Download Anna University Questions, Syllabus, Notes @www.AllAbtEngg.com

Reg. No. :		10				

Question Paper Code: 53681

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2019.

Fifth Semester

Robotics and Automation Engineering

RO 6502 - BASICS OF ROBOTICS

(Regulation 2013)

Time: Three hours Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. A vector is described as P = 3i + 5j + 2k. Express the vector in matrix form:
 - (a) With a scale factor of 2.
 - (b) If it were to describe a direction as a unit vector.
- A point p(7,3,1)^T is attached to a frame F and is subjected to the following transformations. Find the coordinates of the point relative to the reference frame at the conclusion of transformations of Rotation of 9° about the Z-axis.
- 3. What are the advantages of harmonic gear drive used in robot?
- 4. Why electric drives is considered in robots?
- 5. The numerical value of the Jacobian of a spherical—RPY robot is given below. It is desired to apply a force of 1 N along the z-axis of the hand frame as well as a moment of 20 N in about the z-axis of the hand frame to drill a hole in a block. Find the necessary joint forces and torques.

$$H_{J} = \begin{bmatrix} 20 & 0 & 0 & 0 & 0 & 0 \\ -5 & 0 & 1 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

- 6. Identify the total number of addition and multiplication for the Lagrange-Euler formulation of A_i^i .
- 7. Brief Tool with vary types.
- 8. Define hook and scoop.
- 9. Brief trajectory.
- 10. What is ROS?

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

 (a) Compute the transformation matrix for the given manipulator in figure and table. (13)

- (b) Describe the details about frame, position and orientation and rotation matrix in details. (13)
- (a) With neat sketch explain the construction and working principle of hybrid stepper motor. (13)

Or

- (b) With flow chart explain the factors involved on selection of motors and mechanical drives for the desired specification. (13)
- (a) Explain how to find the joint torque of the given manipulator in figure 2 using N-E dynamic formulation. (13)

igure 2 Or

2

53681

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

- (b) Design a closed loop force and position control of 3 axis Cartesian manipulator. (13)
- 14. (a) (i) With neat sketch describe the construction of screw actuated gripper. (6)
 - (ii) What is RCC? and explain the construction and working with neat sketch.

Or

- (b) (i) How to calculate the griping force of the two fingered gripper? (5)
 - (ii) Explain the various factors to be considered on selection of grippers.
- 15. (a) Derive the co-efficients of first order to fifth order cubic spline interpolation for trajectory generation. (13)

Or

(b) The trajectory of a particular joint is specified as follows: Path points in degrees: 10, 35, 25, 10. The duration of these three segments should be 2, 1, 3 seconds, respectively. The magnitude of the default acceleration to use at all blend points is 50 degrees/second². Calculate all segment velocities, blend times, and linear times. (13)

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Design a cylindrical robot with spherical wrist based on the given details in table.2 and obtain the forward kinematic solution.

	7	Table.2			
link	a_1	α_1	d_1	θ_1	
1	0	0	d_1	θ_1	
2	0	-90	d_2	0	
3	0	0	d_3	0	
4	0	-90	0	<i>0</i> 4	
5	0	90	0	05	
6	0	0	de	06	

Or

3 53681

Download Anna University Questions, Syllabus, Notes @ www.AllAbtEngg.com

(b) It is desired to have the first joint of a 6-axis robot go from initial angle of 30 degree to a final angle of 75 degree in 5 seconds. Using third order polynomial, calculate joint angle at 1, 2, 3 and 4 seconds and sketch the joint trajectory with respect to time.							
				4			
			4			53681	