
www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

APPLICATION ON STACK

Postfix Expression Evaluation

A postfix expression is a collection of operators and operands in which the operator is placed after the

operands. That means, in a postfix expression the operator follows the operands.

Postfix Expression has following general structure.

Postfix Expression Evaluation using Stack Data Structure

A postfix expression can be evaluated using the Stack data structure. To evaluate a postfix expression using

Stack data structure we can use the following steps...

• Read all the symbols one by one from left to right in the given Postfix Expression

• If the reading symbol is operand, then push it on to the Stack.

• If the reading symbol is operator (+ , - , * , / etc.,), then perform TWO pop operations and store the

two popped operands in two different variables (operand1 and operand2). Then perform reading

symbol operation using operand1 and operand2 and push result back on to the Stack.

• Finally! perform a pop operation and display the popped value as final result

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Example

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

CIRCULAR QUEUE

In a normal Queue Data Structure, we can insert elements until queue becomes full. But once if queue

becomes full, we cannot insert the next element until all the elements are deleted from the queue. For

example, consider the queue below After inserting all the elements into the queue.

Now consider the following situation after deleting three elements from the queue...

This situation also says that Queue is full and we cannot insert the new element because, 'rear' is still at

last position. In above situation, even though we have empty positions in the queue we cannot make use of

them to insert new element. This is the major problem in normal queue data structure. To overcome this

problem, we use circular queue data structure.

A Circular Queue can be defined as follows...

Circular Queue is a linear data structure in which the operations are performed based on FIFO (First In First

Out) principle and the last position is connected back to the first position to make a circle.

Graphical representation of a circular queue is as follows...

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

To implement a circular queue data structure using array, we first perform the following steps before we

implement actual operations.

Step 1: Include all the header files which are used in the program and define a constant 'SIZE'

with specific value.

Step 2: Declare all user defined functions used in circular queue

implementation. Step 3: Create a one dimensional array with above

defined SIZE (intcQueue[SIZE])

Step 4: Define two integer variables 'front' and 'rear' and initialize both with '-1'. (int front = -1, rear = -
1)

Step 5: Implement main method by displaying menu of operations list and make suitable function

calls to perform operation selected by the user on circular queue.

enQueue(value) - Inserting value into the Circular Queue

In a circular queue, enQueue() is a function which is used to insert an element into the circular queue. In a

circular queue, the new element is always inserted at rear position. The enQueue() function takes one

integer value as parameter and inserts that value into the circular queue. We can use the following steps to

insert an element into the circular queue...

Step 1: Check whether queue is FULL. ((rear == SIZE-1 && front == 0) || (front == rear+1))

Step 2: If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and terminate the

function. Step 3: If it is NOT FULL, then check rear == SIZE - 1 &&front != 0 if it is TRUE, then

set rear = -1.

Step 4: Increment rear value by one (rear++), set queue[rear] = value and check 'front == -1' if it is

TRUE, then set front = 0.

deQueue() - Deleting a value from the Circular Queue

In a circular queue, deQueue() is a function used to delete an element from the circular queue. In a circular

queue, the element is always deleted from front position. The deQueue() function doesn't take any value as

parameter. We can use the following steps to delete an element from the circular queue...

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Step 1: Check whether queue is EMPTY. (front == -1 && rear == -1)

Step 2: If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!" and terminate the
function.

Step 3: If it is NOT EMPTY, then display queue[front] as deleted element and increment the front

value by one (front ++). Then check whether front == SIZE, if it is TRUE, then set front = 0. Then

check whether both front - 1 and rear are equal (front -1 == rear), if it TRUE, then set both front and

rear to '-1' (front = rear = -1).

display() - Displays the elements of a Circular Queue

We can use the following steps to display the elements of a circular queue...

Step 1: Check whether queue is EMPTY. (front == -1)

Step 2: If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the

function. Step 3: If it is NOT EMPTY, then define an integer variable 'i' and

set 'i = front'.

Step 4: Check whether 'front <= rear', if it is TRUE, then display 'queue[i]' value and increment 'i'

value by one (i++). Repeat the same until 'i<= rear' becomes FALSE.

Step 5: If 'front <= rear' is FALSE, then display 'queue[i]' value and increment 'i' value by one (i++).

Repeat the same until'i<= SIZE - 1' becomes FALSE.

Step 6: Set i to 0.

Step 7: Again display 'cQueue[i]' value and increment i value by one (i++). Repeat the same until 'i<=

rear' becomes FALSE.

Program:

#include<stdio.h

>

#include<conio.h

> #define SIZE

5 void

enQueue(int);

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

void

deQueue();

void display();

intcQueue[SIZE], front = -1, rear

= -1; void main()

{

int choice,

value; clrscr();

while(1)

{

printf("\n****** MENU ******\n");

printf("1. Insert\n2. Delete\n3. Display\n4.

Exit\n"); printf("Enter your choice: ");

scanf("%d",&choic

e); switch(choice)

{

case 1:

printf("\nEnter the value to be insert:

"); scanf("%d",&value);

enQueue(value

); break;

case 2:

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

deQueue(

); break;

case 3:

display()

; break;

case 4: exit(0);

default: printf("\nPlease select the correct choice!!!\n");

}

}

}

void enQueue(int value)

{

if((front == 0 && rear == SIZE - 1) || (front == rear+1))

printf("\nCircular Queue is Full! Insertion not

possible!!!\n"); else

{

if(rear == SIZE-1 && front !=

0) rear = -1;

cQueue[++rear] = value;

printf("\nInsertion

Success!!!\n"); if(front == -1)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

front = 0;

}

}

void deQueue()

{

if(front == -1 && rear == -1)

printf("\nCircular Queue is Empty! Deletion is not

possible!!!\n"); else

{

printf("\nDeleted element :

%d\n",cQueue[front++]); if(front == SIZE)

front = 0;

if(front-1 ==

rear) front =

rear = -1;

}

}

void display()

{

if(front == -1)

printf("\nCircular Queue is

Empty!!!\n"); else

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

{

inti = front;

printf("\nCircular Queue Elements are : \n");

if(front <= rear){ while(i<= rear) printf("%d\t",cQueue[i++]);

}

Else

{

while(i<= SIZE - 1) printf("%d\t", cQueue[i++]); i

= 0; while(i<= rear)

printf("%d\t",cQueue[i++]);

}

}

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Double Ended Queue (Dequeue)

Double Ended Queue is also a Queue data structure in which the insertion and deletion operations are

performed at both the ends (front and rear). That means, we can insert at both front and rear positions and

can delete from both front and rear positions.

Double Ended Queue can be represented in TWO ways, those are as follows... Input Restricted Double
Ended Queue

• Output Restricted Double Ended Queue

• Input Restricted Double Ended Queue

Input restricted double ended queue

In input restricted double ended queue, the insertion operation is performed at only one end and deletion

operation is performed at both the ends.

Output Restricted Double Ended Queue

In output restricted double ended queue, the deletion operation is performed at only one end and

insertion operation is performed at both the ends.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Program

#include<stdio.h>

#include<conio.h>

#define SIZE 100

void

enQueue(int); int

deQueueFront();

int

deQueueRear();

void

enQueueRear(int);

void

enQueueFront(int);

void display();

int queue[SIZE];

int rear = 0, front =

0; int main()

{

char ch;

int choice1, choice2, value;

printf("\n******* Type of Double Ended Queue *******\n");

do

{

printf("\n1.Input-restricted deque

\n"); printf("2.output-restricted

deque \n");

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

printf("\nEnter your choice of Queue Type : "); scanf("%d",&choice1);

switch(choice1)

{

case 1:

printf("\nSelect the Operation\n");

printf("1.Insert\n2.Delete from Rear\n3.Delete from Front\n4.

Display"); do

{

printf("\nEnter your choice for the operation in c

deque: "); scanf("%d",&choice2);

switch(choice2)

{

case 1:

enQueueRear(valu

e); display();

break;

case 2:

value = deQueueRear();

printf("\nThe value deleted is

%d",value); display();

break;

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

case 3:

value=deQueueFront

();

printf("\nThe value deleted is

%d",value); display();

break;

case 4:

display();

break;

default:printf("Wrong choice");

}

printf("\nDo you want to perform another operation (Y/N):

"); ch=getch();

getch();

}while(ch=='y'||ch=='Y'

); break;

case 2 :

printf("\n---- Select the Operation - \n");

printf("1. Insert at Rear\n2. Insert at Front\n3. Delete\n4.

Display"); do

{

printf("\nEnter your choice for the operation:

"); scanf("%d",&choice2);

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

switch(choice2)

{

case 1:

enQueueRear(valu

e); display();

break;

case 2:

enQueueFront(valu

e); display();

break;

case 3:

value = deQueueFront();

printf("\nThe value deleted is

%d",value); display();

break;

case 4:

display();

break;

default:printf("Wrong

choice");

}

printf("\nDo you want to perform another operation (Y/N):

"); ch=getch();

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

getch();

}

}

while(ch=='y'||ch=='Y');

break ;

printf("\nDo you want to

continue(y/n):"); ch=getch();

}while(ch=='y'||ch=='Y');

}

void enQueueRear(int value)

{

char ch;

if(front == SIZE/2)

{

printf("\nQueue is full!!! Insertion is not possible!!!

"); return;

}

do

{

printf("\nEnter the value to be

inserted:"); scanf("%d",&value);

queue[front] = value;

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

front++;

printf("Do you want to continue insertion

Y/N"); ch=getch();

}while(ch=='y');

}

void enQueueFront(int value)

{

char ch;

if(front==SIZE/

2)

{

printf("\nQueue is full!!! Insertion is not

possible!!!"); return;

}

do

{

printf("\nEnter the value to be

inserted:"); scanf("%d",&value);

rear--;

queue[rear] = value;

printf("Do you want to continue insertion

Y/N"); ch = getch();

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

}

while(ch == 'y');

}

int deQueueRear()

{

int deleted;

if(front ==

rear)

{

printf("\nQueue is Empty!!! Deletion is not

possible!!!"); return 0;

}

front--;

deleted =

queue[front+1]; return

deleted;

}

int deQueueFront()

{

int deleted;

if(front ==

rear)

{

printf("\nQueue is Empty!!! Deletion is not possible!!!");

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

return 0;

}

rear++;

deleted = queue[rear-

1]; return deleted;

}

void display()

{

inti;

if(front == rear)

printf("\nQueue is Empty!!! Deletion is not

possible!!!") else{

printf("\nThe Queue elements

are:"); for(i=rear; i< front; i++)

{

printf("%d\t ",queue[i]);

}

}

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Infix to Postfix Conversion

To convert Infix Expression into Postfix Expression using a stack data structure, Read all the symbols one by

one from left to right in the given Infix Expression.

1. If the reading symbol is operand, then directly print it to the result (Output).

2. If the reading symbol is left parenthesis '(', then Push iton to the Stack.

3. If the reading symbol is right parenthesis ')', then Pop all the contents of stack until respective

left parenthesis is poped and print each poped symbol to the result.

4. If the reading symbol is operator (+ , - , * , / etc.,), then Push it on to the Stack. However, first

pop the operators which are already on the stack that have higher or equal precedence than current

operator and print them to the result.

Example

Consider the following Infix Expression... (A + B) * (C - D)

The given infix expression can be converted into postfix expression using Stack data Structure as follows...

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

The final Postfix Expression is as follows... A B + C D - *

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

PRIORITY QUEUE

In normal queue data structure, insertion is performed at the end of the queue and deletion is performed

based on the FIFO principle. This queue implementation may not be suitable for all situations.

Consider a networking application where server has to respond for requests from multiple clients using

queue data structure. Assume four requests arrived to the queue in the order of R1 requires 20 units of

time, R2 requires 2 units of time, R3 requires 10 units of time and R4 requires 5 units of time. Queue is as

follows...

Now, check waiting time for each request to be

complete. R1 : 20 units of time

R2 : 22 units of time (R2 must wait till R1 complete - 20 units and R2 itself requeres 2 units. Total

22 units) R3 : 32 units of time (R3 must wait till R2 complete - 22 units and R3 itself requeres 10

units. Total 32 units) R4 : 37 units of time (R4 must wait till R3 complete - 35 units and R4 itself

requeres 5 units. Total 37 units) Here, average waiting time for all requests (R1, R2, R3 and R4) is

(20+22+32+37)/4 ≈ 27 units of time.

That means, if we use a normal queue data structure to serve these requests the average waiting time for

each request is 27 units of time.

Now, consider another way of serving these requests. If we serve according to their required amount of

time. That means, first we serve R2 which has minimum time required (2) then serve R4 which has second

minimum time required

(5) then serve R3 which has third minimum time required (10) and finally R1 which has maximum time
required (20).

Now, check waiting time for each request to be

complete. R2 : 2 units of time

R4 : 7 units of time (R4 must wait till R2 complete 2 units and R4 itself requeres 5 units. Total 7 units)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

R3 : 17 units of time (R3 must wait till R4 complete 7 units and R3 itself requeres 10 units. Total

17 units) R1 : 37 units of time (R1 must wait till R3 complete 17 units and R1 itself requeres 20

units. Total 37 units) Here, average waiting time for all requests (R1, R2, R3 and R4) is

(2+7+17+37)/4 ≈ 15 units of time.

From above two situations, it is very clear that, by using second method server can complete all four

requests with very less time compared to the first method. This is what exactly done by the priority queue.

Priority queue is a variant of queue data structure in which insertion is performed in the order of arrival and

deletion is performed based on the priority.

There are two types of priority queues they are as follows...

• Max Priority Queue

• Min Priority Queue

1. Max Priority Queue

In max priority queue, elements are inserted in the order in which they arrive the queue and always

maximum value is removed first from the queue. For example assume that we insert in order 8, 3, 2, 5 and

they are removed in the order 8, 5, 3, 2.

The following are the operations performed in a Max priority queue...

• isEmpty() - Check whether queue is Empty.

• insert() - Inserts a new value into the queue.

• findMax() - Find maximum value in the queue.

• remove() - Delete maximum value from the queue. Max Priority Queue

Representations There are 6 representations of max priority queue.

• Using an Unordered Array (Dynamic Array)

• Using an Unordered Array (Dynamic Array) with the index of the maximum value

• Using an Array (Dynamic Array) in Decreasing Order

• Using an Array (Dynamic Array) in Increasing Order

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

• Using Linked List in Increasing Order

• Using Unordered Linked List with reference to node with the maximum value

#1. Using an Unordered Array (Dynamic Array).

In this representation elements are inserted according to their arrival order and maximum element is deleted

first from max priority queue.

For example, assume that elements are inserted in the order of 8, 2, 3 and 5. And they are removed in the

order 8, 5, 3 and 2.

Now, let us analyse each operation according to this representation...

• isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity that means

constant time.

• insert() - New element is added at the end of the queue. This operation requires O(1) time

complexity that means constant time.

• findMax() - To find maximum element in the queue, we need to compare with all the elements in the
queue.

This operation requires O(n) time complexity.

• remove() - To remove an element from the queue first we need to perform findMax() which requires

O(n) and removal of particular element requires constant time O(1). This operation requires O(n)

time complexity.

#2. Using an Unordered Array (Dynamic Array) with the index of the maximum value

In this representation elements are inserted according to their arrival order and maximum element is deleted

first from max priority queue.

For example, assume that elements are inserted in the order of 8, 2, 3 and 5. And they are removed in the

order 8, 5, 3 and 2.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Now, let us analyse each operation according to this representation...

• isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity that means

constant time.

• insert() - New element is added at the end of the queue with O(1) and for each insertion we need to

update maxIndex with O(1). This operation requires O(1) time complexity that means constant time.

• findMax() - To find maximum element in the queue is very simple as maxIndex has maximum
element index.

This operation requires O(1) time complexity.

• remove() - To remove an element from the queue first we need to perform findMax() which requires

O(1) , removal of particular element requires constant time O(1) and update maxIndex value which

requires O(n). This operation requires O(n) time complexity.

#3. Using an Array (Dynamic Array) in Decreasing Order

In this representation elements are inserted according to their value in decreasing order and maximum

element is deleted first from max priority queue.

For example, assume that elements are inserted in the order of 8, 5, 3 and 2. And they are removed in the

order 8, 5, 3 and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity that means

constant time.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

insert() - New element is added at a particular position in the decreasing order into the queue with

O(n), because we need to shift existing elements inorder to insert new element in decreasing order.

This operation requires O(n) time complexity.

findMax() - To find maximum element in the queue is very simple as maximum element is at the

beginning of the queue. This operation requires O(1) time complexity.

remove() - To remove an element from the queue first we need to perform findMax() which requires

O(1), removal of particular element requires constant time O(1) and rearrange remaining elements

which requires O(n). This operation requires O(n) time complexity.

#4. Using an Array (Dynamic Array) in Increasing Order

In this representation elements are inserted according to their value in increasing order and maximum

element is deleted first from max priority queue.

For example, assume that elements are inserted in the order of 2, 3, 5 and 8. And they are removed in the

order 8, 5, 3 and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'front == -1' queue is Empty. This operation requires O(1) time complexity that means

constant time.

insert() - New element is added at a particular position in the increasing order into the queue with

O(n), because we need to shift existing elements inorder to insert new element in increasing order.

This operation requires O(n) time complexity.

findMax() - To find maximum element in the queue is very simple as maximum element is at the end

of the queue. This operation requires O(1)time complexity.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

remove() - To remove an element from the queue first we need to perform findMax() which requires

O(1), removal of particular element requires constant time O(1) and rearrange remaining elements

which requires O(n). This operation requires O(n) time complexity.

#5. Using Linked List in Increasing Order

In this representation, we use a single linked list to represent max priority queue. In this representation

elements are inserted according to their value in increasing order and node with maximum value is deleted

first from max priority queue.

For example, assume that elements are inserted in the order of 2, 3, 5 and 8. And they are removed in the

order 8, 5, 3 and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'head == NULL' queue is Empty. This operation requires O(1) time complexity that

means constant time.

insert() - New element is added at a particular position in the increasing order into the queue with

O(n), because we need to the position where new element has to be inserted. This operation

requires O(n) time complexity.

findMax() - To find maximum element in the queue is very simple as maximum element is at the end

of the queue. This operation requires O(1)time complexity.

remove() - To remove an element from the queue is simply removing the last node in the queue which

requires O(1). This operation requires O(1)time complexity.

#6. Using Unordered Linked List with reference to node with the maximum value

In this representation, we use a single linked list to represent max priority queue. Always we maintain a

reference (maxValue) to the node with maximum value. In this representation elements are inserted

according to their arrival

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

and node with maximum value is deleted first from max priority queue. For example, assume that elements

are inserted in the order of 2, 8, 3 and 5. And they are removed in the order 8, 5, 3 and 2.

Now, let us analyse each operation according to this representation...

isEmpty() - If 'head == NULL' queue is Empty. This operation requires O(1) time complexity that

means constant time.

insert() - New element is added at end the queue with O(1) and update maxValue reference with

O(1). This operation requires O(1) time complexity.

findMax() - To find maximum element in the queue is very simple as maxValue is referenced to the

node with maximum value in the queue. This operation requires O(1) time complexity.

remove() - To remove an element from the queue is deleting the node which referenced by

maxValue which requires O(1) and update maxValue reference to new node with maximum value in

the queue which requires O(n) time complexity. This operation requires O(n) time complexity.

Min Priority Queue is similar to max priority queue except removing maximum element first, we remove

minimum element first in min priority queue. The following operations are performed in

Min Priority Queue...

isEmpty() - Check whether queue is Empty.

insert() - Inserts a new value into the queue.

findMin() - Find minimum value in the queue.

remove() - Delete minimum value from the

queue.

Min priority queue is also having same representations as Max priority queue with minimum value removal.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

QUEUE

Queue data structure is a linear data structure in which the operations are performed based on FIFO

principle. In a queue data structure, adding and removing of elements are performed at two different

positions. The insertion operation is performed at a position which is known as 'rear' and the deletion

operation is performed at a position which is known as 'front'.

In a queue data structure, the insertion operation is performed using a function called "enQueue()" and

deletion operation is performed using a function called "deQueue()".

Queue data structure using array can be implemented as follows

Before we implement actual operations, first follow the below steps to create an empty queue.

Step1: Include all the header files which are used in the program and define a constant 'SIZE'

with specific value.

Step 2: Declare all the user defined functions which are used in queue

implementation. Step 3: Create a one dimensional array with above defined

SIZE (int queue[SIZE])

Step 4: Define two integer variables 'front' and 'rear' and initialize both with '-1'. (int front = -1, rear = -
1)

Step 5: Then implement main method by displaying menu of operations list and make suitable

function calls to perform operation selected by the user on queue.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Inserting value into the queue

In a queue data structure, enQueue() is a function used to insert a new element into the queue. In a queue,

the new element is always inserted at rear position. The enQueue() function takes one integer value as

parameter and inserts that value into the queue. We can use the following steps to insert an element into

the queue...

Step 1: Check whether queue is FULL. (rear == SIZE-1)

Step 2: If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and terminate the

function. Step 3: If it is NOT FULL, then increment rear value by one (rear++) and set queue[rear]

= value.

Deleting a value from the Queue

In a queue data structure, deQueue() is a function used to delete an element from the queue. In a queue, the

element is always deleted from frontposition. The deQueue() function does not take any value as

parameter. We can use the following steps to delete an element from the queue...

Step 1: Check whether queue is EMPTY. (front == rear)

Step 2: If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!" and terminate the
function.

Step 3: If it is NOT EMPTY, then increment the front value by one (front ++). Then display

queue[front] as deleted element. Then check whether both front and rear are equal (front == rear), if

it TRUE, then set both front and rear to '-1' (front = rear = -1).

Displays the elements of a Queue

We can use the following steps to display the elements of a queue...

Step 1: Check whether queue is EMPTY. (front == rear)

Step 2: If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the

function. Step 3: If it is NOT EMPTY, then define an integer variable 'i' and

set 'i = front+1'.

Step 4: Display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same until 'i' value is

equal to rear (i <= rear)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Program:

#include<stdio.h

>

#include<conio.h

>

#define SIZE 10 void enQueue(int); void deQueue(); void

display(); int queue[SIZE], front = -1, rear = -1;

void main()

{

int value,

choice; clrscr();

while(1)

{

printf("\n\n***** MENU *****\n");

printf("1. Insertion\n2. Deletion\n3. Display\n4.

Exit"); printf("\nEnter your choice: ");

scanf("%d",&choic

e); switch(choice)

{

case 1:

printf("Enter the value to be insert:

"); scanf("%d",&value);

enQueue(value);

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

break;

case 2:

deQueue(

); break;

case 3: display();

break

; case 4:

exit(0);

default: printf("\nWrong selection!!! Try again!!!");

}

}

}

void enQueue(int value)

{

if(rear == SIZE-1)

printf("\nQueue is Full!!! Insertion is not

possible!!!"); else

{

if(front == -1)

front =

0;

rear++;

queue[rear] = value;

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

printf("\nInsertion success!!!");

}

}

void deQueue()

{

if(front == rear)

printf("\nQueue is Empty!!! Deletion is not possible!!!");

else

{

printf("\nDeleted : %d",

queue[front]); front++;

if(front == rear) front= rear = -1;

}

}

void display()

{

if(rear == -1)

printf("\nQueue is

Empty!!!"); else

{

inti;

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

printf("\nQueue elements

are:\n"); for(i=front; i<=rear; i++)

printf("%d\t",queue[i]);

}

}

QUEUE USING LINKED LIST

The major problem with the queue implemented using array is, It will work for only fixed number of data. That

means, the amount of data must be specified in the beginning itself. Queue using array is not suitable when

we don't know the size of data which we are going to use. A queue data structure can be implemented using

linked list data structure. The queue which is implemented using linked list can work for unlimited number of

values. That means, queue using linked list can work for variable size of data (No need to fix the size at

beginning of the implementation). The Queue implemented using linked list can organize as many data

values as we want.

In linked list implementation of a queue, the last inserted node is always pointed by 'rear' and the first node

is always pointed by 'front'.

Example

In above example, the last inserted node is 50 and it is pointed by 'rear' and the first inserted node is 10

and it is pointed by 'front'. The order of elements inserted is 10, 15, 22 and 50.

To implement queue using linked list, we need to set the following things before implementing actual
operations.

Step 1: Include all the header files which are used in the program. And declare all the user defined

functions. Step 2: Define a 'Node' structure with two members data and next.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Step 3: Define two Node pointers 'front' and 'rear' and set both to NULL.

Step 4: Implement the main method by displaying Menu of list of operations and make suitable

function calls in the main method to perform user selected operation.

enQueue(value) - Inserting an element into the Queue

We can use the following steps to insert a new node into the queue...

Step 1: Create a newNode with given value and set 'newNode → next' to

NULL. Step 2: Check whether queue is Empty (rear == NULL)

Step 3: If it is Empty then, set front = newNode and rear = newNode.

Step 4: If it is Not Empty then, set rear → next = newNode and rear = newNode.

deQueue() - Deleting an Element from Queue

We can use the following steps to delete a node from the queue...

Step 1: Check whether queue is Empty (front == NULL).

Step 2: If it is Empty, then display "Queue is Empty!!! Deletion is not possible!!!" and terminate

from the function

Step 3: If it is Not Empty then, define a Node pointer 'temp' and set it to

'front'. Step 4: Then set 'front = front → next' and delete 'temp'

(free(temp)).

display() - Displaying the elements of Queue

We can use the following steps to display the elements (nodes) of a queue...

Step 1: Check whether queue is Empty (front == NULL).

Step 2: If it is Empty then, display 'Queue is Empty!!!' and terminate the

function. Step 3: If it is Not Empty then, define a Node pointer 'temp' and

initialize with front.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Step 4: Display 'temp → data --->' and move it to the next node. Repeat the same until 'temp'

reaches to 'rear' (temp → next != NULL).

Step 4: Finally! Display 'temp → data ---> NULL'.

Program:

#include<stdio.h

>

#include<conio.

h> struct Node

{

int data;

struct Node *next;

}*front = NULL,*rear =

NULL; void insert(int);

void

delete();

void

display();

void main()

{

int choice,

value; clrscr();

printf("\n:: Queue Implementation using Linked List

::\n"); while(1){

printf("\n****** MENU ******\n");

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

printf("1. Insert\n2. Delete\n3. Display\n4.

Exit\n"); printf("Enter your choice: ");

scanf("%d",&choic

e); switch(choice){

case 1:

printf("Enter the value to be insert:

"); scanf("%d", &value);

insert(value

); break;

case 2:

delete()

; break;

case 3:

display()

; break;

case 4: exit(0);

default: printf("\nWrong selection!!! Please try again!!!\n");

}

}

}

void insert(int value)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

{

struct Node *newNode;

newNode = (struct Node*)malloc(sizeof(struct

Node)); newNode->data = value;

newNode -> next =

NULL; if(front ==

NULL)

front = rear = newNode;

else

{

rear -> next =

newNode; rear =

newNode;

}

printf("\nInsertion is Success!!!\n");

}

void delete()

{

if(front == NULL)

printf("\nQueue is Empty!!!\n");

else

{

struct Node *temp = front;

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

front = front -> next;

printf("\nDeleted element: %d\n", temp-

>data); free(temp);

}

}

void display()

{

if(front == NULL)

printf("\nQueue is Empty!!!\n");

else

{

struct Node *temp =

front; while(temp->next

!= NULL)

{

printf("%d--->",temp->data); temp = temp -> next;

}

printf("%d--->NULL\n",temp->data);

}

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

STACK ADT

Stack is an abstract data type and it is also called linear data structure. It follows last in, first out (LIFO)

strategy. A stack is structured, as described above, as an ordered collection of items where items are added

to and removed from the end called the “top.” Stacks are ordered LIFO.

The stack operations are given below.

• Stack() - creates a new stack that is empty. push(item) - adds a new item to the top of the stack. pop ()-

removes the top item from the stack.

• peek() - returns the top item from the stack but does not remove it.

• isEmpty() - tests to see whether the stack is empty. It returns a boolean value.

• size() - returns the number of items on the stack.

Stack using Array:

push(value) - Inserting value into the stack

In a stack, push() is a function used to insert an element into the stack. In a stack, the new element

is always inserted at top position. Push function takes one integer value as parameter and inserts

that value into the stack. We can use the following steps to push an element on to the stack

Step 1: Check whether stack is FULL. (top == SIZE-1)

Step 2: If it is FULL, then display "Stack is FULL!!! Insertion is not possible!!!" and terminate the
function.

Step 3: If it is NOT FULL, then increment top value by one (top++) and set stack[top] to value

(stack[top] = value).

pop() - Delete a value from the Stack

In a stack, pop() is a function used to delete an element from the stack. In a stack, the element is

always deleted from top position. Pop function does not take any value as parameter. We can use

the following steps to pop an element from the stack...

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Step 1: Check whether stack is EMPTY. (top == -1)

Step 2: If it is EMPTY, then display "Stack is EMPTY!!! Deletion is not possible!!!" and terminate the

function. Step 3: If it is NOT EMPTY, then delete stack[top] and decrement top value by one (top--).

display() - Displays the elements of a Stack

To display the elements of a stack

Step 1: Check whether stack is EMPTY. (top == -1)

Step 2: If it is EMPTY, then display "Stack is EMPTY!!!" and terminate the function.

Step 3: If it is NOT EMPTY, then define a variable 'i' and initialize with top. Display

stack[i] value and decrement i value by one (i--).

Step 4: Repeat above step until i value becomes '0'.

Program:

#include<stdio.h

>

#include<conio.

h> #define SIZE

10

void push(int); void pop(); void

display(); int stack[SIZE], top = -1;

void main()

{

int value,

choice; clrscr();

while(1)

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

{

printf("\n\n***** MENU *****\n");

printf("1. Push\n2. Pop\n3. Display\n4. Exit"); printf("\nEnter your choice: ");

scanf("%d",&choice); switch(choice){

case 1:

printf("Enter the value to be insert:

"); scanf("%d",&value);

push(value

); break;

case 2:

pop();

break

;

case 3:

display()

; break;

case 4:

exit(0);

default: printf("\nWrong selection!!! Try again!!!");

}

}

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

void push(int value)

{

if(top == SIZE-1)

printf("\nStack is Full!!! Insertion is not

possible!!!"); else{

top++;

stack[top] = value;

printf("\nInsertion

success!!!");

}

}

void pop()

{

if(top == -1)

printf("\nStack is Empty!!! Deletion is not

possible!!!"); else{

printf("\nDeleted : %d",

stack[top]); top--;

}

}

void display()

{

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

if(top == -1)

printf("\nStack is

Empty!!!"); else{

inti;

printf("\nStack elements

are:\n"); for(i=top; i>=0; i--)

printf("%d\n",stack[i]);

}

}

Stack using Linked List

• The major problem with the stack implemented using array is, it works only for fixed number of data
values.

That means the amount of data must be specified at the beginning of the implementation itself.

• Stack implemented using array is not suitable, when we don't know the size of data which we are
going to use.

• A stack data structure can be implemented by using linked list data structure.

• The stack implemented using linked list can work for unlimited number of values. That means, stack

implemented using linked list works for variable size of data. So, there is no need to fix the size at the

beginning of the implementation.

• The Stack implemented using linked list can organize as many data values as we want.

• In linked list implementation of a stack, every new element is inserted as 'top' element.

• That means every newly inserted element is pointed by 'top'. Whenever we want to remove an

element from the stack, simply remove the node which is pointed by 'top' by moving 'top' to its next

node in the list.

• The next field of the first element must be always NULL.

OPERATIONS

Step 1: Define a 'Node' structure with two member’s data and next.

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Step 2: Define a Node pointer 'top' and set it to NULL.

Step 3: Implement the main function by displaying Menu with list of operations and

make suitable function calls in the main function.

push(value) - Inserting an element into the Stack

We can use the following steps to insert a new node into the stack...

Step 1: Create a newNode with given value.

Step 2: Check whether stack is Empty (top ==

NULL) Step 3: If it is Empty, then set newNode →

next = NULL.

Step 4: If it is Not Empty, then set newNode → next

= top. Step 5: Finally, set top = newNode.

pop() - Deleting an Element from a Stack

We can use the following steps to delete a node from the stack...

Step 1: Check whether stack is Empty (top == NULL).

Step 2: If it is Empty, then display "Stack is Empty!!! Deletion is not possible!!!" and terminate

the function

Step 3: If it is Not Empty, then define a Node pointer 'temp' and set it to

'top'. Step 4: Then set 'top = top → next'.

Step 7: Finally, delete 'temp' (free(temp)).

display() - Displaying stack of elements

We can use the following steps to display the elements (nodes) of a stack...

Step 1: Check whether stack is Empty (top == NULL).

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

Step 2: If it is Empty, then display 'Stack is Empty!!!' and terminate the

function. Step 3: If it is Not Empty, then define a Node pointer 'temp' and

initialize with top.

Step 4: Display 'temp → data --->' and move it to the next node. Repeat the same until temp reaches

to the first node in the stack (temp → next != NULL).

Step 5: Finally, Display 'temp → data ---> NULL'.

Program
:

#include<stdio.h

>

#include<conio.

h> struct Node

{

int data;

struct Node *next;

}*top = NULL;

void push(int); void pop(); void

display(); void main()

{

int choice,

value; clrscr();

printf("\n:: Stack using Linked List

::\n"); while(1){

printf("\n****** MENU ******\n");

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

printf("1. Push\n2. Pop\n3. Display\n4.

Exit\n"); printf("Enter your choice: ");

scanf("%d",&choice);

switch(choice

){ case 1:

printf("Enter the value to be insert:

"); scanf("%d", &value);

push(value

); break;

case 2:

pop()

;

break

;

case 3:

display()

; break;

case 4: exit(0);

default: printf("\nWrong selection!!! Please try again!!!\n");

}

}

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

void push(int value)

{

struct Node *newNode;

newNode = (struct Node*)malloc(sizeof(struct

Node)); newNode->data = value;

if(top == NULL)

newNode->next = NULL;

else

newNode->next =

top; top = newNode;

printf("\nInsertion is Success!!!\n");

}

void pop()

{

if(top == NULL)

printf("\nStack is Empty!!!\n");

else

{

struct Node *temp = top;

printf("\nDeleted element: %d", temp-

>data); top = temp->next;

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

www.binils.com for Anna University | Polytechnic and Schools

Download Binils Android App in Playstore Download Photoplex App

free(temp);

}

}

void display()

{

if(top == NULL)

printf("\nStack is Empty!!!\n");

else

{

struct Node *temp = top;

while(temp->next !=

NULL)

{

printf("%d--->",temp-

>data); temp = temp ->

next;

}

printf("%d--->NULL",temp->data);

}

}

http://www.binils.com/
https://play.google.com/store/apps/details?id=binilselva.allabtengg.release001
https://play.google.com/store/apps/details?id=com.binilselva.photoship
https://play.google.com/store/apps/details?id=com.binilselva.photoship

