers, Advantages- Harmonics. #### UNIT II DC MACHINES 9 Introduction – Constructional Features – Motor and Generator mode - EMF and Torque equation – Circuit Model – Methods of Excitation- Characteristics – Starting and Speed Control – Universal Motor- Stepper Motors – Brushless DC Motors- Applications #### UNIT III AC ROTATING MACHINES 9 Principle of operation of three-phase induction motors – Construction –Types – Equivalent circuit, Speed Control - Single phase Induction motors -Construction – Types–starting methods. Alternator: Working principle–Equation of induced EMF – Voltage regulation, Synchronous motors- working principle-starting methods – Torque equation. #### UNIT IV MEASUREMENTS AND INSTRUMENTATION 9 Functional elements of an instrument, Standards and calibration, Operating Principle, types - Moving Coil and Moving Iron meters, Measurement of three phase power, Energy Meter, Instrument Transformers-CT and PT,DSO- Block diagram- Data acquisition. #### UNIT V BASICS OF POWER SYSTEMS 9 Power system structure -Generation , Transmission and distribution , Various voltage levels, Earthing – methods of earthing, protective devices- switch fuse unit- Miniature circuit breaker-moulded case circuit breaker- earth leakage circuit breaker, safety precautions and First Aid **TOTAL: 45 PERIODS** #### **COURSE OUTCOMES:** After completing this course, the students will be able to **CO1:** Explain the working principle of electrical machines CO2: Analyze the output characterizes of electrical machines CO3: Choose the appropriate electrical machines for various applications CO4: Explain the types and operating principles of measuring instruments CO5: Explain the basic power system structure and protection schemes #### **TEXT BOOKS:** - 1. Kothari DP and I.J Nagrath, "Basic Electrical and Electronics Engineering", Second Edition, McGraw Hill Education, 2020 - 2. S. K, Bhattacharya, "Basic Electrical and Electronics Engineering", Second Edition, Pearson Education, 2017. - 3. A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, New Delhi, 2015. - 4. C.L.Wadhwa, "Generation, Distribution and Utilisation of Electrical Energy", New Age International pvt.ltd.,2003 #### **REFERENCES:** - 1. Kothari DP and I.J Nagrath, "Basic Electrical Engineering", Fourth Edition, McGraw Hill Education, 2019 - 2. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, 2002. - 3. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010 **GE3251** #### **ENGINEERING GRAPHICS** LTPC 2 0 4 4 #### **COURSE OBJECTIVES:** The main learning objective of this course is to prepare the students for: - Drawing engineering curves. - Drawing freehand sketch of simple objects. - Drawing orthographic projection of solids and section of solids. - Drawing development of solids - Drawing isometric and perspective projections of simple solids. #### **CONCEPTS AND CONVENTIONS (Not for Examination)** Importance of graphics in engineering applications — Use of drafting instruments — BIS conventions and specifications — Size, layout and folding of drawing sheets — Lettering and dimensioning. #### UNIT I PLANE CURVES AND FREEHAND SKETCHING 6+12 Basic Geometrical constructions, Curves used in engineering practices: Conics — Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves. #### UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE 6+12 Orthographic projection - principles - Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method. #### UNIT III PROJECTION OF SOLIDS 6+12 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) #### UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF 6 SURFACES +12 Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other — obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) #### UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12 Principles of isometric projection — isometric scale —Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method. Practicing three dimensional modeling of isometric projection of simple objects by CAD Software (Not for examination) TOTAL: (L=30+P=60) 90 PERIODS #### COURSE OUTCOMES: On successful completion of this course, the student will be able to - Use BIS conventions and specifications for engineering drawing. - Construct the conic curves, involutes and cycloid. - Solve practical problems involving projection of lines. - Draw the orthographic, isometric and perspective projections of simple solids. - Draw the development of simple solids. #### **TEXT BOOKS:** 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, - 53rd Edition, 2019. - 2. Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018. - 3. Parthasarathy, N. S. and Vela Murali, "Engineering Drawing", Oxford University Press, 2015 #### REFERENCES: - 1. Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill, 2nd Edition, 2019. - 2. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Publications, Bangalore, 27th Edition, 2017. - 3. Luzzader, Warren.J. and Duff,John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005. - 4. Parthasarathy N. S. and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015. - 5. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson Education India, 2nd Edition, 2009. - 6. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008. #### Publication of Bureau of Indian Standards: - 1. IS 10711 2001: Technical products Documentation Size and layout of drawing sheets. - 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering. - 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings. - 4. IS 11669 1986 & SP 46 —2003: Dimensioning of Technical Drawings. - IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods. #### Special points applicable to University Examinations on Engineering Graphics: - 1. There will be five questions, each of either or type covering all units of the syllabus. - 2. All questions will carry equal marks of 20 each making a total of 100. - 3. The answer paper shall consist of drawing sheets of A3 size only. The students will permitted to use appropriate scale to fit solution within A3 size. - 4. The examination will be conducted in appropriate sessions on the same day EC3251 CIRCUIT ANALYSIS 3 1 0 4 #### **COURSE OBJECTIVES:** - To learn the basic concepts and behaviour of DC and AC circuits. - To understand various methods of circuit/ network analysis using network theorems. - To understand the transient and steady state response of the circuits subjected to DC excitations and AC with sinusoidal excitations. - To learn the concept of coupling in circuits and topologies. #### UNIT I DC CIRCUIT ANALYSIS 12 Basic Components of electric Circuits, Charge, current, Voltage and Power, Voltage and Current Sources, Ohms Law, Kirchoff's Current Law, Kirchoff's voltage law, The single Node – Pair Circuit, series and Parallel Connected Independent Sources, Resistors in Series and Parallel, voltage and current division, Nodal analysis, Mesh analysis. #### UNIT II NETWORK THEOREM AND DUALITY Useful Circuit Analysis techniques - Linearity and superposition, Thevenin and Norton Equivalent Circuits, Maximum Power Transfer, Delta-Wye Conversion. Duals, Dual circuits. Analysis using dependent current sources and voltage sources #### UNIT III SINUSOIDAL STEADY STATE ANALYSIS 12 12 Sinusoidal Steady – State analysis, Characteristics of Sinusoids, The Complex Forcing Function, The Phasor, Phasor relationship for R, L, and C, impedance and Admittance, Nodal and Mesh Analysis, Phasor Diagrams, AC Circuit Power Analysis, Instantaneous Power, Average Power, apparent Power and Power Factor, Complex Power. #### UNIT IV TRANSIENTS AND RESONANCE IN RLC CIRCUITS 12 Basic RL and RC Circuits, The Source-Free RL Circuit, The Source-Free RC Circuit, The Unit-Step Function, Driven RL Circuits, Driven RC Circuits, RLC Circuits, Frequency Response, Parallel Resonance, Series Resonance, Quality Factor. #### UNIT V COUPLED CIRCUITS AND TOPOLOGY 12 Magnetically Coupled Circuits, mutual Inductance, the Linear Transformer, the Ideal Transformer, An introduction to Network Topology, Trees and General Nodal analysis, Links and Loop analysis. #### **SUGGESTED ACTIVITIES:** · Practice solving variety of problems #### COURSE OUTCOMES #### On successful completion of this course, the student will be able to CO1: Apply the basic concepts of circuit analysis such as Kirchoff's laws, mesh current and node voltage method for analysis of DC and AC circuits. CO2: Apply suitable network theorems and analyze AC and DC circuits CO3: Analyze steady state response of any R, L and C circuits **CO4:** Analyze the transient response for any RC, RL and RLC circuits and frequency response of parallel and series resonance circuits. CO5: Analyze the coupled circuits and network topologies **TOTAL: 60 PERIODS** #### **TEXT BOOKS:** - 1. Hayt Jack Kemmerly, Steven Durbin, "Engineering Circuit Analysis", Mc Graw Hill education, 9th Edition, 2018. - 2. Charles K. Alexander & Mathew N.O.Sadiku, "Fundamentals of Electric Circuits", Mc Graw- Hill, 2nd Edition, 2003. - 3. Joseph Edminister and Mahmood Nahvi, —Electric Circuits, Schaum's Outline Series, Tata McGraw Hill Publishing Company, New Delhi, Fifth Edition Reprint 2016. #### REFERENCES: - 1. Robert.L. Boylestead, "Introductory Circuit Analysis", Pearson Education India, 12th Edition, 2014. David Bell, "Fundamentals of Electric Circuits", Oxford University press, 7thEdition, 2009. - 2. John O Mallay, Schaum's Outlines "Basic Circuit Analysis", The Mc Graw Hill companies, 2nd Edition, 2011 - 3. Allan H.Robbins, Wilhelm C.Miller, —Circuit Analysis Theory and Practicell, Cengage Learning, Fifth Edition, 1st Indian Reprint 2013 ### NCC Credit Course Level 1* (ARMY WING) | | (ARMY WING) NCC Credit Course Level 1 | L | T | Р | С | |-------------------------|--------------------------------------------------------------------------------------------|---|---|---|---| | | | 2 | 0 | 0 | 2 | | NCC GENERAL | | | | | 6 | | NCC 1 | Aims, Objectives & Organization of NCC | | | | 1 | | NCC 2 | Incentives | | | | 2 | | NCC 3 | Duties of NCC Cadet | | | | 1 | | NCC 4 | NCC Camps: Types & Conduct | | | | 2 | | NATIONAL I | NTEGRATION AND AWARENESS | | | | 4 | | NI 1 | National Integration: Importance & Necessity | | | | 1 | | NI 2 | Factors Affecting National Integration | | | | 1 | | NI 3 | Unity in Diversity & Role of NCC in Nation Building | | | | 1 | | NI 4 | Threats to National Security | | | | 1 | | PERSONALITY DEVELOPMENT | | | | | 7 | | PD 1 | Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving | | | | 2 | | PD 2 | Communication Skills | | | | 3 | | PD 3 | Group Discussion: Stress & Emotions | | | | 2 | | LEADERSHI | P | | | | 5 | | L 1 | Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code | | | | 3 | | L 2 | Case Studies: Shivaji, Jhasi Ki Rani | | | | 2 | | SOCIAL SEF | RVICE AND COMMUNITY DEVELOPMENT | | | | 8 | | SS 1 | Basics, Rural Development Programmes, NGOs, Contribution of Youth | | | | 3 | | SS 4 | Protection of Children and Women Safety | | | | 1 | | SS 5 | Road / Rail Travel Safety | | | | 1 | | SS 6 | New Initiatives | | | | 2 | | SS 7 | Cyber and Mobile Security Awareness | | | | 1 | **TOTAL: 30 PERIODS** | NX3252 | NCC Credit Course Level 1* | | | | | |-----------|--------------------------------------------------------------------------------------------|---|---|---|---| | | (NAVAL WING) | L | Т | Р | С | | | NCC Credit Course Level 1 | 2 | 0 | 0 | 2 | | | | _ | Ū | Ū | _ | | NCC GENE | ERAL | | | | 6 | | NCC 1 | Aims, Objectives & Organization of NCC | | | | 1 | | NCC 2 | Incentives | | | | 2 | | NCC 3 | Duties of NCC Cadet | | | | 1 | | NCC 4 | NCC Camps: Types & Conduct | | | | 2 | | NATIONAL | _ INTEGRATION AND AWARENESS | | | | 4 | | NI 1 | National Integration: Importance & Necessity | | | | 1 | | NI 2 | Factors Affecting National Integration | | | | 1 | | NI 3 | Unity in Diversity & Role of NCC in Nation Building | | | | 1 | | NI 4 | | | | | 1 | | INI 4 | Threats to National Security | | | | 1 | | PERSONA | LITY DEVELOPMENT | | | | 7 | | PD 1 | Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving | | | | 2 | | PD 2 | Communication Skills | | | | 3 | | PD 3 | Group Discussion: Stress & Emotions | | | | 2 | | | | | | | | | LEADERSI | | | | | 5 | | L 1 | Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code | | | | 3 | | L 2 | Case Studies: Shivaji, Jhasi Ki Rani | | | | 2 | | SOCIAL SI | ERVICE AND COMMUNITY DEVELOPMENT | | | | 8 | | SS 1 | Basics, Rural Development Programmes, NGOs, Contribution of Youth | | | | 3 | | SS 4 | Protection of Children and Women Safety | | | | 1 | | SS 5 | Road / Rail Travel Safety | | | | 1 | | SS 6 | New Initiatives | | | | 2 | | SS 7 | Cyber and Mobile Security Awareness | | | | 1 | **TOTAL: 30 PERIODS** | NX3253 | NCC Credit Course Level 1* | | | | _ | |-----------|--------------------------------------------------------------------------------------------|-----|-----|---|---| | | (AIR FORCE WING) NCC Credit Course Level 1 | LI | F | , | C | | | 1400 Orealt Course Level 1 | 2 (|) (|) | 2 | | NCC GENE | ERAL . | | | | 6 | | NCC 1 | Aims, Objectives & Organization of NCC | | | | 1 | | NCC 2 | Incentives | | | | 2 | | NCC 3 | Duties of NCC Cadet | | | | 1 | | NCC 4 | NCC Camps: Types & Conduct | | | | 2 | | NATIONAL | _ INTEGRATION AND AWARENESS | | | | 4 | | NI 1 | National Integration: Importance & Necessity | | | | 1 | | NI 2 | Factors Affecting National Integration | | | | 1 | | NI 3 | Unity in Diversity & Role of NCC in Nation Building | | | | 1 | | NI 4 | Threats to National Security | | | | 1 | | | | | | | | | PERSONA | LITY DEVELOPMENT | | | | 7 | | PD 1 | Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving | | | | 2 | | PD 2 | Communication Skills | | | | 3 | | PD 3 | Group Discussion: Stress & Emotions | | | | 2 | | LEADERS | | | | | 5 | | | Leadership Capsule: Traits, Indicators, Motivation, Moral Values, | | | | _ | | L 1 | Honour Code | | | | 3 | | L 2 | Case Studies: Shivaji, Jhasi Ki Rani | | | | 2 | | SOCIAL SI | ERVICE AND COMMUNITY DEVELOPMENT | | | | 8 | | SS 1 | Basics, Rural Development Programmes, NGOs, Contribution of Youth | | | | 3 | | SS 4 | Protection of Children and Women Safety | | | | 1 | | SS 5 | Road / Rail Travel Safety | | | | 1 | | SS 6 | New Initiatives | | | | 2 | | SS 7 | Cyber and Mobile Security Awareness | | | | 1 | **TOTAL: 30 PERIODS** #### **COURSE OBJECTIVES:** The main learning objective of this course is to provide hands on training to the students in: - 1. Drawing pipe line plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planing; making joints in wood materials used in commonhousehold wood work. - 2. Wiring various electrical joints in common household electrical wire work. - 3. Welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipments; Making a tray out of metal sheet using sheet metal work. - 4. Soldering and testing simple electronic circuits; Assembling and testing simple electronic components on PCB. #### **GROUP - A (CIVIL & ELECTRICAL)** ### PART I CIVIL ENGINEERING PRACTICES PLUMBING WORK: 15 - a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household. - b) Preparing plumbing line sketches. - c) Laying pipe connection to the suction side of a pump - d) Laying pipe connection to the delivery side of a pump. - e) Connecting pipes of different materials: Metal, plastic and flexible pipes used inhousehold appliances. #### **WOOD WORK:** - a) Sawing, - b) Planing and - c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint. #### Wood Work Study: - a) Studying joints in door panels and wooden furniture - b) Studying common industrial trusses using models. #### PART II #### **ELECTRICAL ENGINEERING PRACTICES** 15 - a) Introduction to switches, fuses, indicators and lamps Basic switch board wiring with lamp, fan and three pin socket - b) Staircase wiring - c) Fluorescent Lamp wiring with introduction to CFL and LED types. - d) Energy meter wiring and related calculations/ calibration - e) Study of Iron Box wiring and assembly - f) Study of Fan Regulator (Resistor type and Electronic type using Diac/Triac/guadrac) - g) Study of emergency lamp wiring/Water heater #### **GROUP – B (MECHANICAL AND ELECTRONICS)** #### PART III MECHANICAL ENGINEERING PRACTICES #### **WELDING WORK:** - a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding. - b) Practicing gas welding. #### **BASIC MACHINING WORK:** - a) (simple)Turning. - b) (simple)Drilling. - c) (simple)Tapping. #### **ASSEMBLY WORK:** - a) Assembling a centrifugal pump. - b) Assembling a household mixer. - c) Assembling an airconditioner. #### SHEET METAL WORK: a) Making of a square tray #### **FOUNDRY WORK:** a) Demonstrating basic foundry operations. #### **PART IV** #### **ELECTRONIC ENGINEERING PRACTICES** 15 **TOTAL: 60 PERIODS** #### SOLDERING WORK: a) Soldering simple electronic circuits and checking continuity. #### **ELECTRONIC ASSEMBLY AND TESTING WORK:** a) Assembling and testing electronic components on a small PCB. #### **ELECTRONIC EQUIPMENT STUDY:** - a) Study an elements of smart phone.. - b) Assembly and dismantle of LED TV. - c) Assembly and dismantle of computer/ laptop #### COURSE OUTCOMES: Upon completion of this course, the students will be able to: - Draw pipe line plan; lay and connect various pipe fittings used in common household plumbing work; Saw; plan; make joints in wood materials used in common household wood work. - Wire various electrical joints in common household electrical wire work. - Weld various joints in steel plates using arc welding work; Machine various simple processes like turning, drilling, tapping in parts; Assemble simple mechanical assembly of common household equipments; Make a tray out of metal sheet using sheet metal work. - Solder and test simple electronic circuits; Assemble and test simple electronic components on PCB. www.binils.com Anna University, Polytechnic & Schools 15 #### **COURSE OBJECTIVES:** - To gain hands- on experience in Thevenin & Norton theorem, KVL & KCL, and Superposition Theorems. - To understand the working of RL,RC and RLC circuits #### **List of Experiments:** - 1. Verifications of KVL & KCL. - 2. Verifications of Thevenin & Norton theorem. - 3. Verification of Superposition Theorem. - 4. Verification of maximum power transfer Theorem - 5. Determination of Resonance Frequency of Series & Parallel RLC Circuits. - 6. Transient analysis of RL and RC circuits. #### **Laboratory Requirements:** Resistors, Capacitors, Inductors - sufficient quantities, Bread Boards - 15 Nos. CRO (30MHz) - 10 Nos. Function Generators (3MHz) - 10 Nos. Dual Regulated Power Supplies (0 – 30V) – 10 Nos. ### **TOTAL: 30 PERIODS** COURSE OUTCOMES: #### At the end of the course, the student will be able to - Design RL and RC circuits. - Verify Thevinin & Norton theorem KVL & KCL, and Super Position Theorems. #### **TEXT BOOKS** - JackKemmerly, Steven Durbin, "Engineering Circuit Analysis", McGraw Hill 1. Hayt education, 9th Edition, 2018. - 2. Charles K. Alexander & Mathew N.O.Sadiku, "Fundamentals of Electric Circuits", McGraw- Hill, 2nd Edition, 2003. - 3. Joseph Edminister and Mahmood Nahvi, "Electric Circuits, Schaum's Outline Series", Tata McGraw Hill Publishing Company, New Delhi, Fifth Edition Reprint 2016. #### REFERENCES - 1. David Bell, "Fundamentals of Electric Circuits", Oxford University press, 7th Edition, 2009 - 2. John O Mallay, Schaum's Outlines "Basic Circuit Analysis", The Mc Graw Hill companies, 2nd Edition, 2011. - 3. A.Bruce Carlson, "Cicuits: Engineering Concepts and Analysis of Linear Electric Circuits, Cengage Learning, India Edition 2nd Indian Reprint 2009. - 4. Allan H.Robbins, Wilhelm C.Miller, "Circuit Analysis Theory and Practice", Cengage Learning, Fifth Edition, 1st Indian Reprint 2013