
www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

2.4 CONTROL INSTRUCTIONS

Opcode Operand Description

No operation

NOP none No operation is performed. The instruction is fetched and

decoded. However no operation is executed.

Example: NOP

Halt and enter wait state

HLT none The CPU finishes executing the current instruction and halts

any further execution. An interrupt or reset is necessary to exit

from the halt state.

Example: HLT

Disable interrupts

DI none The interrupt enable flip-flop is reset and all the interrupts

except the TRAP are disabled. No flags are affected.

Example: DI

Enable interrupts
EI none The interrupt enable flip-flop is set and all interrupts are

 enabled. No flags are affected. After a system reset or the
 acknowledgement of an interrupt, the interrupt enable flip-
 flop is reset, thus disabling the interrupts. This instruction is
 necessary to reenable the interrupts (except TRAP).
 Example: EI

Read interrupt mask

RIM none This is a multipurpose instruction used to read the status of

 interrupts 7.5, 6.5, 5.5 and read serial data input bit. The
 instruction loads eight bits in the accumulator with the
 following interpretations.
 Example: RIM

Set interrupt mask

SIM none This is a multipurpose instruction and used to implement the

8085 interrupts 7.5, 6.5, 5.5, and serial data output. The

instruction interprets the accumulator contents as follows.

Example: SIM

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

2.3 ARITHMETIC INSTRUCTIONS

Includes the instructions which performs the addition, subtraction, increment or

decrement operations. The flag conditions are altered after execution of an instruction in

this group.

Ex: i) ADD B ii) SUB C iii) INR D iv) INX H

Opcode Operand Description

Add register or memory to accumulator

ADD R The contents of the operand (register or memory) are

M added to the contents of the accumulator and the result is

stored in the accumulator. If the operand is a memory

location, its location is specified by the contents of the HL

registers. All flags are modified to reflect the result of the

addition.

Example: ADD B or ADD M

Add register to accumulator with carry
ADC R The contents of the operand (register or memory) and

 M the Carry flag are added to the contents of the accumulator
 and the result is stored in the accumulator. If the operand is a
 memory location, its location is specified by the contents of
 the HL registers. All flags are modified to reflect the result of
 the addition.
 Example: ADC B or ADC M

Add immediate to accumulator

ADI 8-bit data The 8-bit data (operand) is added to the contents of the
 accumulator and the result is stored in the accumulator. All

 flags are modified to reflect the result of the addition.
Example: ADI 45H

Add immediate to accumulator with carry

ACI 8-bit data The 8-bit data (operand) and the Carry flag are added to the
 contents of the accumulator and the result is stored in the
 accumulator. All flags are modified to reflect the result of the

 addition.
Example: ACI 45H

Add register pair to H and L registers

DAD Reg. pair The 16-bit contents of the specified register pair are added to
 the contents of the HL register and the sum is stored in the
 HL register. The contents of the source register pair are not
 altered. If the result is larger than 16 bits, the CY flag is set.

 No other flags are affected.
Example: DAD H

Subtract register or memory from accumulator

SUB R The contents of the operand (register or memory) are
 M subtracted from the contents of the accumulator, and the result
 is stored in the accumulator. If the operand is a memory

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

location, its location is specified by the contents of the HL

registers. All flags are modified to reflect the result of the

subtraction.

Example: SUB B or SUB M

Subtract source and borrow from accumulator

Increment register pair by 1

INX R The contents of the designated register pair are incremented

by 1 and the result is stored in the same place.

Example: INX H

Decrement register or memory by 1
DCR R The contents of the designated register or memory are

 M decremented by 1 and the result is stored in the same place. If

the operand is a memory location, its location is specified by

the contents of the HL registers.
 Example: DCR B or DCR M

Decrement register pair by 1

DCX R The contents of the designated register pair are decremented

by 1 and the result is stored in the same place.

Example: DCX H

Decimal adjust accumulator

DAA none The contents of the accumulator are changed from a binary

value to two 4-bit binary coded decimal (BCD) digits. This is

SBB R The contents of the operand (register or memory) and
 M the Borrow flag are subtracted from the contents of the
 accumulator and the result is placed in the accumulator. If
 the operand is a memory location, its location is specified by
 the contents of the HL registers. All flags are modified to
 reflect the result of the subtraction.
 Example: SBB B or SBB M

Subtract immediate from accumulator

SUI 8-bit data The 8-bit data (operand) is subtracted from the contents of the
 accumulator and the result is stored in the accumulator. All
 flags are modified to reflect the result of the subtraction.
 Example: SUI 45H

Subtract immediate from accumulator with borrow

SBI 8-bit data The 8-bit data (operand) and the Borrow flag are subtracted
 from the contents of the accumulator and the result is stored in

 the accumulator. All flags are modified to reflect the result
of the subtracion.

 Example: SBI 45H

Increment register or memory by 1

INR R The contents of the designated register or memory) are
 M incremented by 1 and the result is stored in the same place. If
 the operand is a memory location, its location is specified by
 the contents of the HL registers.
 Example: INR B or INR M

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

the only instruction that uses the auxiliary flag to perform the

binary to BCD conversion, and the conversion procedure is

described below. S, Z, AC, P, CY flags are altered to reflect

the results of the operation.

If the value of the low-order 4-bits in the accumulator is greater

than 9 or if AC flag is set, the instruction adds 6 to the low-

order four bits.

If the value of the high-order 4-bits in the accumulator is

greater than 9 or if the Carry flag is set, the instruction adds 6

to the high-order four bits.

Example: DAA

LOGICAL INSTRUCTIONS

Opcode Operand Description

Compare register or memory with accumulator

CMP R The contents of the operand (register or memory) are

M compared with the contents of the accumulator. Both

contents are preserved . The result of the comparison is

shown by setting the flags of the PSW as follows:

if (A) < (reg/mem): carry flag is set

if (A) = (reg/mem): zero flag is set

if (A) > (reg/mem): carry and zero flags are reset

Example: CMP B or CMP M

Compare immediate with accumulator

CPI 8-bit data The second byte (8-bit data) is compared with the contents of

the accumulator. The values being compared remain

unchanged. The result of the comparison is shown by setting

the flags of the PSW as follows:

if (A) < data: carry flag is set

if (A) = data: zero flag is set

if (A) > data: carry and zero flags are reset

Example: CPI 89H

Logical AND register or memory with accumulator

ANA R The contents of the accumulator are logically ANDed with

M the contents of the operand (register or memory), and the

result is placed in the accumulator. If the operand is a

memory location, its address is specified by the contents of

HL registers. S, Z, P are modified to reflect the result of the

operation. CY is reset. AC is set.

Example: ANA B or ANA M

Logical AND immediate with accumulator
ANI 8-bit data The contents of the accumulator are logically ANDed with the

8-bit data (operand) and the result is placed in the

accumulator. S, Z, P are modified to reflect the result of the

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

operation. CY is reset. AC is set.
Example: ANI 86H

Exclusive OR register or memory with accumulator
XRA R

M

The contents of the accumulator are Exclusive ORed with

the contents of the operand (register or memory), and the

result is placed in the accumulator. If the operand is a

memory location, its address is specified by the contents of

HL registers. S, Z, P are modified to reflect the result of the

operation. CY and AC are reset.
Example: XRA B or XRA M

Exclusive OR immediate with accumulator

XRI 8-bit data The contents of the accumulator are Exclusive ORed with the

8-bit data (operand) and the result is placed in the

accumulator. S, Z, P are modified to reflect the result of the

operation. CY and AC are reset.
Example: XRI 86H

Logical OR register or memory with accumulaotr
ORA R The contents of the accumulator are logically ORed with

M the contents of the operand (register or memory), and the

result is placed in the accumulator. If the operand is a

memory location, its address is specified by the contents of

HL registers. S, Z, P are modified to reflect the result of the

operation. CY and AC are reset.

Example: ORA B or ORA M

Logical OR immediate with accumulator

ORI 8-bit data The contents of the accumulator are logically ORed with the

8-bit data (operand) and the result is placed in the accumulator.

S, Z, P are modified to reflect the result of the operation. CY

and AC are reset.

Example: ORI 86H

Rotate accumulator left

RLC none Each binary bit of the accumulator is rotated left by one

position. Bit D7 is placed in the position of D0 as well as in the

Carry flag. CY is modified according to bit D7. S, Z, P,

AC are not affected.

 Example: RLC

Rotate accumulator right

RRC none Each binary bit of the accumulator is rotated right by one

 position. Bit D0 is placed in the position of D7 as well as in

the Carry flag. CY is modified according to bit D0. S, Z, P,
AC are not affected.
Example: RRC

Rotate accumulator left through carry

RAL none Each binary bit of the accumulator is rotated left by one

position through the Carry flag. Bit D7 is placed in the Carry

flag, and the Carry flag is placed in the least significant

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

position D0. CY is modified according to bit D7. S, Z, P, AC

are not affected.
Example: RAL

Rotate accumulator right through carry
RAR none Each binary bit of the accumulator is rotated right by one

position through the Carry flag. Bit D0 is placed in the Carry

flag, and the Carry flag is placed in the most significant

position D7. CY is modified according to bit D0. S, Z, P, AC

are not affected.

Example: RAR

Complement accumulator

CMA none The contents of the accumulator are complemented. No flags

are affected.

Example: CMA

Complement carry

CMC none The Carry flag is complemented. No other flags are affected.

Example: CMC

Set Carry

STC none The Carry flag is set to 1. No other flags are affected.

Example: STC

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.2 DATA TRANSFER INSTRUCTIONS:

Includes the instructions that moves (copies) data between registers or between

memory locations and registers. In all data transfer operations the content of source

register is not altered. Hence the data transfer is copying operation.

Opcode Operand Description

Copy from source to destination
MOV Rd, Rs This instruction copies the contents of the source

M, Rs register into the destination register; the contents of
Rd, M the source register are not altered. If one of the

operands is a
memory location, its location is specified by the
contents of
the HL registers.
Example: MOV B, C or MOV B, M

Move immediate 8-bit
MVI Rd, data The 8-bit data is stored in the destination register or

M, data memory. If the operand is a memory location, its
location is
specified by the contents of the HL registers.
Example: MVI B, 57H or MVI M, 57H

Load accumulator
LDA 16-bit address The contents of a memory location, specified by a

16-bit address in the operand, are copied to the
accumulator.
The contents of the source are not altered.
Example: LDA 2034H

Load accumulator indirect
LDAX B/D Reg. pair The contents of the designated register pair point to a

memory
location. This instruction copies the contents of that
memory
location into the accumulator. The contents of
either the
register pair or the memory location are not altered.
Example: LDAX B

Load register pair immediate

LXI Reg. pair, 16-bit data The instruction loads 16-bit data in the register

pair designated in the operand.

Example: LXI H, 2034H or LXI H, XYZ

Load H and L registers direct

LHLD 16-bit address The instruction copies the contents of the memory

location

pointed out by the 16-bit address into register L and

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

copies the contents of the next memory location into

register H. The contents of source memory locations

are not altered.

Example: LHLD 2040H

The contents of the accumulator are copied into the
memory
location specified by the operand. This is a 3-byte
instruction,
the second byte specifies the low-order address and
the third

Store accumulator direct
STA 16-bit address

byte specifies the high-order address.
Example: STA 4350H

Store accumulator indirect
STAX Reg. pair The contents of the accumulator are copied into the

memory
location specified by the contents of the operand
(register
pair). The contents of the accumulator are not altered.
Example: STAX B

Store H and L registers direct
SHLD 16-bit address The contents of register L are stored into the memory

location
specified by the 16-bit address in the operand and the
contents
of H register are stored into the next memory location
by
incrementing the operand. The contents of registers
HL are
not altered. This is a 3-byte instruction, the second
byte
specifies the low-order address and the third byte
specifies the
high-order address.
Example: SHLD 2470H

Exchange H and L with D and E
XCHG none The contents of register H are exchanged with the

contents of
register D, and the contents of register L are
exchanged with
the contents of register E.
Example: XCHG

Copy H and L registers to the stack pointer
SPHL none The instruction loads the contents of the H and L

registers into
the stack pointer register, the contents of the H
register
provide the high-order address and the contents of the
L

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

register provide the low-order address. The contents
of the H
and L registers are not altered.
Example: SPHL

Exchange H and L with top of stack
XTHL none The contents of the L register are exchanged with the

stack
location pointed out by the contents of the stack
pointer
register. The contents of the H register are exchanged
with

Push register pair onto stack

the next stack location (SP+1); however, the contents
of the
stack pointer register are not altered.
Example: XTHL

PUSH Reg. pair The contents of the register pair designated in the
operand are
copied onto the stack in the following sequence. The
stack
pointer register is decremented and the contents of the
high-
order register (B, D, H, A) are copied into that
location. The
stack pointer register is decremented again and the
contents of
the low-order register (C, E, L, flags) are copied to
that
location.
Example: PUSH B or PUSH A

Pop off stack to register pair
POP Reg. pair The contents of the memory location pointed out by

the stack
pointer register are copied to the low-order register
(C, E, L,
status flags) of the operand. The stack pointer is
incremented
by 1 and the contents of that memory location are
copied to
the high-order register (B, D, H, A) of the operand.
The stack
pointer register is again incremented by 1.
Example: POP H or POP A

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.1 INSTRUCTION FORMAT OF 8085

The 8085 have 74 basic instructions and 246 total instructions. The instruction set of 8085

is defined by the manufacturer Intel Corporation. Each instruction of 8085 has 1 byte

opcode. With 8 bit binary code, we can generate 256 different binary codes. In this, 246

codes have been used for opcodes.

Figure 2.1.1 Instruction Format of 8085

[Source: “Microprocessor Architecture Programming and Application” by R.S. Gaonkar, page-131]

The size of 8085 instructions can be 1 byte, 2 bytes or 3 bytes.

• The 1-byte instruction has an opcode alone.

• The 2 bytes instruction has an opcode followed by an eight-bit address or data.

• The 3 bytes instruction has an opcode followed by 16 bit address or data. While

storing the 3 bytes instruction in memory, the sequence of storage is, opcode first

followed by low byte of address or data and then high byte of address or data.

ADDRESSING MODES

Every instruction of a program has to operate on a data. The method of specifying

the data to be operated by the instruction is called Addressing. The 8085 has the following

5 different types of addressing.

1. Immediate Addressing

2. Direct Addressing

3. Register Addressing

4. Register Indirect Addressing

5. Implied Addressing

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

Immediate Addressing

In immediate addressing mode, the data is specified in the instruction itself. The

data will be apart of the program instruction. All instructions that have ‘I’ in their

mnemonics are of Immediate addressing type.

Eg. MVI B, 3EH - Move the data 3EH given in the instruction to B register.

Direct Addressing

In direct addressing mode, the address of the data is specified in the instruction.

The data will be in memory. In this addressing mode, the program instructions and data

can be stored in different memory blocks. This type of addressing can be identified by

16-bit address present in the instruction.

Eg. LDA 1050H - Load the data available in memory location 1050H in

accumulator.

Register Addressing

In register addressing mode, the instruction specifies the name of the register in

which the data is available. This type of addressing can be identified by register names

(such as ‘A’, ‘B’, …) in the instruction.

Eg. MOV A, B -Move the content of B register to A register.

Register Indirect Addressing

In register indirect addressing mode, the instruction specifies the name of the register in

which the address of the data is available. Here the data will be in memory and the address

will be in the register pair. This type of addressing can be identified by letter ‘M’ present

in the instruction.

Eg. MOV A, M - The memory data addressed by HL pair is moved to A register.

Implied Addressing

In implied addressing mode, the instruction itself specifies the type of operation and

location of data to be operated. This type of instruction does not have any address, register

name, immediate data specified along with it.

Eg. CMA - Complement the content of accumulator.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.5 LOOPING,COUNTING AND INDEXING

LOOPING:

The programming technique used to instruct the microprocessor to repeat tasks is

called looping.This task is accomplished by using jump instructions.

Classification Of Loops:

1.continuous loop

2.Unconditional loop

Continuous Loop:

Repeats a task continuously.A continuous loop is set up by using the unconditional

jump instruction.A program with a continuous loop does not stop repeating the tasks until

the system is reset.

Conditional Loop:

A conditional loop is set up by a conditional jump instructions. These instructions

check flags(Z,CY,P,S) and repeat the tasks if the conditions are satisfied. These loops

include counting and indexing.

Conditional Loop And Counter:

• A counter is a typical application of the conditional loop.

• A microprocessor needs a counter,flag to accomplish the looping task.

• Counter is set up by loading an appropriate count in a register.

• Counting is performed by either increment or decrement the counter.

• Loop is set up by a conditional jump instruction.

• End of counting is indicated by a flag.

Conditional Loop,Counter And Indexing:

Another type of loop which includes counter and indexing .

Indexing:

Pointing of referencing objects with sequential numbers. Data bytes are stored in

memory locations and those data bytes are referred to by their memory locations.

Example:

Steps to add ten bytes of data stored in memory locations starting ata given location

and display the sum.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

The microprocessor needs

•

•

•

•

A counter to count 10 data bytes.

An index or a memory pointer to locate where data bytes are stored.

To transfer data from a memory location to the microprocessor(ALU)

To perform addition

• Registers for temporary storage of partial answers

• A flag to indicate the completion of the stack

• To store or output the result.

Figure 2.5.1 Looping flow chart

[Source: “Microprocessor Architecture Programming and Application” by R.S. Gaonkar, page-190]

1. The initialization section establishes the starting values of loop counters for

counting how many times loop is executed, Address registers for indexing

which give pointers to memory locations and other variables.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

The actual data manipulation occurs in the processing section. This is the section which

does the work.

The loop control section updates counters, indices (pointers) for the next iteration.

The result section analyzes and stores the results.

The processor executes initialization section and result section only once, while it

may execute processing section and loop control section many times. Thus, the execution

time of the loop will be mainly dependent on the execution time of the processing section

and loop control section. The flowchart 1 shows typical program loop. The processing

section in this flowchart is always executed at least once. If you position of the processing

and loop control section then it is possible that the processing section may not be executed

at all, if necessary.

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.7 STACK OPERATIONS

• The stack is a group of memory location in the R/W memory (RAM) that is used

for temporary storage of data during the execution of a program.

• Address of the stack is stored into the stack pointer register. The 8085 provide two

instructions PUSH & POP for storing information on the stack and reading it back.

• Data in the register pairs stored on the stack by using the instruction PUSH.

• Data is read from the stack by using the instruction POP.

• PUSH & POP both instruction works with register pairs only.

• he storage and retrieval of the content of registers on the stack fallows the

LIFO(Last- In-First-Out) sequence.

Operation of the stack by PUSH and POP Instruction

2000 LXI SP, 2099H ; this instruction define stack

2003 LXI H, 42F2H ; this instruction store 42F2 in to the HL pair

2006 PUSH H ; store HL pair on to the stack

2010 POP H ; store data from top of the stack to HL pair

For PUSH H

The stack pointer is decremented by one to 2098H, and the contents of the h

register are copied to memory location 2098H.The stack pointer register is again

decremented by one to 2097H,and the contents of the L register are copied to memory

location 2097H.The contents of the register pair HL are not destroyed.

Figure 2.7.1 PUSH H operation

[Source: “Microprocessor Architecture Programming and Application” by R.S. Gaonkar, page-238]

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

For POP H

The contents of the top of the stack location shown by the stack pointer are copied

in the L register and the stack pointer register is incremented by one to 2098 H. The

contents of the top of the stack (now it is 2098H) are copied in the H register, and the

stack pointer is incremented by one. The contents of memory location 2097H and 2098

are not destroyed until some other data bytes are stored in these location.

Figure 2.7.1 POP H operation

[Source: “Microprocessor Architecture Programming and Application” by R.S. Gaonkar, page-238]

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

2.6 SUBROUTINE INSTRUCTIONS

A subroutine is a group of instructions that will be used repeatedly in different

locations of the program. Rather than repeat the same instructions several times, they can

be grouped into a one program which is called subroutine.

When main program calls a subroutine the program execution is transferred to the

subroutine.After the completion of the subroutine, the program execution returns to the

main program.The microprocessor uses the stack to store the return address of the

subroutine.

The 8085 has two instructions for dealing with subroutines.

• The CALL instruction is used to CALL the subroutine.

• The RET instruction is used to return to the main program at the end of the

subroutine.

Subroutine process is shown in figure below.

Figure 2.6.1 Subroutine process

[Source: “Microprocessor Architecture Programming and Application” by R.S. Gaonkar, page-249]

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

Download Binils Android App in Playstore Download Photoplex App

www.binils.com for Anna University | Polytechnic and Schools

The CALL Instruction

CALL 16-bit address

The program sequence is transferred to the memory location specified by the 16-

bit address given in the operand. Before the transfer, the address of the next instruction

after CALL (the contents of the program counter) is pushed onto the stack.

Example: CALL 2034H or CALL XYZ

We can also call the subroutine by using conditional CALL instruction. For Example,

CC 16-bit address Call on if CY = 1

CNC16-bit address Call on no Carry CY = 0

CP16-bit address Call on positive S = 0

CM16-bit address Call on minus S = 1

CZ 16-bit address Call on zero Z = 1

CNZ16-bit address Call on no zero Z = 0

CPE16-bit address Call on parity even P = 1

CPO16-bit address Call on parity odd P = 0

RET Instruction

RET none

The program sequence is transferred from the subroutine to the calling program.

The two bytes from the top of the stack are copied into the program counter, and program

execution begins at the new address.

Example: RET

We can also return from the subroutine by using conditional RET instruction. For

Example,

RC 16-bit address Return if CY = 1

RNC16-bit address Return if CY = 0

RP16-bit address Return if S = 0

RM16-bit address Return if S = 1

RZ 16-bit address Return if Z = 1

RNZ16-bit address Return if Z = 0

RPE16-bit address Return if P = 1

RPO16-bit address Return if P = 0

https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US
http://www.binils.com/

