www.binils.com Anna University | Polytechnic | Schools

X10655

Reg. No. :

Question Paper Code : X 10655

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020/ APRIL/MAY 2021 Second Semester MA8251 : ENGINEERING MATHEMATICS – II [Common to all (Except Marine Engineering)] (Regulations 2017)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions.

$$PART - A$$

(10×2=20 Marks)

- 1. Given that α , β are the eigenvalues of the matrix $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$, form the matrix whose eigenvalues are α^2 , β^2 .
- 2. If the canonical form in the three variables u, v, w is given by $3v^2 + 15w^2$ corresponding to a quadratic form, then state the nature, index, signature and rank of the quadratic form.
- 3. Check whether the vector $\vec{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is solenoidal or not.
- 4. State Green's theorem in a plane.
- 5. State the polar form of the Cauchy Riemann equations.
- 6. Find the invariant points of the mapping $w = \frac{z i}{1 iz}$.
- 7. State the Taylor series representation of an analytic function f(z) about z = a.
- 8. State the nature of the singularity of $f(z) = z \cos\left(\frac{1}{z}\right)$.
- 9. Using Laplace transform of derivatives, find the Laplace transform of $\cos^2 t$.
- 10. Given $L{f(t)} = \frac{1}{s(s+1)(s+2)}$, find $\lim_{t\to 0} f(t)$.

www.binils.com Anna University | Polytechnic | Schools

X 10655

-2-

X10655

(8)

PART – B (5×16=80 Marks)

- 11. a) i) The eigenvectors of a real symmetric matrix A corresponding to the eigenvalues 2, 3, 6 are respectively (1, 0, -1)^T, (1, 1, 1)^T and (-1, 2, -1)^T. Find the matrix A.
 - ii) Show that A satisfies its own characteristic equation and hence find A⁸ if $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$. (8) (OR)

b) i) Using Cayley-Hamilton theorem, find the inverse of the matrix $A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$

ii) Reduce the quadratic form $3x^2 + 2y^2 + 3z^2 - 2xy - 2yz$ into a canonical form using an orthogonal transformation. (8)

12. a) i) Find the angle between the normals to the surface $xy = z^2$ at the points (-2, -2, 2) and (1, 9, -3). (6)

ii) Verify Stokes' theorem for $\vec{F} = xy\hat{i} - 2yz\hat{j} - zx\hat{k}$ where S is the open surface of the rectangular parallelopiped formed by the planes x = 0, x = 1, y = 0y = 2 and z = 3 above the xoy-plane. (10)

(OR)

b) i) Find the values of a, b, c so that $\mathbf{\bar{F}} = (\mathbf{a}\mathbf{x}\mathbf{y} + \mathbf{b}\mathbf{z}^3)\hat{\mathbf{i}} + (3\mathbf{x}^2 - \mathbf{c}\mathbf{z})\hat{\mathbf{j}} + (3\mathbf{x}\mathbf{z}^2 - \mathbf{y})\hat{\mathbf{k}}$ is irrotational. For these values of a, b, c, find also the scalar potential of $\mathbf{\bar{F}}$. (8)

ii) Using Gauss' divergence theorem, evaluate $\iint_{S} \vec{F} \cdot \hat{n} \, dS$ where $\vec{F} = y\hat{i} + x\hat{j} + z^2 \hat{k}$ and S is the surface of the cylindrical region bounded by $x^2 + y^2 = a^2$, z = 0and z = b. (8)

- 13. a) i) Show that $u = e^x \cos y$ is harmonic. Find the analytic function w = u + iv = f(z) using Milne-Thompson method and hence find the conjugate harmonic function v. (10)
 - ii) Given $w = u + iv = z^3$, verify that the families of curves $u = C_1$ and $v = C_2$ cut orthogonally. (6)

www.binils.com Anna University | Polytechnic | Schools

-3-

b) i) If f(z) is an analytic function, then prove that
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$$
. (10)

- ii) Find the image of the triangular region in the z-plane bounded by the lines x = 0, y = 0 and x + y = 1 under the transformation $w = e^{i\pi/4}z$ (6)
- 14. a) i) If $f(a) = \oint_{C} \frac{3z^2 + 7z + 1}{z a} dz$, C is the circle |z| = 2, then find the values of f(3), f'(1 + i) and f''(1 i). (8)

ii) Using Laurent's series expansion, find the residue of $f(z) = \frac{z^2}{(z-1)(z+2)^2}$ at its simple pole. (8)

(OR)

X10655

b) Using contour integral, evaluate
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{\left(x^2 + 1\right)^2 \left(x^2 + 2x + 2\right)}.$$
 (16)

15. a) i) Using Laplace transform, evaluate
$$\int_{0}^{\infty} \left(\frac{\cos at - \cos bt}{t}\right) dt$$
. (8)

ii) Using convolution theorem, find
$$L^{-1}\left(\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}\right)$$
. (8)
(OR)

b) i) Find the Laplace transform of the periodic function

$$f(t) = \begin{cases} t & 0 \le t \le a \\ 2a - t, & a \le t \le 2a \end{cases}$$
with period 2a.
(8)

ii) Using Laplace transform, solve $(D^2 + 4D + 13)y = e^{-t} \sin t$ given y = Dy = 0 at t = 0, $D \equiv \frac{d}{dt}$. (8)

X 10655