
 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

AMBIGUITY in CFGs

Definition: A grammar that produces more than one parse tree for some sentence (input string) is said

to be ambiguous.

In other words, an ambiguous grammar is one that produces more than one leftmost

derivation or more than one rightmost derivation for the same sentence.

Or If the right hand production of the grammar is having two non terminals which are exactly

same as left hand side production Non terminal then it is said to an ambiguous grammar. Example : If the

Grammar is E-> E+E | E*E | -E| (E) | id and the Input String is id + id* id

Two parse trees for given input string are

(a)

Two Left most Derivations for given input String are :

(b)

E => E +E E => E * E

=> id + E => E +E*E

=> id + E * E => id + E * E

=> id + id * E => id+ id* E

=> id + id * id => id + id * id

(a) (b)

The above Grammar is giving two parse trees or two derivations for the given input string so, it is an

ambiguous Grammar

Note: LL (1) parser will not accept the ambiguous grammars or We cannot construct an LL(1) parser for

the ambiguous grammars. Because such grammars may cause the Top Down parser to go into infinite

loop or make it consume more time for parsing. If necessary we must remove all types of ambiguity

from it and then construct.

ELIMINATING AMBIGUITY: Since Ambiguous grammars may cause the top down Parser go into infinite

loop, consume more time during parsing.

Therefore, sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. The general

form of ambiguous productions that cause ambiguity in grammars is

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

A Aα | β

This can be written as (introduce one new non terminal in the place of second non terminal)

A β Aꞌ

Aꞌ α Aꞌ| ε

Example : Let the grammar is E

can be written as

E+E | E*E | -E| (E) | id . It is shown that it is ambiguous that

E E+E

E E-E

E E*E

E -E

E (E)

E id

In the above grammar the 1st and 2nd productions are having ambiguity. So, they can be written as

E-> E+E | E*E this production again can be written as

E-> E+E | β , where β is E*E

The above production is same as the general form. so, that can be written as E-

>E+T|T

T->β

The value of β is E*E so, above grammar can be written as

1) E->E+T|T

2) T-> E*E The first production is free from ambiguity and substitute E->T in the 2nd

production then it can be written as

T-> T*T | -E| (E) | id this production again can be written as

T->T*T | β where β is -E| (E) | id, introduce new non terminal in the Right hand side

production then it becomes

T->T*F | F

F-> -E | (E) | id now the entire grammar turned in to it equivalent unambiguous,

The Unambiguous grammar equivalent to the given ambiguous one is

1) E E + T | T

2) T T * F | F

3) F -E | (E) | id

LEFT RECURSION:

Another feature of the CFGs which is not desirable to be used in top down parsers is left

recursion. A grammar is left recursive if it has a non terminal A such that there is a derivation A=>Aα for

some string α in (TUV)*. LL(1) or Top Down Parsers cannot handle the Left Recursive grammars, so we

need to remove the left recursion from the grammars before being used in Top Down Parsing.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The General form of Left Recursion is

A Aα | β

The above left recursive production can be written as the non left recursive equivalent :

A βAꞌ

Aꞌ αAꞌ| €

Example : - Is the following grammar left recursive? If so, find a non left recursive grammar

equivalent to it.

E E + T | T

T T * F | F

F - E | (E) | id

Yes ,the grammar is left recursive due to the first two productions which are satisfying the

general form of Left recursion, so they can be rewritten after removing left recursion from E → E

+ T, and T→ T * F is

E TE′

E′ +T E′ | €

T F T′

T′ *F T′ | €

F (E) | id

LEFT FACTORING:

Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive

or top-down parsing. A grammar in which more than one production has common prefix is to be

rewritten by factoring out the prefixes.

For example, in the following grammar there are n A productions have the common prefix α,

which should be removed or factored out without changing the language defined for A.

A αA1 | αA2 | αA3 |

αA4 |… | αAn

We can factor out the α from all n productions by adding a new A production

and rewriting the A′ productions grammar as

A αA′

A αA′

A′ A1|A2|A3|A4…|An

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

BOTTOM-UP PARSING

Bottom-up parsing corresponds to the construction of a parse tree for an input string beginning

at the leaves (the bottom nodes) and working up towards the root (the top node). It nvolves ―reducing

an input string ‗w‘ to the Start Symbol of the grammar. in each reduction step, a particular

substring matching the right side of the production is replaced by symbol on the left of that

production and it is the Right most derivation. For example consider the following Grammar:

E E+T|T

T T*F

F (E)|id

Bottom up parsing of the input string “id * id “is as follows:

INPUT STRING SUB STRING REDUCING PRODUCTION

id*id Id F->id

F*id T F->T

T*id Id F->id

T*F * T->T*F

T T*F E->T

E
 Start symbol. Hence, the input

String is accepted

Parse Tree representation is as follows:

Figure 3.1 : A Bottom-up Parse tree for the input String “id*id”

Bottom up parsing is classified in to 1. Shift-Reduce Parsing, 2. Operator Precedence parsing , and

3. [Table Driven] L R Parsing

i. SLR(1)

ii. CALR (1)

iii.LALR(1)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

 SHIFT-REDUCE PARSING:

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds grammar symbols

and an input buffer holds the rest of the string to be parsed, We use $ to mark the bottom of the

stack and also the right end of the input. And it makes use of the process of shift and reduce actions

to accept the input string. Here, the parse tree is Constructed bottom up from the leaf nodes towards

the root node

When we are parsing the given input string, if the match occurs the parser takes the

reduce action otherwise it will go for shift action. And it can accept ambiguous grammars also.

For example, consider the below grammar to accept the input string ―id * id―, using S-R parser

E E+T|T

T T*F | F

F (E)|id

Actions of the Shift-reduce parser using Stack implementation

STACK INPUT ACTION

$ Id*id$ Shift

$id *id$ Reduce with F d

$F *id$ Reduce with T F

$T *id$ Shift

$T* id$ Shift.

$T*id $ Reduce with F id

$T*F $ Reduce with T T*F

$T $ Reduce with E T

$E $ Accept

Consider the following grammar:

S aAcBe

A Ab|b

B d

Let the input string is ―abbcde‖. The series of shift and reductions to the start symbol are as follows.

abbcde aAbcde aAcd e aAcBe S

Note: in the above example there are two actions possible in the second Step, these are

as follows :

1. Shift action going to 3rd Step

2. Reduce action, that is A->b

If the parser is taking the 1st action then it can successfully accepts the given input string, if it is

going for second action then it can‘t accept given input string. This is called shift reduce conflict.

Where, S-R parser is not able take proper decision, so it not recommended for parsing.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

In the LALR (1) parsing, the LR (1) items which have same productions but different look ahead are

combined to form a single set of items

LALR (1) Parsing

LALR refers to the lookahead LR. To construct the LALR (1) parsing table, we use the canonical collection

of LR (1) items.

LALR (1) parsing is same as the CLR (1) parsing, only difference in the parsing table.

Example

LALR (1) Grammar

1. S → AA

2. A → aA

3. A → b

Add Augment Production, insert '•' symbol at the first position for every production in G and also add

the look ahead.

1. S` → •S, $

2. S → •AA, $

3. A → •aA, a/b

4. A → •b, a/b

I0 State:

Add Augment production to the I0 State and Compute the ClosureL

I0 = Closure (S` → •S)

Add all productions starting with S in to I0 State because "•" is followed by the non-terminal. So, the I0

State becomes

I0 = S` → •S, $

S → •AA, $

Add all productions starting with A in modified I0 State because "•" is followed by the non-terminal. So,

the I0 State becomes.

I0= S` → •S, $

S → •AA, $

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

A → •aA, a/b

A → •b, a/b

I1= Go to (I0, S) = closure (S` → S•, $) = S` → S•, $

I2= Go to (I0, A) = closure (S → A•A, $)

Add all productions starting with A in I2 State because "•" is followed by the non-terminal. So, the I2

State becomes

I2= S → A•A, $

A → •aA, $

A → •b, $

I3= Go to (I0, a) = Closure (A → a•A, a/b)

Add all productions starting with A in I3 State because "•" is followed by the non-terminal. So, the I3

State becomes

I3= A → a•A, a/b

A → •aA, a/b

A → •b, a/b

Go to (I3, a) = Closure (A → a•A, a/b) = (same as I3)

Go to (I3, b) = Closure (A → b•, a/b) = (same as I4)

I4= Go to (I0, b) = closure (A → b•, a/b) = A → b•, a/b

I5= Go to (I2, A) = Closure (S → AA•, $) =S → AA•, $

I6= Go to (I2, a) = Closure (A → a•A, $)

Add all productions starting with A in I6 State because "•" is followed by the non-terminal. So, the I6

State becomes

I6 = A → a•A, $

A → •aA, $

A → •b, $

Go to (I6, a) = Closure (A → a•A, $) = (same as I6)

Go to (I6, b) = Closure (A → b•, $) = (same as I7)

I7= Go to (I2, b) = Closure (A → b•, $) = A → b•, $

I8= Go to (I3, A) = Closure (A → aA•, a/b) = A → aA•, a/b

I9= Go to (I6, A) = Closure (A → aA•, $) A → aA•, $

If we analyze then LR (0) items of I3 and I6 are same but they differ only in their lookahead.

I3 = { A → a•A, a/b

A → •aA, a/b

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

A → •b, a/b

}

I6= { A → a•A, $

A → •aA, $

A → •b, $

}

Clearly I3 and I6 are same in their LR (0) items but differ in their lookahead, so we can combine them

and called as I36.

I36 = { A → a•A, a/b/$

A → •aA, a/b/$

A → •b, a/b/$

}

The I4 and I7 are same but they differ only in their look ahead, so we can combine them and called as

I47.

I47 = {A → b•, a/b/$}

The I8 and I9 are same but they differ only in their look ahead, so we can combine them and called as

I89.

I89 = {A → aA•, a/b/$}

Drawing DFA:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

LALR (1) Parsing table:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

LRPARSERS

An efficient bottom-up syntax analysis technique that can be used CFG is

called LR(k) parsing. The ‘L’ is for left-to-right scanning of the input, the ‘R’ for

constructing a rightmost derivation in reverse, and the ‘k’ for the number of input

symbols. When ‘k’ is omitted, it is assumed to be 1.

Advantages of LR parsing:

1. It recognizes virtually all programming language constructs for which CFG can be written.

2. It is an efficient non-backtracking shift-reduce parsing method.

3. A grammar that can be parsed using LR method is a proper superset of a

grammar that can be parsed with predictive parser.

4. It detects a syntactic error as soon as possible.

Drawbacks of LR method:

It is too much of work to construct a LR parser by hand for a programming

language grammar. A specialized tool, called a LR parser generator, is needed.

Example: YACC.

Types of LR parsing method:

1. SLR- Simple LR

Easiest to implement, least powerful.

2. CLR- Canonical LR

Most powerful, most expensive.

3. LALR- Look-Ahead LR

Intermediate in size and cost between the other two methods.

The LR parsing algorithm:

The schematic form of an LR parser is as follows:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Fig. 2.5 Model of an LR parser

It consists of an input, an output, a stack, a driver program, and a pa parts (action and goto).

 The driver program is the same for all LR parser.

 The parsing program reads characters from an input buffer one at a time.

 The program usesastacktostoreastringoftheforms0X1s1X2s2…Xmsm, where sm is on

top. Each Xi is a grammar symbol and each si is a state.

 The parsing table consists of two parts :action and goto functions.

Action : The parsing program determines sm, the state currently on top of stack, and

ai, the current input symbol. It then consults action[sm,ai] in the action table which can

have one of four values:

1. shift s, where s is astate,

2. reduce by a grammar production A →β,

3. accept

4. error.

Goto : The function goto takes a state and grammar symbol as arguments and produces a state.

LR Parsing algorithm:

Input: An input string w and an LR parsing table with functions action and goto for

grammar G. Output: If w is in L(G), a bottom-up-parse for w; otherwise, an error

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

indication.

Method: Initially, the parser has s0 on its stack, where s0 is the initial state, and w$ in

the input buffer. The parser then executes the following program:

set ip to point to the first input symbol of w$; repeat

forever begin let s be the state on top of the stack

and

a the symbol pointed to by ip;

if action[s, a] = shift s’ then begin

push a then s’ on top of the stack;

advance ip to the next

input symbol end else if

action[s, a] = reduce A→β then

begin

pop 2* | β | symbols off the stack;

let s’ be the state now on top of the stack; push A then goto[s’, A] on top of the stack; output

the production A→ β

end

else if action[s, a] =

accept then

return

CONSTRUCTING SLR(1) PARSINGTABLE:

To perform SLR parsing, take grammar as input and do the following:

1. Find LR(0)items.

2. Completing the closure.

3. Compute goto(I,X),where ,I is set of items and X is grammar symbol.

LR(0) items:

An LR(0) item of a grammar G is a production of G with a dot at some position of the

right side. For example, production A → XYZ yields the four items

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Closure operation:

If I is a set of items for a grammar G, then closure(I) is the set of items constructed

from I by the two rules:

1. Initially, every item in I is added to closure(I).

2. IfA→α.Bβ is in closure(I) and B→γ is a production, then add the item B→.γtoI,ifit

is not already there. We apply this rule until no more new items can be added to closure(I)

Goto operation:

Goto(I, X) is defined to be the closure of the set of all items [A→ αX . β] such that [A→ α . Xβ] is

in I.

Steps to construct SLR parsing table for grammar G are:

1. Augment G and produce G’

2. Construct the canonical collection of set of items C fo rG’

3. Constructtheparsingactionfunctionactionandgotousingthefollowingalgorit

hmthat requires FOLLOW(A) for each non-terminal ofgrammar.

Algorithm for construction of SLR parsing table:

Input : An augmented grammarG’

Output : The SLR parsing table functions action and goto for G’

Method :

1. Construct C={I0, I1,….In},the collection of sets ofLR(0) items for G’.

2. State I is constructed from Ii..The parsing functions for state I are determined as follows:

(a) If [A→α∙aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to “shift j”. Here a must be

terminal.

(b) If [A→α∙] is in Ii , then set action[i,a] to “reduce A→α” for all a inFOLLOW(A).

(c) If [S’→S.] is in Ii, then set action[i,$] to“accept”.

If any conflicting actions are generated by the above rules, we say grammar is not SLR(1).

3. The goto transitions for state I are constructed

for all non-term If goto(Ii,A) = Ij, then

goto[i,A] =j.

4. All entries not defined by rules(2)and(3)are made “error”

5. The initial state of the parser is the one constructed from the[S’→.S].

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

PREDICTIVE PARSING

It is possible to build a non recursive predictive parser by maintaining a stack explicitly,

rather than implicitly via recursive calls. The key problem during predictive parsing is that of

determining the production to be applied for a non terminal . The non recursive parser in figure

looks up the production to be applied in parsing table. In what follows, we shall see how the table

can be constructed directly from certain grammars.

Model of a nonrecursive predictive parser

A table-driven predictive parser has an input buffer, a stack, a parsing table, and an output

stream. The input buffer contains the string to be parsed, followed by $, a symbol used as a right

endmarker to indicate the end of the input string. The stack contains a sequence of grammar symbols

with $ on the bottom, indicating the bottom of the stack. Initially, the stack contains the start symbol

of the grammar on top of $. The parsing table is a two dimensional array M[A,a] where A is a non

terminal, and a is a terminal or the symbol $. The parser is controlled by a program that behaves as

follows. The program considers X, the symbol on the top of the stack, and a, the current input symbol.

These two symbols determine the action of the parser. There are three possibilities.

parsing. 1 If X= a=$, the parser halts and announces successful completion of

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

2 If X=a!=$, the parser pops X off the stack and advances the input pointer to the next

input symbol.

3 If X is a non terminal, the program consults entry M[X,a] of the parsing table M. This

entry will be either an X-production of the grammar or an error entry. If, for example, M[X,a]={X-

>UVW}, the parser replaces X on top of the stack by WVU(with U on top). As output, we shall

assume that the parser just prints the production used; any other code could be executed here. If

M[X,a]=error, the parser calls an error recovery routine.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Algorithm for Non recursive predictive Parsing.

Input. A string w and a parsing table M for grammar G.

Output. If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method. Initially, the parser is in a configuration in which it has $S on the stack with S, the start symbol

of G on top, and w$ in the input buffer. The program that utilizes the predictive parsing table M to

produce a parse for the input is shown in Fig.

set ip to point to the first symbol of w$.

repeat

let X be the top stack symbol and a the symbol pointed to by ip. if X is

a terminal of $ then

if X=athen

pop X from the stack and advance ip

elseerror()

else

if M[X,a]=X->Y1Y2...Yk then begin

pop X from the stack;

push Yk,Yk-1...Y1 onto the stack, with Y1 on top;

output the production X-> Y1Y2...Yk

end

else error()

untilX=$ /* stack is empty*/

Predictive parsing table construction:

The construction of a predictive parser is aided by two functions associated with a grammar G :

1. FIRST

2. FOLLOW

Rules for first():

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

1. If X is terminal, then FIRST(X) is{X}.

2. If X → ε is a production, then add ε toFIRST(X).

3. If X is non-terminal and X → aα is a production then add a toFIRST(X).

4. If X is non-terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X)if for some i, a

is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1);that is, Y1,….Yi-1=> ε. If ε is in FIRST(Yj) for

all j=1,2,..,k, then add ε to FIRST(X).

Rules for follow():

1. If S is a start symbol, then FOLLOW(S) contains$.

2. If there is a production A →αBβ, then every thing in FIRST(β)except ε is placed in

follow(B).

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then

everything in FOLLOW(A) is in FOLLOW(B).

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Algorithm for construction of predictive parsing table:

Input : Grammar G Output

: Parsing table M Method :

1. For each production A → α of the grammar, do steps 2 and3.

2. For each terminal a in FIRST(α), add A → α to M[A,a].

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If εis in FIRST(α)

and $ is in FOLLOW(A) , add A → α to M[A,$].

4. Make each undefined entry of M beerror.

Example:

Consider the following grammar :

E→E+T|T

T→T*F|F

F→(E)|id

After eliminating left-recursion the grammar is E

→TE’

E’ → +TE’ | ε

T →FT’

T’ → *FT’ | ε

F → (E)|id

First() :

FIRST(E) = { (,id}

FIRST(E’) ={+ , ε}

FIRST(T) = { (,id}

FIRST(T’) = {*, ε}

FIRST(F) = { (, id }

Follow(): FOLLOW(E) = {

$,) }

FOLLOW(E’) = { $,) }

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

FOLLOW(T) = { +, $,) }

FOLLOW(T’) = { +, $,) }

FOLLOW(F) = {+, * , $,) }

Predictive parsing Table

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Stack Implementation

LL(1) grammar:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Theparsingtableentriesaresingleentries.Soeachlocationhasnotmorethanoneentry.Thisty

pe of grammar is called LL(1)grammar.

Consider this following grammar:

S→iEtS | iEtSeS| a

E→b

After eliminating left

factoring, we have

S→iEtSS’|a

S’→ eS | ε

E→b

To construct a parsing table, we need FIRST() and FOLLOW() for all the non-

terminals. FIRST(S) = { i, a }

FIRST(S’) = {e, ε }

FIRST(E) = { b}

FOLLOW(S) = { $,e }

FOLLOW(S’) = { $,e }

FOLLOW(E) = {t}

Parsing table:

Since there are more than one production, the grammar is not

LL(1) grammar. Actions performed in predictive parsing:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

1. Shift

2. Reduce

3. Accept

4. Error

Implementation of predictive parser:

1. Elimination of left recursion, left factoring and ambiguous grammar.

2. Construct FIRST() and FOLLOW() for all non-terminals.

3. Construct predictive parsing table.

4. Parse the given input string using stack and parsing table.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Fig 2.1 Position of parser in compilermodel

SYNTAX ANALYSIS

Syntax analysis is the second phase of the compiler. It gets the input from the

tokens and generates a syntax tree or parse tree.

Advantages of grammar for syntactic specification :

1. A grammar gives a precise and easy-to-understand syntactic

specification of a programming language.

2. Anefficientparsercanbeconstructedautomaticallyfromaproperlydesignedgrammar.

3. A grammar imparts a structure to a source program that is useful for its

translation into object code and for the detection of errors.

4. New constructs can be added to a language more easily when there

is a grammatical description of the language.

2.1 THE ROLE OFPARSER

The parser or syntactic analyzer obtains a string of tokens from the lexical

analyzer and verifies that the string can be generated by the grammar for the

source language. It reports any syntax errors in the program. It also recovers from

commonly occurring errors so that it can continue processing its input.

Position of parser in compiler model

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Functions of the parser :

1. It verifies the structure generated by the tokens based on the grammar.

2. It constructs the parse tree.

3. It reports the errors.

4. It performs error recovery.

Issues :

Parser cannot detect errors such as:

1. Variable re-declaration

2. Variable initialization before use.

3. Data type mismatch for an operation.

The above issues are handled by Semantic Analysis phase.

Syntax error handling :

Programs can contain errors at many different levels. For example :

1. Lexical, such as misspelling an identifier, keyword oroperator.

2. Syntactic, such as an arithmetic expression with unbalanced parentheses.

3. Semantic, such as an operator applied to an incompatible operand.

4. Logical, such as an infinitely recursive call.

Functions of error handler :

1. It should report the presence of errors clearly and accurately.

2. Itshouldrecoverfromeacherrorquicklyenoughtobeabletodetectsubsequenterrors.

3. It should not significantly slow down the processing of correct programs.
Error recovery strategies :

The different strategies that a parse uses to recover from a syntactic error are:

1. Panic mode

2. Phrase level

3. Error productions

4. Global correction

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

 www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Panic mode recovery:

Ondiscoveringanerror,theparserdiscardsinputsymbolsoneatatimeuntil

semicolon or end. It has the advantage of simplicity and does not go into an

infinite loop. When multiple errors in the same statement are rare, this

method is quite useful.

Phrase level recovery:

On discovering an error, the parser performs local correction on the

remaining input that allows it to continue. Example: Insert a missing

semicolon or delete an extraneous semicolon etc.

Error productions:

The parser is constructed using augmented grammar with error

productions. If an error production is used by the parser, appropriate error

diagnostics can be generated to indicate the erroneous constructs recognized by

the input.

Global correction:

Given an incorrect input string x and grammar G, certain algorithms can

be used to find a parse tree for a string y, such that the number of insertions,

deletions and changes of tokens is as small as possible. However, these methods

are in general too costly in terms of time and space.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

