
www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

BUILT-IN EXCEPTIONS

Built-in exceptions are the exceptions which are available in Java libraries.

These exceptions are suitable to explain certain error situations. Below is the list of

important built-in exceptions in Java

Exceptions Description

Arithmetic Exception It is thrown when an exceptional condition has

occurred in an arithmetic operation.

Array Index Out Of Bound

Exception

It is thrown to indicate that an array has been accessed

with an illegal index. The index is either negative or

greater than or equal to the size of the array.

ClassNotFoundException This Exception is raised when we try to access a class

whose definition is not found.

FileNotFoundException This Exception is raised when a file is not accessible

or does not open.

IOException It is thrown when an input-output operation failed or

interrupted.

InterruptedException It is thrown when a thread is waiting, sleeping, or do-

ing some processing, and it is interrupted.

NoSuchFieldException It is thrown when a class does not contain the field (or

variable) specified.

NoSuchMethodException It is thrown when accessing a method which is not

found.

NullPointerException This exception is raised when referring to the

members of a null object. Null represents nothing.

NumberFormatException This exception is raised when a method could not con-

vert a string into a numeric format.

RuntimeException This represents any exception which occurs during

runtime.

StringIndexOutOfBoundsEx-

ception

It is thrown by String class methods to indicate that an

index is either negative than the size of the string

The following Java program explains NumberFormatException

class NumberFormat_Example

{

public static void main(String args[])

{

try {

int num = Integer.parseInt (“hello”) ;

System.out.println(num);

}

catch(NumberFormatException e) {

System.out.println(“Number format exception”);

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

}

}

The following Java program explains StackOverflowError exception.

class Example {

public static void main(String[] args)

{

fun1();

}

public static void fun1()

{

fun2();

}

public static void fun2()

{

fun1();

}

}

Output:

Exception in thread “main” java.lang.StackOverflowError at

Example.fun2(File.java:14)

at Example.fun1(File.java:10)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

CHAINED EXCEPTIONS

Chained Exceptions allows to relate one exception with another exception, i.e one ex-

ception describes cause of another exception. For example, consider a situation in which a

method throws an ArithmeticException because of an attempt to divide by zero but the actual

cause of exception was an I/O error which caused the divisor to be zero. The method will

throw only ArithmeticException to the caller. So the caller would not come to know about the

actual cause of exception. Chained Exception is used in such type of situations.

throwable constructors that supports chained exceptions are:

1. Throwable(Throwable cause) :- Where cause is the exception that causes the current

exception.

2. Throwable(String msg, Throwable cause) :- Where msg is the exception message and

cause is the exception that causes the current exception.

throwable methods that supports chained exceptions are:

1. getCause() method :- This method returns actual cause of an exception.

2. initCause(Throwable cause) method :- This method sets the cause for the calling ex-

ception.

Example:

import java.io.IOException;

public class ChainedException

{

public static void divide(int a, int b)

{

if(b==0)

{

ArithmeticException ae = new ArithmeticException(“top layer”);

ae.initCause(new IOException(“cause”));

throw ae;

}

else

{

System.out.println(a/b);

}

}

public static void main(String[] args)

{

try {

divide(5, 0);

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

catch(ArithmeticException ae) { System.out.println(

“caught : “ +ae); System.out.println(“actual cause:

“+ae.getCause());

}

}

}

Sample Output:

caught : java.lang.ArithmeticException: top layer

actual cause: java.io.IOException: cause

In this example, the top-level exception is ArithmeticException. To it is added a cause

exception, IOException. When the exception is thrown out of divide(), it is caught by main().

There, the top-level exception is displayed, followed by the underlying exception, which is

obtained by calling getCause().

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Exceptions

An exception is an unexpected event, which may occur during the execution of a program

(at run time), to disrupt the normal flow of the program’s instructions. This leads to the abnormal

termination of the program.

Therefore, these exceptions are needed to be handled. The exception handling in java is

one of the powerful mechanisms to handle the runtime errors so that normal flow of the

application can be maintained.

An exception may occur due to the following reasons. They are.

• Invalid data as input.

• Network connection may be disturbed in the middle of communications

• JVM may run out of memory.

• File cannot be found/opened.

These exceptions are caused by user error, programmer error, and physical resources. Based

on these, the exceptions can be classified into three categories.

• Checked exceptions − A checked exception is an exception that occurs at the compile

time, also called as compile time exceptions. These exceptions cannot be ignored at the

time of compilation. So, the programmer should handle these exceptions.

• Unchecked exceptions − An unchecked exception is an exception that occurs at run

time, also called as Runtime Exceptions. These include programming bugs, such as

logic errors or improper use of an API. Runtime exceptions are ignored at the time of

compilation.

• Errors − Errors are not exceptions, but problems may arise beyond the control of the

user or the programmer. Errors are typically ignored in your code because you can

rarely do anything about an error. For example, if a stack overflow occurs, an error will

arise. They are also ignored at the time of compilation.

• Error: An Error indicates serious problem that a reasonable application should not

try to catch.

• Exception: Exception indicates conditions that a reasonable application might try to

catch.

Exception Hierarchy

The java.lang.Exception class is the base class for all exception classes. All exception and

errors types are sub classes of class Throwable, which is base class of hierarchy. One branch is

headed by Exception. This class is used for exceptional conditions that user programs should

catch. NullPointerException is an example of such an exception. Another branch, Er- ror are

used by the Java run-time system(JVM) to indicate errors having to do with the run- time

environment itself(JRE). StackOverflowError is an example of such an error.

Errors are abnormal conditions that happen in case of severe failures, these are not han-

dled by the Java programs. Errors are generated to indicate errors generated by the runtime

environment. Example: JVM is out of memory. Normally, programs cannot recover from

errors.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The Exception class has two main subclasses: IOException class and RuntimeException

Class.

Exceptions Methods

Method Description

public String getMessage() Returns a detailed message about the exception that has

occurred. This message is initialized in the Throwable

constructor.

public Throwable getCause() Returns the cause of the exception as represented by a

Throwable object.

public String toString() Returns the name of the class concatenated with the re-

sult of getMessage().

public void printStackTrace() Prints the result of toString() along with the stack trace to

System.err, the error output stream.

public StackTraceElement []

getStackTrace()

Returns an array containing each element on the stack

trace. The element at index 0 represents the top of the

call stack, and the last element in the array represents the

method at the bottom of the call stack.

public Throwable

fillInStackTrace()

Fills the stack trace of this Throwable object with the

current stack trace, adding to any previous information

in the stack trace.

Exception handling in java uses the following Keywords

1. try

2. catch

3. finally

4. throw

5. throws

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The try/catch block is used as follows:

try

{

// block of code to monitor for errors

// the code you think can raise an exception

}

catch (ExceptionType1 exOb)

{

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb)

{

// exception handler for ExceptionType

}

// optional

finally {

// block of code to be executed after try block ends

}

throwing and catching exceptions

Catching Exceptions

A method catches an exception using a combination of the try and catch keywords. The

program code that may generate an exception should be placed inside the try/catch block. The

syntax for try/catch is depicted as below−

Syntax

try {

// Protected code

} catch (ExceptionName e1) {

// Catch block

}

The code which is prone to exceptions is placed in the try block. When an exception oc-

curs, that exception is handled by catch block associated with it. Every try block should be

immediately followed either by a catch block or finally block.

A catch statement involves declaring the type of exception that might be tried to catch. If an

exception occurs, then the catch block (or blocks) which follow the try block is checked. If the

type of exception that occurred is listed in a catch block, the exception is passed to the catch

block similar to an argument that is passed into a method parameter.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

To illustrate the try-catch blocks the following program is developed.

class Exception_example {

public static void main(String args[])

{

int a,b;

try { // monitor a block of code. a

= 0;

b = 10 / a; //raises the arithmetic exception

System.out.println(“Try block.”);

}

catch (ArithmeticException e)

{ // catch divide-by-zero error

System.out.println(“Division by zero.”);

}

System.out.println(“After try/catch block.”);

}

}

Output:

Division by zero.

After try/catch block.

Multiple catch clauses

In some cases, more than one exception could be raised by a single piece of code. To

handle this multiple exceptions, two or more catch clauses can be specified. Here, each catch

block catches different type of exception. When an exception is thrown, each catch statement is

inspected in order, and the first one whose type matches that of the exception is executed.

After one catch statement executes, the others are bypassed, and execution continues after the

try/catch block. The following example traps two different exception types:

class MultiCatch_Example {

public static void main(String args[]) {

try {

int a,b;

a = args.length;

System.out.println(“a = “ + a);

b = 10 / a; //may cause division-by-zero error

int arr[] = { 10,20 };

c[5] =100;

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

}

catch(ArithmeticException e)

{

System.out.println(“Divide by 0: “ + e);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println(“Array index oob: “ + e);

}

System.out.println(“After try/catch blocks.”);

}

}

Here is the output generated by the execution of the program in both ways:

C:\>java MultiCatch_

Example a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

C:\>java MultiCatch_Example arg1

a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException:5

After try/catch blocks.

While the multiple catch statements is used, it is important to remember that exception

subclasses must come before their superclasses. A catch statement which uses a superclass will

catch exceptions of that type plus any of its subclasses. Thus, a subclass would never be

reached if it came after its superclass. And also, in Java, unreachable code is an error. For

example, consider the following program:

class MultiCatch_Example {

public static void main(String args[]) {

try {

int a,b;

a = args.length;

System.out.println(“a = “ + a);

b = 10 / a; //may cause division-by-zero error

int arr[] = { 10,20 };

c[5] =100;

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

catch(Exception e) { System.out.println(“Generic

Exception catch.”);

}

catch(ArithmeticException e)

{

System.out.println(“Divide by 0: “ + e);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println(“Array index oob: “ + e);

}

System.out.println(“After try/catch blocks.”);

}

}

The exceptions such as ArithmeticException, and ArrayIndexOutOfBoundsException are

the subclasses of Exception class. The catch statement after the base class catch statement is

raising the unreachable code exception.

nested try block

Sometimes a situation may arise where a part of a block may cause one error and the entire

block itself may cause another error. In such cases, exception handlers have to be nested.

try

{

statement 1;

statement 2;

try

{

statement 1;

statement 2;

}

catch(Exception e)

{

}

}

catch(Exception e)

{

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

....

The following program is an example for Nested try statements.

class Nestedtry_Example{

public static void main(String args[]){

try{

try{

System.out.println(“division”);

int a,b;

a=0;

b =10/a;

}

catch(ArithmeticException e)

{

System.out.println(e);

}

try

{

int a[]=new int[5];

a[6]=3;

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println(e);

}

System.out.println(“other statement);

}

catch(Exception e)

{

System.out.println(“handeled”);}

System.out.println(“normal flow..”);

}

}

throw keyword

The Java throw keyword is used to explicitly throw an exception. The general form of throw

is shown below:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throw-

able. Primitive types, such as int or char, as well as non-Throwable classes, such as String and

Object, cannot be used as exceptions.

There are two ways to obtain a Throwable object:

1. using a parameter in a catch clause

2. creating one with the new operator.

The following program explains the use of throw keyword.

public class TestThrow1{

static void validate(int age){

try{

if(age<18)

throw new ArithmeticException(“not valid”);

else

System.out.println(“welcome to vote”);

}

Catch(ArithmeticException e)

{

System.out.println(“Caught inside ArithmeticExceptions.”);

throw e; // rethrow the exception

}

}

public static void main(String args[]){

try{

validate(13);

}

Catch(ArithmeticException e)

{

System.out.println(“ReCaught ArithmeticExceptions.”);

}

}

}

The flow of execution stops immediately after the throw statement and any subsequent

statements that are not executed. The nearest enclosing try block is inspected to see if it has a

catch statement that matches the type of exception. If it does find a match, control is trans-

ferred to that statement. If not, then the next enclosing try statement is inspected, and so on. If

no matching catch is found, then the default exception handler halts the program and prints the

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

stack trace.

the throws/throw Keywords

If a method does not handle a checked exception, the method must be declared using the

throws keyword. The throws keyword appears at the end of a method’s signature.

The difference between throws and throw keywords is that, throws is used to postpone the

handling of a checked exception and throw is used to invoke an exception explicitly.

The following method declares that it throws a Remote Exception −

Example

import java.io.*;

public class throw_Example1 {

public void function(int a) throws RemoteException {

// Method implementation throw

new RemoteException();

} // Remainder of class definition

}

A method can declare that it throws more than one exception, in which case the excep-

tions are declared in a list separated by commas. For example, the following method declares

that it throws a RemoteException and an ArithmeticException −

import java.io.*;

public class throw_Example2 {

public void function(int a) throws RemoteException,ArithmeticException {

// Method implementation

}

// Remainder of class definition

}

the Finally Block

The finally block follows a try block or a catch block. A finally block of code always ex-

ecutes, irrespective of the occurrence of an Exception. A finally block appears at the end of the

catch blocks that follows the below syntax.

Syntax

try {

// Protected code

} catch (ExceptionType1 e1) {

// Catch block

} catch (ExceptionType2 e2) {

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

// Catch block

}

finally {

// The finally block always executes.

}

Example

public class Finally_Example {

public static void main(String args[]) {

try {

int a,b;

a=0;

b=10/a;

} catch (ArithmeticException e) {

System.out.println(“Exception thrown :” + e);

}finally {

System.out.println(“The finally block is executed”);

}

}

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

READING AND WRITING FILES

In Java, all files are byte-oriented, and Java provides methods to read and write bytes from

and to a file.

Two of the most often-used stream classes are FileInputStream and FileOutputStream,

which create byte streams linked to files.

File input stream

This stream is used for reading data from the files. Objects can be created using the key-

word new and there are several types of constructors available.

The two constructors which can be used to create a FileInputStream object:

i) Following constructor takes a file name as a string to create an input stream object to

read the file:

InputStream f = new FileInputStream(“filename “);

ii) Following constructor takes a file object to create an input stream object to read the

file. First we create a file object using File() method as follows:

File f = new File(“C:/java/hello”);

InputStream f = new FileInputStream(f);

Methods to read to stream or to do other operations on the stream

Method Description

public void close() throws

IOException{}

• Closes the file output stream.

• Releases any system resources associated with the

file.

• Throws an IOException.

protected void finalize()throws

IOException {}

• Ceans up the connection to the file.

• Ensures that the close method of this file output

stream is called when there are no morereferences

to this stream.

• Throws an IOException.

public int read(int r)throws

IOException{}

• Reads the specified byte of data from the

InputStream.

• Returns an int.

• Returns the next byte of data and -1 will be returned

if it’s the end of the file.

public int read(byte[] r) throws

IOException{}

• Reads r.length bytes from the input stream into an

array.

• Returns the total number of bytes read. If it is the

end of the file, -1 will be returned.

public int available() throws

IOException{}

• Gives the number of bytes that can be read from

this file input stream.

• Returns an int.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

File output stream

FileOutputStream is used to create a file and write data into it.

The stream would create a file, if it doesn’t already exist, before opening it for output.

The two constructors which can be used to create a FileOutputStream object:

i) Following constructor takes a file name as a string to create an input stream object to

write the file:

OutputStream f = new FileOutputStream(“filename”);

ii) Following constructor takes a file object to create an output stream object to write the

file. First, we create a file object using File() method as follows:

File f = new File(“C:/java/hello”);

OutputStream f = new FileOutputStream(f);

Methods to write to stream or to do other operations on the stream

Method Description

public void close() throws IO-

Exception{}

• Closes the file output stream.

• Releases any system resources associated with the

file.

• Throws an IOException.

protected void finalize()throws

IOException {}

• Cleans up the connection to the file.

• Ensures that the close method of this file output

stream is called when there are no more references

to this stream.

• Throws an IOException.

public void write(int w)throws

IOException{}

• Writes the specified byte to the output stream.

public void write(byte[] w) • Writes w.length bytes from the mentioned byte

array to the OutputStream.

Following code demonstrates the use of InputStream and OutputStream.

import java.io.*;

public class fileStreamTest

{

public static void main(String args[])

{

try

{

byte bWrite [] = {11,21,3,40,5};

OutputStream os = new FileOutputStream(“test.txt”);

for(int x = 0; x < bWrite.length ; x++)

{

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

os.write(bWrite[x]); // writes the bytes

}

os.close();

InputStream is = new FileInputStream(“test.txt”);

int size = is.available();

for(int i = 0; i < size; i++)

{

System.out.print((char)is.read() + “ “);

}

is.close();

}

catch (IOException e)

{

System.out.print(“Exception”);

}

}

}

The above code creates a file named test.txt and writes given numbers in binary format.

The same will be displayed as output on the stdout screen.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Reading characters

The read() method is used with BufferedReader object to read characters. As this

function returns integer type value has we need to use typecasting to convert it into char

type.

Syntax:

int read() throws IOException

Example:

Read character from keyboard

import java.io.*;

class Main

{

public static void main(String args[]) throws IOException

{

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

char c;

System.out.println(“Enter characters, @ to quit”);

do{

c = (char)br.read(); //Reading character

System.out.println(c);

}while(c!=’@’);

}

}

Sample Output:

Enter characters, @ to quit

abcd23@

a b

c d

2

3

@

Example:

Read string from keyboard

The readLine() function with BufferedReader class’s object is used to read string from

keyboard.

Syntax:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

String readLine() throws IOException

Example :

import java.io.*;

public class Main{

public static void main(String args[])throws Exception{

InputStreamReader r=new InputStreamReader(System.in);

BufferedReader br=new BufferedReader(r);

System.out.println(“Enter your name”);

String name=br.readLine();

System.out.println(“Welcome “+name);

}

}

Sample Output :

Enter your name

Priya

Welcome Priya

WRITING CONSOLE OUTPUT

• Console output is most easily accomplished with print() and println(). These methods

are defined by the class PrintStream (which is the type of object referenced by System.

out).

• Since PrintStream is an output stream derived from OutputStream, it also implements

the low-level method write().

• So, write() can be used to write to the console.

Syntax:

void write(int byteval)

This method writes to the stream the byte specified by byteval.

The following java program uses write() to output the character “A” followed by a new-

line to the screen:

// Demonstrate System.out.write().

class WriteDemo

{

public static void main(String args[])

{

int b;

b = ‘A’;

System.out.write(b);

System.out.write(‘\n’);

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

}

}

THE PRINT WRITER CLASS

• Although using System.outto write to the console is acceptable, its use is recommended

mostly for debugging purposes or for sample programs.

• For real-world programs, the recommended method of writing to the console when

using Java is through a PrintWriter stream.

• PrintWriter is one of the character-based classes.

• Using a character-based class for console output makes it easier to internationalize

our program.

• PrintWriter defines several constructors.

Syntax:

PrintWriter(OutputStream outputStream, boolean flushOnNewline) Here,

• output Stream is an object of type OutputStream

• flushOnNewline controls whether Java flushes the output stream every time a println(

) method is called.

• If flushOnNewline is true, flushing automatically takes place. If false, flushing isnot

automatic.

• PrintWriter supports the print() and println() methods for all types including Object.

• Thus, we can use these methods in the same way as they have been used with System.

out.

• If an argument is not a simple type, the PrintWriter methods call the object’s toString(

) method and then print the result.

• To write to the console by using a PrintWriter, specify System.out for the output stream

and flush the stream after each newline.

For example, the following code creates a PrintWriter that is connected to console output:

PrintWriter pw = new PrintWriter(System.out, true);

The following application illustrates using a PrintWriter to handle console output:

// Demonstrate PrintWriter import

java.io.*;

public class PrintWriterDemo

{

public static void main(String args[])

{

PrintWriter pw = new PrintWriter(System.out, true);

pw.println(“This is a string”);

int i = -7;

pw.println(i); double

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

d = 4.5e-7;

pw.println(d);

}

}

Sample Output:

This is a string

-7

4.5E-7

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

STACK TRACE ELEMENT

The StackTraceElement class element represents a single stack frame which is a stack

trace when an exception occurs. Extracting stack trace from an exception could provide

useful information such as class name, method name, file name, and the source-code line

number. The getStackTrace() method of the Throwable class returns an array of

StackTraceEle- ments.

stacktraceElement class constructor

StackTraceElement(String declaringClass, String methodName, String fileName, int

lineNumber)

This creates a stack trace element representing the specified execution point.

Stack Trace Element class methods

Method Description

boolean equals(Object obj) Returns true if the invoking StackTraceElement is the

same as the one passed in obj. Otherwise, it returns false.

String getClassName() Returns the class name of the execution point

String getFileName() Returns the filename of the execution point

int getLineNumber() Returns the source-code line number of the execution

point

String getMethodName() Returns the method name of the execution point

String toString() Returns the String equivalent of the invoking sequence

Example:

public class StackTraceEx{

public static void main(String[] args) {

try{

throw new RuntimeException(“go”); //raising an runtime exception

}

catch(Exception e){

System.out.println(“Printing stack trace:”);

//create array of stack trace elements

final StackTraceElement[] stackTrace = e.getStackTrace();

for (StackTraceElement s : stackTrace) {

System.out.println(“\tat “ + s.getClassName() + “.” + s.getMethodName()

+ “(“ + s.getFileName() + “:” + s.getLineNumber() + “)”);

}

}

}

}

Sample Output:

Printing stack trace:at StackTraceEx.main(StackTraceEx.java:5)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

USER DEFINED EXCEPTION IN JAVA

Java allows the user to create their own exception class which is derived from built-

in class Exception. The Exception class inherits all the methods from the class Throwable.

The Throwable class is the superclass of all errors and exceptions in the Java language. It

contains a snapshot of the execution stack of its thread at the time it was created. It can

also contain a message string that gives more information about the error.

• The Exception class is defined in java.lang package.

• User defined exception class must inherit Exception class.

• The user defined exception can be thrown using throw keyword.

Syntax:

class User_defined_name extends Exception{

………..

}

Some of the methods defined by Throwable are shown in below table.

Methods Descriptio

n

Throwable fillInStackTrace() Fills in the execution stack trace and returns a

Throwable object.

String getLocalizedMessage() Returns a localized description of the

exception.

String getMessage() Returns a description of the exception.

void printStackTrace() Displays the stack trace.

String toString() Returns a String object containing a description

of the Exception.

StackTraceElement[]get

StackTrace()

Returns an array that contains the stack trace,

one element at a time, as an array of

StackTraceEle- ment.

two commonly used constructors of Exception class are:

• Exception() - Constructs a new exception with null as its detail message.

• Exception(String message) - Constructs a new exception with the specified detail

message.

Example:

//creating a user-defined exception class derived from Exception class

public class MyException extends Exception

{

public String toString(){ // overriding toString() method

return “User-Defined Exception”;

}

public static void main(String args[]){

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

MyException obj= new MyException();

try

{

throw new MyException(); // customized exception is raised

}

catch(MyException e)

{

System.out.println(“Exception handled - “+ e);

}

}

}

Sample Output:

Exception handled - User-Defined Exception

In the above example, a custom defined exception class MyException is created by

inher- iting it from Exception class. The toString() method is overridden to display the

customized method on catch. The MyException is raised using the throw keyword.

Example:

Program to create user defined exception that test for odd numbers.

import java.util.Scanner;

class OddNumberException extends Exception

{

OddNumberException() //default constructor

{

super(“Odd number exception”);

}

OddNumberException(String msg) //parameterized constructor

{

super(msg);

}

}

public class UserdefinedExceptionDemo{

public static void main(String[] args)

{

int num;

Scanner Sc = new Scanner(System.in); // create Scanner object to read

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

input System.out.println(“Enter a number : “);

num = Integer.parseInt(Sc.nextLine());

try

{

if(num%2 != 0) // test for odd number

throw(new OddNumberException()); // raise the exception if number is odd

else

System.out.println(num + “ is an even number”);

}

catch(OddNumberException Ex)

{

System.out.print(“\n\tError : “ + Ex.getMessage());

}

}

}

Sample Output1:

Enter a number : 11

Error : Odd number exception

Sample Output2:

10 is an even number

Odd Number Exception class is derived from the Exception class. To implement user

defined exception we need to throw an exception object explicitly. In the above example,

If the value of num variable is odd, then the throw keyword will raise the user defined

exception and the catch block will get execute.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

