www.binils.com for Anna University | Polytechnic and Schools

AMBIGUITY in CFGs

Definition: A grammar that produces more than one parse tree for some sentence (input string) is said
to be ambiguous.
In other words, an ambiguous grammar is one that produces more than one leftmost
derivation or more than one rightmost derivation for the same sentence.
Orlftheright hand production of the grammar is having two non terminals which are exactly
sameaslefthandside productionNonterminalthenitissaidtoanambiguousgrammar. Example:Ifthe
Grammar is E-> E+E | E*E | -E| (E) | id and the Input String is id +id™* id

Two parse trees for given input string are

E
2 1 Z |
E + / E \ E ¥ E
id E * E E + E id
| | | |
id id id id
(@)
(b)
Two LeftmostDerivationsforgiveninput Stringare :
E=>F+E E=>E*E
=>id+E => E+E*E
=>id+E*E =>id+E*E
=>id+id*E =>id+ id*E
=>id +id *id =>id +id *id
(a) (b)

The above Grammar is giving two parse trees or two derivations for the given input string so, itis an

ambiguous Grammar

Note: LL (1) parser will not accept the ambiguous grammars or We cannot construct an LL(1) parser for
the ambiguous grammars. Because such grammars may cause the Top Down parser to go into infinite
loop or make it consume more time for parsing. If necessary we must remove all types of ambiguity

from it and then construct.

ELIMINATING AMBIGUITY: Since Ambiguous grammars may cause the top down Parser go into infinite

loop, consume more time during parsing.
Therefore, sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. The general

form of ambiguous productions that cause ambiguity in grammars is
Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

A Aa | ﬂ

This can be written as (introduce one new non terminal in the place of second non terminal)

ABA'

A > aAle
Example: LetthegrammarisE -—w E+E | E*E| -E] (E) | id . Itis shown that it is ambiguous that
can be written as

E — E+E

E—+ EE

E—+ E*E

E - -E

E— (E)

E— id
In the above grammar the 1%t and 2" productions are having ambiguity. So, they can be written as

E-> E+E | E*E this production again can be written as

E-> E+E | B, where Bis E*E

The above production is same as the general form. so, that can be written as E-
SE+T|T

T->f

The value of B is E*E so, above grammar can be written as

1) E->E+T|T

2) T->E*E Thefirstproductionisfreefromambiguity and substitute E->Tinthe 2"
production then it can be written as
T->T*T | -E] (E) | id this production again can be written as
T->T*T | B where B is -E| (E) | id, introduce new non terminal in the Right hand side
production then itbecomes
T->T*F | F
F->-E|(E)|id now the entire grammar turned in to it equivalent unambiguous,

The Unambiguous grammar equivalent to the given ambiguous one is
1) E—* E+T|T
2) T+ T*F|F
3 F-*-E|(E)]id
LEFT RECURSION:
Another feature of the CFGs which is not desirable to be used in top down parsers is left
recursion. Agrammar isleftrecursive ifithasanonterminal Asuchthatthereisaderivation A=>Aa for

some string ain (TUV)*. LL(1) or Top Down Parsers cannot handle the Left Recursive grammars, so we
need to remove the left recursion from the grammars before being used in Top Down Parsing.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

The General form of Left Recursion is

A AP

The above left recursive production can be written as the non left recursive equivalent :
A BA'
A'_y oA'|l€
Example : - Is the following grammar left recursive? If so, find a non left recursive grammar

equivalent toit.

E— E+T|T

T+ T*F|F

F-4E]|(E)]|id
Yes ,the grammar is left recursive due to the first two productions which are satisfying the
generalform of Leftrecursion, sothey can be rewritten afterremoving leftrecursionfromE— E
+T,andT->T*Fis

E.» TE
E' »+TE'|€
T . FT
T L*FT'|€
F —(E) | id

LEFT FACTORING:

Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive
or top-down parsing. A grammar in which more than one production has common prefix is to be
rewritten by factoring out the prefixes.

For example, in the following grammar there are n A productions have the common prefix a,
which should be removed or factored out without changing the language defined for A.

A+ oAl | 0A2 | aA3 |
aA4 aAn

We canfactor outthe afromalln productions by adding anew A production A »aA’
and rewriting the A" productions grammar as

A A’

A’y A1|A2|A3|A4...|An

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

BOTTOM-UP PARSING

Bottom-up parsing corresponds to the construction of a parse tree for an input string beginning
atthe leaves (the bottorm nodes) and working up towards the root (the top node). It nvolves -reducing
an input string _w’ to the Start Symbol of the grammar. in each reduction step, a particular
substring Mmatching the right side of the production is replaced by symbol on the left of that
production and it is the Right most derivation. For exarmn ple consider the folowing Gram mar:

E — E+T|T

T -+ T*F

F — (E)]id

Bottorn up parsing of the input string “id * id “is as follows:

INPUT STRING SUB STRING REDUCING PRODUCTION

id*id Id F->id

F*id T F->T

T*id Id F->id

T*F * T->T*F

T T*F E->T

£ Start sy bol. Hence, the input
String is acce pted

Parse Tree representation is as follows:

id + id F » id T » id T « F T E
| | | | /1\ |
id F F id TsF i
| | 1N
id id Poid ’ll’/ ' F
id F id

Figure 3.1 : A Bottom-up Parse tree for the input Stm\g “id*id”
Bottorn up parsing is classified in to 1. Shift-Reduce Parsing, 2. Operator Precedence parsing , and
3. [Table Driven] L R Parsing
i. SLR(1)
ii. CALR(1)
iii.LALR(1)

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

SHIFT-REDUCE PARSING:

Shift-reduce parsing is a forrm of bottorm-up parsing in which a stack holds gram mar syrmbols

and an input buffer holds the rest of the string to be parsed, We use $ to mark the bottom of the

stack and also the right end of the input. And it makes use of the process of shift and reduce actions

to accept the inputstring. Here, the parse tree is Constructed bottomn up from the leaf nodes towards

the root node

When we are parsing the given input string, if the match occurs the parser takes the

reduce action otherwise it wil go for shift action. And it can acce pt am biguous grammarsalso.

For exanpie, considerthe below grammmarto accept the input string -id * id—, using S-R parser

-
E E+T|T
T T |F
F (B)]id
Actions of the Shift-reduce parser using Stack im plementation
STACK INPUT ACTION
S Id*id$S Shift
Sid *idS ReducewithF d
$F *id$ Reduce with T F
ST *id$ Shift o
ST* id$ Shift.
$T*id $ Reduce with F [id
ST*F $ Reduce with TLIT*F
ST $ Reduce with E LTl
SE S Accept

Considerthe following grammar:

S™ aAcBe

A" Ab|b
+
B d

Letthe inputstringis —abbcde]|. The-§l

abbcde aAbcde

eriesofshiftan
aAcde

to thS start syrnbol are asfollows.

S

Note: inthe above example there are two actions possible in the second Step, these are

as follows :
1. Shift action going to 3 Step
2. Reduce action, that isA->b

If the parser is taking the 1% action then it can successfully accepts the given input string, if it is

going for second action then it can‘t accept given input string. This is caled shift reduce conflict.

Where, S-R parser is not able take proper decision, so it not recommended for parsing.

Download Binils Android App in Playstore

Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

LALR (1) Parsing

LALRreferstothelookahead LR. Toconstructthe LALR (1) parsing table, we use the canonical collection
of LR (1)items.

Inthe LALR (1) parsing, the LR (1) items which have same productions but differentlook ahead are
combined to form a single set of items

LALR (1) parsing is same as the CLR (1) parsing, only difference in the parsing table.
Example

LALR (1) Grammar
S—AA

A —aA

A—b

Add AugmentProduction,insert''symbolatthefirstposition forevery productioninGandalsoadd
the look ahead.

1. $§—e5%
2.S - AA'S$

3. A—-aA ab
4. A — b, a/b

10 State:
Add Augment production to the 10 State and Compute the ClosureL

10 = Closure (S — =S)

Addallproductions starting with Sinto |0 State because "+" is followed by the non-terminal. So, the 10
State becomes

0=S —><S5$

S—-AA'S
Addallproductionsstartingwith Ainmodified |0 State because
the 10 Statebecomes.

isfollowedbythenon-terminal. So,

[0=5 — 5, $
S—AA'$

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

A — «aA, alb
A — <b, a/b

I1=Go to (I0, S) = closure (S° — S=,$) =S — S=, $
I2= Go to (10, A) = closure (S — A*A, $)

Addallproductions startingwith Ain12 State because "+" isfollowed by the non-terminal. So, the 12
State becomes

[2=S > AA,$
A—-<aA $
A—<b$

I13= Go to (10, a) = Closure (A — a*A, a/b)

Addallproductions startingwith Ain 13 State because "+" isfollowed by the non-terminal. So, the 13
State becomes

I3=A—a*A, ab
A —+aA, alb
A — b, a/b

Goto(13,a)=Closure(A—asA,a/b)=(sameasl?3)
Goto(13,b)=Closure (A— be,a/b)=(sameasi4)

14=Goto (10, b) =closure (A— be,a/b)=A —be,a/b
I15=Goto(12,A)=Closure(S—AA+,$)=S—AA-,$
16=Goto (12, a) = Closure (A — a<A, $)

Addallproductions starting with Ain 16 State because "+" isfollowed by the non-terminal. So, the 16
State becomes

6=A—a°A$
A—-aA$
A—°b$

Goto(16,a)=Closure(A—a*A,$)=(sameas|6)
Goto(16,b)=Closure (A—be,$)=(sameas|7)

I7= Go to (12, b) = Closure (A — be, $)=A — b, §
I18= Go to (I3, A) = Closure (A — aA-, a/b) = A — aAe, a/lb
19= Go to (16, A) = Closure (A — aAe+, $) A — aA-, $

If we analyze then LR (0) items of 13 and 16 are same but they differ only in their lookahead.

13={A—a°A, ab
A «aA, alb

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

A — b, alb
}

I6={A—a-A$
A—-aA ' $
A—b $
}

Clearlyl3andl6aresameintheirLR (0)itemsbutdifferintheirlookahead, sowe cancombinethem
and called as|36.

136 ={A— a*A, a/b/$
A — «aA, a/b/$
A — <b, a/b/$
}

Theld4and|7are same buttheydifferonlyintheirlookahead, sowe cancombinethemandcalled as
147.

147 = {A — be, a/b/$}

Thel8andI9are same butthey differonlyintheirlookahead, sowe cancombinethemandcalled as
189.

189 = {A — aA-, a/b/$}

Drawing DFA:

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

LALR (1) Parsing table:

States a b S S A
Io S3g Sa7 12

I accept

I S36 Sa7 5
Iz¢ S36547 89
Is7 R3R3 R3

Is Ri

Iso Rz Ra R2

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

LRPARSERS

An efficient bottom-up syntax analysis technique that can be used CFG is
called LR(k) parsing. The ‘L’ is for left-to-right scanning of the input, the ‘R’ for
constructing a rightmost derivation in reverse, and the ‘k’ for the number of input

symbols. When ‘K’ is omitted, itis assumed to be 1.

Advantages of LR parsing:
1. Itrecognizesvirtually all programminglanguage constructs for which CFG can be written.
2. ltis an efficient non-backtracking shift-reduce parsing method.
3. Agrammarthat can be parsed using LR method s a proper superset of a

grammar that can be parsed with predictive parser.

4. It detects a syntactic error as soon as possible.

Drawbacks of LR method:
Itistoomuch ofwork to constructa LR parser by handforaprogramming
language grammar. A specialized tool, called a LR parser generator, is needed.

Example: YACC.

Types of LR parsing method:
1. SLR- Simple LR

Easiest to implement, least powerful.

2. CLR- Canonical LR
Most powerful, most expensive.

3. LALR- Look-Ahead LR

Intermediate in size and cost between the other two methods.

The LR parsing algorithm:

The schematic form of an LR parser is as follows:

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

INPUT ai a; an S

& LR parsing program — OUTPUT

2&111

Sm—l

Xm— 1

action goto

So

STACK

Fig. 2.5 Model of an LR parser

It consists of an input, an output, a stack, a driver program, and a pa parts (action and goto).

The driver program is the same for all LR parser.

The parsing program reads characters from an input bufferone ata time.
The program usesastacktostoreastringoftheforms0X1s1X2s2...Xmsm, where sm is on
top. Each Xiis a grammar symbol and each si is a state.

The parsing table consists of two parts :action and goto functions.

Action: The parsingprogramdeterminessm, the state currentlyontop of stack,and

ai,thecurrentinputsymbol. ltthen consultsaction[sm,ai]inthe actiontablewhichcan

have one of four values:

Goto :

1. shift s, where s is astate,
2. reduce by a grammar production A —3,

3. accept

4. error.

The function goto takes a state and grammar symbol as arguments and produces a state.

LR Parsing algorithm:

Input: Aninputstringwand an LR parsingtable withfunctions actionand gotofor

grammar G. Output: Ifwisin L(G), abottom-up-parse forw; otherwise, anerror

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

indication.

Method: Initially, the parser has sOonits stack, where sOisthe initial state,and w$in

the input buffer. The parser then executes the following program:

setipto pointto the firstinput symbol of w$; repeat
forever beginlet s be the state on top of the stack
and
athe symbol pointedto byip;
if action[s, a] = shift s’ then begin
pushathens’ontop ofthe stack;
advance ip to the next
input symbol end else if
action[s, a] =reduce A—p then
begin
pop 2* | B | symbols off the stack;
let s"be the state now on top ofthe stack; push' Athengoto[s’, A] on top ofthe stack; output
the production A— 3
end
else if action[s, a] =
accept then
return
CONSTRUCTING SLR(1) PARSINGTABLE:
To perform SLR parsing, take grammar as input and do the following:
1. Find LR(O)items.
2. Completing the closure.

3. Compute goto(l,X),where | is set of items and X is grammar symbol.

LR(0) items:
AnLR(0)item ofagrammar Gisaproduction of G with adotat some position ofthe

right side. For example, production A — XYZ yields the four items

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Closure operation:
IflisasetofitemsforagrammarG, thenclosure(l)isthe set ofitems constructed
from | by the two rules:
1. Initially, every item in | is added to closure(l).
2. IfA—a.BBisin closure(l) and B—y is a production, then add the item B—.ytol, ifit
is not already there. We apply this rule until no more new items can be added to closure(l)
Goto operation:
Goto(l, X)isdefinedto be the closure ofthe set of allitems [A— aX.] suchthat[A— a. XB]is
inl.
Steps to construct SLR parsing table for grammar G are:
1. Augment G and produce G’
2. Constructthe canonical collection of set of items C fo rG’
3. Constructtheparsingactionfunctionactionandgotousingthefollowingalgorit
hmthatrequires FOLLOW(A) for each non-terminal ofgrammar.

Algorithm for construction of SLR parsing table:

Input ' : An augmentedgrammarG’

Output: The SLR parsing table functions action and goto for G’

Method :

1. Construct C={I0, I1,....In},the collection of sets ofLR(0) items for G’.

2. State | is constructed from li.. The parsing functions for state | are determined as follows:
(@) If[A—a-aBlisinliand goto(li,a) =1j,then setaction[i,a]to “shiftj’. Here amust be
terminal.

(b) If[A—a]isin i, then set action[i,a]to “reduce A—a” for allainFOLLOW(A).
(c) If[S'—S.]isin li, then set actionli,$] to“accept”.
If any conflicting actions are generated by the above rules, we say grammar is not SLR(1).

3. Thegototransitions for state | are constructed

for all non-term If goto(li,A) = 1}, then

gotoli,A] =j.
4. All entries not defined by rules(2)and(3)are made “error”
5. The initial state of the parser is the one constructed from the[S'—.S].

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

PREDICTIVE PARSING

Itis possible to build a non recursive predictive parser by maintaining a stack explicitly,
rather than implicitly via recursive calls. The key problem during predictive parsing is that of
determining the production to be applied for a non terminal . The non recursive parser in figure
looks up the production to be applied in parsing table. In what follows, we shall see how the table

can be constructed directly from certain grammars.

INPUT a + b 3
STACK 2 T :
X Predictive parsing program) _
i = — OUTPUT

},’

Z

S v

Parsing Table M

Model of a nonrecursive predictive parser

Atable-driven predictive parser has an input buffer, a stack, a parsing table, and an output
stream. The input buffer contains the string to be parsed, followed by $, a symbol used as a right
endmarkertoindicate the end oftheinputstring. The stack contains asequence of grammar symbols
with $ on the bottom, indicating the bottom of the stack. Initially, the stack contains the start symbol
of the grammar on top of $. The parsing table is a two dimensional array M[A,a] where A is a non
terminal, and a is a terminal or the symbol $. The parser is controlled by a program that behaves as
follows. The program considers X, the symbol onthe top of the stack, and a, the currentinput symbol.
These two symbols determine the action of the parser. There are three possibilities.

parsing. 1 If X= a=$, the parser halts and announces successful completion of

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

2 IfX=al=$,theparserpopsXoffthe stackandadvancestheinputpointertothe next

input symbol.

3 IfXisanonterminal, the program consults entry M[X,a] of the parsing table M. This
entrywillbe eitheran X-production ofthe grammaroran errorentry. If, forexample, M[X,a]={X-
>UVW}, the parser replaces X ontop of the stack by WVU(with U ontop). As output, we shall
assume that the parser just prints the production used; any other code could be executed here. If

M[X,a]=error, the parser calls an error recovery routine.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Algorithm for Non recursive predictive Parsing.

Input. A string w and a parsing table M for grammar G.

Output. If wis in L(G), a leftmost derivation of w; otherwise, an error indication.

Method. Initially, the parserisinaconfigurationinwhichithas $S onthe stackwith S, the start symbol

of G on top, and w$ in the input buffer. The program that utilizes the predictive parsing table M to

produce a parse for the input is shown in Fig.

setip to point to the first symbol of w$.

repeat

let X bethetop stack symboland athe symbol pointedto by ip. if Xis

a terminal of $ then

if X=athen

pop X from the stack and advance ip
elseerror()
else
if M[X,a]=X->Y1Y2...Yk then begin
pop X from the stack;
push Yk,Yk-1...Y1 onto the stack, with Y1 ontop;
outputthe production X->Y1Y2...Yk
end
else error()

untilX=$ [* stack is empty*/

Predictive parsing table construction:

The construction of a predictive parser is aided by two functions associated with a grammar G :

1. FIRST
2. FOLLOW

Rules for first():

Download Binils Android App in Playstore

Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

1. If Xiis terminal, then FIRST(X) is{X}.

2. If X — gis a production, then add € toFIRST(X).

3. If Xis non-terminal and X — aa is a production then add a toFIRST(X).

4. If Xisnon-terminaland X — Y1Y2...Ykis aproduction, then place ain FIRST(X)if for somei, a
isinFIRST(Yi),andeisinall of FIRST(Y1),...,FIRST(Yi-1);thatis, Y1,....Yi-1=>¢. If eisin FIRST(Y]) for
allj=1,2,.. .k, then add € to FIRST(X).

Rules for follow():
1. If Sis a start symbol, then FOLLOW(S) contains$.
2. IfthereisaproductionA —aBp,theneverythingin FIRST(B)excepteisplacedin

follow(B).
3. Ifthereis aproduction A— aB, or a production A — aBp where FIRST(B) contains €, then

everything in FOLLOW(A) is in FOLLOW(B).

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Algorithm for construction of predictive parsing table:

Input : Grammar G Output
: Parsingtable MMethod:
1. For each production A — a of the grammar, do steps 2 and3.
2. For each terminal ain FIRST(a), add A — ato M[A,a].
3. IfeisinFIRST(a), add A — ato M[A, b] for each terminal bin FOLLOW(A). If eis in FIRST(a)
and $isin FOLLOW(A) , add A — a to M[A,3$].

4, Make each undefined entry of M beerror.

Example:

Consider the following grammar :
E-E+T|T

T—-T*F|F

F—(E)]id

After eliminating left-recursion the grammar is E
—TFE’

E'—>+TE’| e

T—->FT

T —-*FT |¢

F— (E)]id

First() :
FIRST(E)={(,id}
FIRST(E")={+,€}
FIRST(T)={(,id}
FIRST(T)={* ¢}
FIRST(F)={(,id}

Follow(): FOLLOW(E) = {

$.)}
FOLLOW(E) ={$,)}

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

FOLLOW(T)={+%,)}
FOLLOW(T)={+9,)}
FOLLOW(F)={+*,$,)}

Predictive parsing Table

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

NON- id + . () $
TERMINAL
E E—TE’ E—-TE’
E’ E'—-+IE E'—¢ E'—¢
T T—=HI" T-FT"
T T'=e¢ T'=*FT T'=e T"—¢
F Foid F—(E)

Download Binils Android App in Playstore

Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

stack Input Output
SE id-id*id $
SE’T id+id*id $ E—-TE’
SE’T’F idrid*id S T—FT’
SET’id idrid*id$ E>id
SE’T® —id*id $
$E’ +id*id $§ T-—€
SE’T+ +id*id $ E'—+TE’
SE’T id*id §
SE'T’'F 1d*id $ T—FET’
SE'T’id id*id § F—id
SE'T’ *id $
SE’T*F* *id$ T>—3FT?
SE’T°F 1d S
SE'T’id id $ Ezid
$E'T’ S
SE’ S T —¢
S S E'—¢

Stack Implementation

LL(1) grammar:

Download Binils Android App in Playstore

Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Theparsingtableentriesaresingleentries.Soeachlocationhasnotmorethanoneentry. Thisty
pe of grammar is called LL(1)grammatr.

Consider this following grammar:

S—IEtS | IEtSeS| a

E—b

After eliminating left
factoring, we have
S—IEtSS’|a
S'—eS|¢

E—b

Toconstructa parsingtable, we need FIRST() and FOLLOW() for all the non-
terminals. FIRST(S) ={i,a}

FIRST(S)={e, e}

FIRST(E)={b}

FOLLOW(S) ={$ e}

FOLLOW(S')={$,e}

FOLLOW(E)={t}

NON- a b = l t -
TERMINAL
S S—a S—iEtSS’
. St—ey =7 Te
S*—g

Parsing table:

Sincetherearemorethanone production,the grammarisnot

LL(1) grammar. Actions performed in predictive parsing:

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

1. Shift
2. Reduce
3. Accept
4. Error

Implementation of predictive parser:

1. Elimination of left recursion, left factoring and ambiguous grammar.
2. Construct FIRST() and FOLLOW() for all non-terminals.

3. Construct predictive parsingtable.

4. Parse the given input string using stack and parsing table.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

SYNTAX ANALYSIS

Syntax analysis is the second phase of the com piler. It gets the input from the
tokens and generates a syntax tree or parse tree.
Advantages of gramn mar for syntactic specification :
1. Agrammargivesa precise and easy-to-understand syntactic
specification of a program ming language.
2. Anefficientparsercanbeconstructedautormaticalyfrormaproperlydesignedgrammar.
3. Agrammar im parts a structure to a source prograrmn that is useful for its
translation into object code and for the detection of errors.
4, New constructs can be added to alanguage more easily when there

is a grammatical description of the language.

2.1 THE ROLE OFPARSER

The parser or syntactic analyzer obtains a string of tokens.from the lexical
analyzer'and verifies that the string can be generated by the grammmar for the
source language. It reports any syntax errors in the program. It also recovers from
commonly occurring errors so that it can continue processing its input.

source ‘] token yarser arse ‘oq intermediate
lexical y| paser | PaIse | restof
program analvzer [¢ tree | frontend |representation
get next token

Fig 2.1 Position qf pamdet in compilermodel

APAANAANAAAS

table

Position of parser in compiler model

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Functions of the parser :

1. itverifies the structure generated by the tokens based on the gram mar.
2. ltconstructs the parse tree.

3. ltreports the errors.

4. It performs errorrecovery.

Issues :

Parser cannot detect errors such as:

1. variable re-declaration

2. Variable initialization before use.

3. Datatype mismatch for an operation.

The above issues are handled by Semantic Analysis phase.

Syntax error handling :

Programs'can contain errors at many different levels. For example :

1. Lexical, such as misspeling an identifier, keyword oroperator.

2. Syntactic, such as an arithrm etic expression with unbalanced parentheses.
3. Semantic, such as an operator applied to an incom patible operand.

4. Logical, such as an infinitely recursive call.

Functions of error handler :
1. ltshould report the presence of errors clearly and accurately.
2. ltshouldrecoverfrom eacherrorquicklye noughtobeabletodetectsubsequenterrors.

3. Itshould not significantly sow down the processing of correct programs.
Error recovery strategies :

The different strategies that a parse uses to recover frormn a syntactic error are:
1. Panic mode

2. Phrase level

3. Error productions

4, Global correction

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

www.binils.com for Anna University | Polytechnic and Schools

Panic mode recovery:
Ondiscoveringanerror,theparserdiscardsinputsymbolsoneatatim euntil
semicolon or end. It has the advantage of sim plicity and does not go into an
infinite loop. When multiple errors in the same staterment are rare, this

method is quite useful.

Phrase level recovery:

On discovering an error, the parser performs local correction on the
remaining input that alows it to continue. Example: Insert a missing

semicolon or delete an extraneous semicolon etc.

Error productions:

The parser /is constructed using augmented grammmar with/ error
productions. If an' error/ production is' used by the parser,-appropriate error
diagnostics can be generated to indicate the erroneous constructs recognized by

the input.

Global correction:

Given an incorrect input string x and grammar G, certain algorithms can
be used to find a parse tree for a string y, such that the number of insertions,
deletions and changes of tokens is as small as possible. However, these methods

are in generaltoo costly in terrms of time and space.

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001&hl=en_IN&gl=US
https://play.google.com/store/apps/details?id=com.binilselva.photoship&hl=en_IN&gl=US

